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Abstract

We prove a Littlewood type theorem which shows the sharpness of the Korányi
approach region for the boundary behavior of Poisson-Szegö integrals on the unit
ball of Cn. Our result is stronger than Hakim and Sibony [3].
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1 Introduction

Let Cn be then-dimensional complex space with inner product〈z, w〉 =
∑n

j=1 zjwj ,
wherez = (z1, · · · , zn) and w = (w1, · · · , wn), and the associated norm|z| =√
〈z, z〉. We denote byB the unit ball ofCn and byS its boundary. Letσ be the

normalized surface measure onS. For an integrable functionf on S, the Poisson-
Szeg̈o integral off is defined by

P[f ](z) =
∫

S

(1 − |z|2)n

|1 − 〈z, ζ〉|2n
f(ζ) dσ(ζ) for z ∈ B.

In [4], Korányi investigated the boundary behavior of Poisson-Szegö integrals. For
α > 1 andξ ∈ S, the Koŕanyi approach region atξ is given by

Aα(ξ) =
{

z ∈ B : |1 − 〈z, ξ〉| <
α

2
(1 − |z|2)

}
.

Theorem A. Let α > 1. If f is an integrable function onS, then the Poisson-Szegö
integralP[f ](z) has the limitf(ξ) asz → ξ within Aα(ξ) at almost every pointξ of
S.

Whenn = 1, this theorem is well-known as Fatou’s theorem. In this case,Aα(ξ) is
a non-tangential approach region atξ. The best possibility of this approach region was
firstly proved by Littlewood [5] in the following sense: LetC0 be a tangential curve in
the unit discD which ends atz = 1, and letCθ be the curveC0 rotated about the origin
through an angleθ, so thatCθ touches the unit circle internally ateiθ. Then there exists
a bounded harmonic function onD which admits no limits asz → eiθ alongCθ for

1



almost everyθ, 0 ≤ θ ≤ 2π. Aikawa [1] improved this result by showing that there
exists a bounded harmonic function onD which admits no limit asz → eiθ alongCθ

for everyθ.
In [6], Nagel and Stein proved that the Poisson integral on the upper half space of

Rn+1 has the boundary limit at almost every point ofRn within a certain approach
region which is not contained in any non-tangential approach regions. Sueiro [8] ex-
tended Nagel and Stein’s result toCn and proved that the Poisson-Szegö integral has
the boundary limit at almost every point ofS within a certain approach region which
is not contained in any Korányi approach regions.

The purpose of the present paper is to prove a Littlewood type theorem in higher
dimensions. Letγ be a curve inB which ends ate1 = (1, 0, · · · , 0) and satisfies

lim
z→e1
z∈γ

|1 − 〈z, e1〉|
1 − |z|2

= ∞. (1.1)

This means that, for eachα > 1, points ofγ neare1 lie outsideAα(e1). LetU denote
the group of unitary transformations ofCn. We writeUγ for the image ofγ through
U ∈ U . SinceU preserves inner products,Uγ touchesS internally atUe1 and lies
outsideAα(Ue1) nearUe1 for everyα > 1.

Our main result is as follows.

Theorem. Letγ be a curve inB which ends ate1 and satisfies(1.1). Then there exists
a bounded functionf on S of which Poisson-Szegö integralP[f ](z) admits no limits
as|z| → 1 alongUγ for everyU ∈ U , that is,

lim inf
|z|→1
z∈Uγ

P[f ](z) 6= lim sup
|z|→1
z∈Uγ

P[f ](z) for everyU ∈ U .

Remark1. SinceU acts transitively onS, for eachξ ∈ S there isUξ ∈ U such that
ξ = Uξe1. Therefore, Theorem implies that there exists a bounded Poisson-Szegö
integral which admits no limits asz → ξ alongUξγ at everypoint ξ of S. Moreover,
we can makef satisfy

lim inf
|z|→1
z∈Uγ

P[f ](z) = inf
ζ∈S

f(ζ) and lim sup
|z|→1
z∈Uγ

P[f ](z) = sup
ζ∈S

f(ζ)

for everyU ∈ U .

Remark2. By Sueiro’s result, the limit in (1.1) can not be replaced by the upper limit.

As a related topic in higher dimensions, there is the following result due to Hakim
and Sibony [3].

Theorem B. Supposen > 1. Let α > 1 and h : (0, 1] → [α,∞) be a decreasing
function such that

lim
x→0+

h(x) = ∞,

and let

Dα,h(ξ) =

{
z ∈ B :

|1 − 〈z, ξ〉| ≤ α(1 − |〈z, ξ〉|) and

|1 − 〈z, ξ〉| ≤ h(|1 − 〈z, ξ〉|)(1 − |z|)

}
.
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Then there exists a bounded holomorphic function onB which admits no limits as
z → ξ within Dα,h(ξ) at almost every pointξ of S.

We notice that the approach regionDα,h(ξ) is wider than any Koŕanyi approach
regions in the complex tangential directions, but is the same in the special real direction.
Our theorem is stronger than Theorem B in the following points:

• It improves no convergence “almost everywhere” to “everywhere”.

• It establishes that a tangential approach in the special real direction can not be
allowed in Theorem A.

• The existence of a bounded Poisson-Szegö integral which fails to have a bound-
ary limit is ensured even if we replaceDα,h(e1) by much smaller curveγ satis-
fying (1.1).

Also, our method is different from Hakim and Sibony’s. Theorem B is proved by con-
structing a higher dimensional Blaschke product. However, we will prove Theorem in
Section 3 by constructing a bounded function onS and using lower and upper esti-
mates of Poisson-Szegö integrals in Section 2. In the proofs we adapt ideas from [1, 2].
Whereas the polar and the euclidean coordinates were used to construct a bounded
function on the unit circle and onRn in [1, 2], they are not applicable in our case. This
is an important difference between [1, 2] and our case.

Throughout the paper we use the symbolsA0, A1, A2, · · · to denote absolute posi-
tive constants depending only on the dimensionn.

2 Estimates of Poisson-Szegö integrals

In this section we give lower and upper estimates for Poisson-Szegö integrals. To this
end, we start with introducing a non-isotropic ball inS. We observe that the function
d(z, w) = |1 − 〈z, w〉|1/2 satisfies the triangle inequality onB ∪ S, and defines a
metric onS. See [7, Lemma 7.3]. Forξ ∈ S andr > 0, we writeQ(ξ, r) = {ζ ∈ S :
d(ζ, ξ) < r}, the non-isotropic ball of centerξ and radiusr. Note that, to emphasize
the metricd, we use the slightly different definition from Stoll’s book. We observe that
σ(Q(Uξ, r)) = σ(Q(ξ, r)) for any unitary transformationsU and that

lim
r→0

σ(Q(ξ, r))
r2n

=
2n

4
√

π

Γ(n+1
2 )

Γ(n
2 + 1)

(2.1)

See [7, p. 84]. Moreover, there is a constantA0 > 1 depending only on the dimension
n such that

A−1
0 r2n ≤ σ(Q(ξ, r)) ≤ A0r

2n (2.2)

for ξ ∈ S and0 ≤ r ≤ diam S =
√

2. HerediamF = sup{d(η, ζ) : η, ζ ∈ F} for
F ⊂ S.

Let T > 0 andξ ∈ S. For an integrable functiong on S, we define the truncated
maximal function atξ by

MT [g](ξ) = sup
r≥T

r−2n

∫
Q(ξ,r)

|g(ζ)| dσ(ζ).
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By the argument in [7, Theorem 7.8], we obtain the following estimate for the Poisson-
Szeg̈o integral. For completeness we give the proof.

Lemma 1. There exists a positive constantA1 depending only on the dimensionn such
that if g is an integrable function onS andC > 0, then

|P[g](tξ)| ≤ A1

(
(1 − t)−n

∫
Q(ξ,C

√
1−t)

|g(ζ)| dσ(ζ) + C−2nMC
√

1−t[g](ξ)
)

for ξ ∈ S and0 < t < 1.

Proof. Let ξ ∈ S and0 < t < 1 be fixed, and let

V0 = Q(ξ, C
√

1 − t),

Vj = Q(ξ, 2jC
√

1 − t) \ Q(ξ, 2j−1C
√

1 − t) (j = 1, · · · , N),

whereN is the smallest integer such that2NC
√

1 − t >
√

2. Then

|P[g](tξ)| ≤
N∑

j=0

∫
Vj

(1 − t2)n

|1 − 〈tξ, ζ〉|2n
|g(ζ)| dσ(ζ).

Since|1 − 〈tξ, ζ〉| ≥ 1 − t for ζ ∈ S, it follows that∫
V0

(1 − t2)n

|1 − 〈tξ, ζ〉|2n
|g(ζ)| dσ(ζ) ≤ 2n

(1 − t)n

∫
Q(ξ,C

√
1−t)

|g(ζ)| dσ(ζ).

Let j = 1, · · · , N . By the triangle inequality, we have forζ ∈ Vj ,

2j−1C
√

1 − t ≤ d(ξ, ζ) ≤ d(ξ, tξ) + d(tξ, ζ) ≤ 2d(tξ, ζ) = 2|1 − 〈tξ, ζ〉|1/2.

Hence it follows that∫
Vj

(1 − t2)n

|1 − 〈tξ, ζ〉|2n
|g(ζ)| dσ(ζ) ≤ 29n

24njC4n(1 − t)n

∫
Q(ξ,2jC

√
1−t)

|g(ζ)| dσ(ζ)

≤ 29n

22njC2n
MC

√
1−t[g](ξ).

Noting that
∑N

j=1 2−2nj < 1, we obtain the lemma withA1 = 29n.

As a consequence of Lemma 1, we obtain the following upper and lower estimates.

Lemma 2. The following statements hold.

(i) If g is an integrable function onS, then

|P[g](tξ)| ≤ A2M√
1−t[g](ξ) for ξ ∈ S and0 < t < 1,

whereA2 is a positive constant depending only on the dimensionn.
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(ii) Let ξ ∈ S, 0 < r < 1 andC > 0. If g is a measurable function onS such that
g = 1 onQ(ξ, C

√
1 − r) and|g| ≤ 1 onS, then

P[g](tξ) ≥ 1 − A3

C2n
for r ≤ t < 1,

whereA3 is a positive constant depending only on the dimensionn.

Proof. PuttingC = 1 in Lemma 1, we obtain (i) withA2 = 2A1. Let us show (ii).
We puth = (1 − g)/2. Thenh = 0 on Q(ξ, C

√
1 − r) and|h| ≤ 1 on S. Applying

Lemma 1 toh, we obtain from (2.2) that forr ≤ t < 1,

P[h](tξ) ≤ A1

C2n
MC

√
1−t[h](ξ) ≤ A1

C2n
sup

ρ≥C
√

1−t

σ(Q(ξ, ρ))
ρ2n

≤ A0A1

C2n
.

SinceP[g] = 1 − 2P[h], we obtain (ii) withA3 = 2A0A1.

3 Proof of Theorem

Let π be the radial projection toS defined byπ(z) = z/|z| for z 6= 0. We note that
(1.1) implies

lim
z→e1
z∈γ

d(z, e1)
d(z, π(z))

= ∞, (3.1)

since1 − |z|2 ≥ 1 − |z| = d(z, π(z))2 for z ∈ B \ {0}. Recall that

diamF = sup
η,ζ∈F

d(η, ζ) for F ⊂ S.

Lemma 3. Let γ be the curve as in Theorem. Then there exist sequences of positive
numbers{aj}∞j=1, {bj}∞j=1 and subcurves{γj}∞j=1 of γ with the following properties:

(i) 0 < aj < bj < aj+1 < bj+1 < 1 and lim
j→∞

aj = 1;

(ii) aj ≤ |z| ≤ bj for z ∈ γj ;

(iii) diam π(γj) ≤
√

1 − bj−1 if j ≥ 2;

(iv) lim
j→∞

diamπ(γj)√
1 − aj

= ∞.

Proof. Let αj > 1 be such thatαj → ∞ asj → ∞. We shall choose{aj}, {bj} and
{γj}, inductively. By (3.1), we can finda1 with infz∈γ |z| < a1 < 1 and

d(z, e1) ≥ α1d(z, π(z)) for z ∈ γ ∩ {|z| ≥ a1}.

Let γ′ be the connected component ofγ ∩ {|z| ≥ a1} which ends ate1. Since there is
z0 ∈ γ′ ∩ {|z| = a1}, we have from the triangle inequality that

diam π(γ′) ≥ d(π(z0), e1)
≥ d(z0, e1) − d(z0, π(z0))
≥ (α1 − 1)d(z0, π(z0))

= (α1 − 1)
√

1 − a1.
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Let γ′′ be a subcurve ofγ′ connecting a point in{|z| = a1} and a point neare1 such
that

diamπ(γ′′) ≥ 1
2

diamπ(γ′).

We takeb1 so thatsupz∈γ′′ |z| < b1 < 1, and letγ1 be the connected component of
γ ∩ {a1 ≤ |z| ≤ b1} containingγ′′. Then

diamπ(γ1) ≥ diamπ(γ′′) ≥ α1 − 1
2

√
1 − a1.

We next choosea2, b2 andγ2 as follows. Leta2 be such thatb1 < a2 < 1 and

1
4

√
1 − b1 ≥ d(z, e1) ≥ α2d(z, π(z)) for z ∈ γ ∩ {|z| ≥ a2}. (3.2)

By repeating the above procedure, we can findb2 and γ2 with a2 < b2 < 1 and
a2 ≤ |z| ≤ b2 for z ∈ γ2, and

diamπ(γ2) ≥
α2 − 1

2
√

1 − a2.

It also follows from (3.2) andα2 > 1 that

d(π(z), e1) ≤ d(z, e1) + d(z, π(z)) ≤ 1
2

√
1 − b1 for z ∈ γ2,

and sodiamπ(γ2) ≤
√

1 − b1. Henceγ2 satisfies (iii). Continuing this procedure, we
obtain the required sequences.

In the rest of this section, we suppose that{aj}, {bj} and{γj} are as in Lemma 3,
and put

`j =
diam π(γj)

4
, cj =

(
diamπ(γj)√

1 − aj

)1/2

and ρj = cj

√
1 − aj

to simplify the notation. Note from Lemma 3 that

lim
j→∞

`j = 0, lim
j→∞

ρj

`j
= 0 and lim

j→∞
cj = ∞. (3.3)

Therefore, in the argument below, we may assume thatρj < `j for everyj ∈ N.
For eachj ∈ N, let us choose finitely many points{ην

j }ν in S such that

(P1) S =
∪
ν

Q(ην
j , `j),

(P2) {Q(ην
j , `j/2)}ν are mutually disjoint.

This is possible. In fact, we first take an arbitraryη1
j ∈ S, and takeηµ

j ∈ S \∪µ−1
ν=1 Q(ην

j , `j) inductively as long asS\
∪µ−1

ν=1 Q(ην
j , `j) 6= ∅. SinceS is compact, we

can get finitely many points{ην
j }ν satisfying (P1). It also fulfills thatd(ην

j , ηµ
j ) ≥ `j if
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ν 6= µ by the definition of the non-isotropic ball. Hence (P2) follows from the triangle
inequality.

We put
Mj =

∪
ν

{ζ ∈ S : d(ζ, ην
j ) = `j}.

Thenπ(Uγj) ∩ Mj 6= ∅ for any unitary transformationsU . In fact, there isν such
thatπ(Uγj) ∩ Q(ην

j , `j) 6= ∅ by (P1). Sincediamπ(Uγj) = diam π(γj) = 4`j and
diamQ(ην

j , `j) ≤ 2`j , we haveπ(Uγj) ∩ {ζ ∈ S : d(ζ, ην
j ) = `j} 6= ∅, and so

π(Uγj) ∩ Mj 6= ∅. Let Gj be the subset ofB given by

Gj = {z ∈ B : aj ≤ |z| ≤ bj andπ(z) ∈ Mj}.

SinceUγj ⊂ {aj ≤ |z| ≤ bj} by Lemma 3 (ii), it follows thatUγj ∩Gj 6= ∅. We also
put

Ej =
∪
ν

Rν
j ,

whereRν
j = {ζ ∈ S : `j − ρj < d(ζ, ην

j ) < `j + ρj} is the non-isotropic ring. Since
the valueσ(Rν

j ) is independent ofην
j by unitary invariance, we writeκj for this value.

We note that
lim

j→∞

κj

`2n
j

= 0. (3.4)

In fact, we obtain from (2.1) and (3.3) that forη ∈ S,

κj

`2n
j

=
σ(Q(η, `j + ρj)) − σ(Q(η, `j − ρj))

`2n
j

=
(

`j + ρj

`j

)2n
σ(Q(η, `j + ρj))

(`j + ρj)2n
−

(
`j − ρj

`j

)2n
σ(Q(η, `j − ρj))

(`j − ρj)2n

−→ 0 asj → ∞.

Lemma 4. Let{Ej} be as above, and letχEj denote the characteristic function ofEj .
Then the following properties hold.

(i) lim
j→∞

(
sup

|z|≤bj−1

P[χEj ](z)

)
= 0.

(ii) lim
j→∞

σ(Ej) = 0.

Proof. Let z ∈ B be such that|z| ≤ bj−1. By Lemma 2 (i), we have

P[χEj ](z) ≤ A2M√
1−|z|[χEj ](π(z))

≤ A2 sup
r≥

√
1−|z|

r−2n
∑

ν

σ(Rν
j ∩ Q(π(z), r))

≤ A2 sup
r≥

√
1−|z|

r−2nNj(z, r)κj ,
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whereNj(z, r) is the number ofην
j such thatRν

j ∩Q(π(z), r) 6= ∅. Since
√

1 − |z| ≥
diamπ(γj) by Lemma 3 (iii), we observe fromρj < `j ≤ r/4 that ifRν

j∩Q(π(z), r) 6=
∅, thenQ(ην

j , `j/2) ⊂ Q(π(z), 2r). Therefore it follows from (2.2) and (P2) that
Nj(z, r) ≤ A4(r/`j)2n with a positive constantA4 depending only on the dimension
n. Hence we obtain

P[χEj ](z) ≤ A2A4
κj

`2n
j

,

so that (i) follows from (3.4).
Takingz = 0 in (i), we obtain

σ(Ej) = P[χEj ](0) −→ 0 asj → ∞.

Thus (ii) follows.

We now construct a bounded functionf onS satisfying the property in Theorem.

Proof of Theorem.In view of Lemma 4, taking a subsequence ofj if necessary, we
may assume that

P[χEj ](z) ≤ 2−j for |z| ≤ bj−1, (3.5)

andσ(Ej) ≤ 2−j . Thenσ(
∩

k

∪∞
j=k Ej) = 0. Let

fj(ζ) =

{
(−1)Ij(ζ) if ζ ∈

∪j
i=1 Ei,

0 if ζ 6∈
∪j

i=1 Ei,

whereIj(ζ) is the maximum integeri such thatζ ∈ Ei for ζ ∈
∪j

i=1 Ei. Then we
observe thatfj converges almost everywhere onS to

f(ζ) =

{
(−1)I(ζ) if ζ ∈

∪∞
j=1 Ej \

∩
k

∪∞
j=k Ej ,

0 if ζ 6∈
∪∞

j=1 Ej or ζ ∈
∩

k

∪∞
j=k Ej ,

whereI(ζ) is the maximum integeri such thatζ ∈ Ei for ζ ∈
∪∞

j=1 Ej \
∩

k

∪∞
j=k Ej .

We also see that

(a) fj = (−1)j onEj and|fj | ≤ 1 onS,

(b) |fj+1 − fj | ≤ 2χEj+1 ,

(c) P[fj ] converges toP[f ] onB.

Let U be a unitary transformation. SinceUγ intersectsGj for everyj as stated in
the paragraph definingGj , we can takezj ∈ Uγ ∩ Gj . Note thataj ≤ |zj | ≤ bj and
Q(π(zj), cj

√
1 − aj) ⊂ Ej . If j is even, then it follows from Lemma 2 (ii), Lemma 3
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(i) and (3.5) that

P[f ](zj) = P[fj ](zj) +
∞∑

k=j

P[fk+1 − fk](zj)

≥ P[fj ](zj) −
∞∑

k=j

P[|fk+1 − fk|](zj)

≥ 1 − A3

c2n
j

− 2
∞∑

k=j

P[χEk+1 ](zj)

≥ 1 − A3

c2n
j

− 2
∞∑

k=j

2−k−1

= 1 − A3

c2n
j

− 21−j .

Similarly, if j is odd, then

P[f ](zj) ≤ −1 +
A3

c2n
j

+ 21−j .

Hence we obtain

lim inf
|z|→1
z∈Uγ

P[f ](z) = −1 < 1 = lim sup
|z|→1
z∈Uγ

P[f ](z)

by (3.3). Thus the theorem is proved.
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