Sharpness of the Kanyi approach region
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Abstract

We prove a Littlewood type theorem which shows the sharpness of thamigor
approach region for the boundary behavior of Poisson-&igggrals on the unit
ball of C™. Our result is stronger than Hakim and Sibony [3].
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1 Introduction

Let C™ be then-dimensional complex space with inner prod{gtw) = Z?:1 2iWj,
wherez = (21, -+ ,2,) andw = (wi,- - ,w,), and the associated norfpp| =
v/ (z,z). We denote byB the unit ball of C™ and by S its boundary. Let be the
normalized surface measure 6h For an integrable functioif on S, the Poisson-
Sze@ integral off is defined by

PUI(z) = / AP o) forze B.
s 1= {(zQP"
In [4], Koranyi investigated the boundary behavior of Poisson-8reggrals. For
a > 1 and¢ € S, the Koiényi approach region tis given by

Aa©) = {zeBil1- (28] < SO -1z®)}.

Theorem A. Leta > 1. If fis an integrable function o, then the Poisson-Szig
integral P[f](z) has the limitf(£) asz — £ within A, (£) at almost every poin§ of
S.

Whenn = 1, this theorem is well-known as Fatou’s theorem. In this casg¢) is
a non-tangential approach regiortaflThe best possibility of this approach region was
firstly proved by Littlewood [5] in the following sense: L&Y be a tangential curve in
the unit discD which ends at = 1, and letCy be the curve’, rotated about the origin
through an anglé, so thatC,y touches the unit circle internally at’. Then there exists
a bounded harmonic function dd which admits no limits ag — ¢* alongCy for



almost every, 0 < 0 < 2w. Aikawa [1] improved this result by showing that there
exists a bounded harmonic function 8nwhich admits no limit as — € alongCy
for everysé.

In [6], Nagel and Stein proved that the Poisson integral on the upper half space of
R™*! has the boundary limit at almost every pointR¥ within a certain approach
region which is not contained in any non-tangential approach regions. Sueiro [8] ex-
tended Nagel and Stein’s result@" and proved that the Poisson-Sadgtegral has
the boundary limit at almost every point Sfwithin a certain approach region which
is not contained in any Kényi approach regions.

The purpose of the present paper is to prove a Littlewood type theorem in higher

dimensions. Lety be a curve inB which ends at; = (1,0, --- ,0) and satisfies
1—
lim 1= {zenl _ (1.1)
zzel 1— |Z‘2
z€y

This means that, for eaeh > 1, points ofy neare; lie outsideA, (e;). Letl/ denote
the group of unitary transformations @f*. We write U~ for the image ofy through
U € U. SinceU preserves inner product8;y touchesS internally atUe; and lies
outsideA,, (Uey) nearUe; for everya > 1.

Our main result is as follows.

Theorem. Let~ be a curve inB which ends at; and satisfieg1.1). Then there exists
a bounded functiorf on S of which Poisson-Szégntegral P[f](z) admits no limits
as|z| — 1 alongU~ for everyU < U, that s,

h‘H‘l ir}f?’[f](z) # lim sup P[f](z) for everyU € U.

zeU~y ‘zze‘gyl
Remarkl. Sincel{ acts transitively orf, for eaché € S there isU; € U such that
& = Ugei. Therefore, Theorem implies that there exists a bounded Poissoid-Szeg
integral which admits no limits as — £ alongU,~ ateverypoint¢ of S. Moreover,
we can makef satisfy

liminf P[f](z) = Cmg f(¢) and limsupP[f](z) = sup f(¢)
S

\z\;l |z|—1 ces
zely zeU~y

for everyU € U.

Remark2. By Sueiro’s result, the limitin (1.1) can not be replaced by the upper limit.
As a related topic in higher dimensions, there is the following result due to Hakim

and Sibony [3].

Theorem B. Suppose: > 1. Leta > 1 andh : (0,1] — [a,00) be a decreasing
function such that

li =
Jm, h(z) = oo,

and let

D h(ﬁ)—{zeB- 1= (28| < all = [(z ) and }

|<a
L= (5,9)] < A(L - (2, (1 - |2])



Then there exists a bounded holomorphic functionBomvhich admits no limits as
z — & within D, ;,(§) at almost every poirg of S.

We notice that the approach regi@h, ,(¢) is wider than any Kdinyi approach
regions in the complex tangential directions, but is the same in the special real direction.
Our theorem is stronger than Theorem B in the following points:

e Itimproves no convergence “almost everywhere” to “everywhere”.

o It establishes that a tangential approach in the special real direction can not be
allowed in Theorem A.

e The existence of a bounded Poisson-Sz@gegral which fails to have a bound-
ary limit is ensured even if we replad, ;(e1) by much smaller curve satis-
fying (1.1).
Also, our method is different from Hakim and Sibony’s. Theorem B is proved by con-
structing a higher dimensional Blaschke product. However, we will prove Theorem in
Section 3 by constructing a bounded function $mand using lower and upper esti-
mates of Poisson-Szédntegrals in Section 2. In the proofs we adapt ideas from [1, 2].
Whereas the polar and the euclidean coordinates were used to construct a bounded
function on the unit circle and dR™ in [1, 2], they are not applicable in our case. This
is an important difference between [1, 2] and our case.
Throughout the paper we use the symhéjs A;, Ao, - - - to denote absolute posi-
tive constants depending only on the dimension

2 Estimates of Poisson-Szégntegrals

In this section we give lower and upper estimates for PoissonéSméggrals. To this
end, we start with introducing a non-isotropic balldn We observe that the function
d(z,w) = |1 — (z,w)|'/? satisfies the triangle inequality o U S, and defines a
metric onS. See [7, Lemma 7.3]. Fagr€ S andr > 0, we writeQ(&,7) = {C € S :
d(¢, &) < r}, the non-isotropic ball of centérand radius-. Note that, to emphasize
the metricd, we use the slightly different definition from Stoll's book. We observe that
a(Q(UE,r)) = a(Q(&, r)) for any unitary transformationis and that

_o(QEr)  2m T(M
e T I AT )

See [7, p. 84]. Moreover, there is a constdgt> 1 depending only on the dimension
n such that

(2.1)

4517 < 0(Q(6, 1) < Agr™" (2.2)

for ¢ € Sand0 < r < diam S = /2. Herediam F' = sup{d(n, ) : n,¢ € F} for
FcSs.

LetT > 0 and¢ € S. For an integrable function on S, we define the truncated
maximal function at by

Melgl(€) = sup 2" /Q o 01 )

r>T
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By the argumentin [7, Theorem 7.8], we obtain the following estimate for the Poisson-
Szeg integral. For completeness we give the proof.

Lemma 1. There exists a positive constafit depending only on the dimensiarsuch
that if g is an integrable function o andC > 0, then

Plol(te)] < Ay ((1 o /Q o 9010+ C_Q"Mcm[g](§)>

foré e Sand0 <t < 1.

Proof. Let¢ € S and0 < ¢ < 1 be fixed, and let

——C?(f,(jv 1 _'t%
ij:Q(§72jc\/lit)\Q(é‘?jSlCVl*t) (j:LaN)v

whereN is the smallest integer such ttff C'\/T — ¢t > /2. Then

(t6)] < Z/ )l do ).
Since|l — (t&, ()| > 1 —tfor ¢ € S, it follows that

(11—t ” 2n
/VO T g YO0 < T /Q@,cm)

Letj =1,---, N. By the triangle inequality, we have fqgre V,

9(¢)] do (Q).

2OV =t < d(€,¢) < d(€,t€) + d(t€, ¢) < 2d(t€, ) = 2|1 — (t&, ¢)|M/2.

Hence it follows that
29n

(1—t2)"
g do(() < —/
/ |1 — (&, ¢) |2"‘ Q)] da(¢) < 20031 =)™ J 290 vT=h)
29n

19(¢)] do(C)

< WMC —91(§)-

Noting thath.V:1 2727 < 1, we obtain the lemma witll; = 2°7. O
As a consequence of Lemma 1, we obtain the following upper and lower estimates.
Lemma 2. The following statements hold.
(i) If g is an integrable function o1, then
[Plg](t§)| < Aa M 1=[9](§) forc¢ e Sand0 <t < 1,

whereAs; is a positive constant depending only on the dimension



(i) Lete € S,0<r < landC > 0. If g is a measurable function ofi such that
g=10nQ(,Cyv1—r)andlg| <1onS,then

P[g](tf)zl—% forr <t <1,

whereA; is a positive constant depending only on the dimension

Proof. PuttingC' = 1 in Lemma 1, we obtain (i) wittds = 2A4;. Let us show (ii).
We puth = (1 — g)/2. Thenh = 00onQ(&,Cv/1—r) and|h| < 1onS. Applying
Lemma 1 toh, we obtain from (2.2) thatfor <t < 1,

Ay Ay a(Q(,p) _ AoAr
P < L < < ,
[P(t) < FamMoyt=ilhl(€) < &35 pzscupH P
SinceP[g] = 1 — 2P[h], we obtain (ii) withAs = 24 A;. O

3 Proof of Theorem

Let 7 be the radial projection t§' defined byr(z) = z/|z| for z # 0. We note that
(2.1) implies
Jim S@e)_ _ o (3.1)
2% d(z7(2))
sincel — |z|?> > 1 — |z| = d(z,7(2))? for 2 € B\ {0}. Recall that

diam F = sup d(n,() for F C S.
n,(eF

Lemma 3. Let~ be the curve as in Theorem. Then there exist sequences of positive
numbers{a; }32 1, {b;}32; and subcurves; }32, of y with the following properties:
(|) 0< a; < bj <ajy1 < bj+1 < land hm a; = 1;

J—00

(i) a; <|z| <b;forzen;;

(i) diamw(y;) < mifj > 2;

. . diam (v,
(iv) glggc \/1_7(;:;) = 00.
Proof. Leto; > 1 be such thaty; — oo asj — oo. We shall choosga; }, {b;} and
{~;}, inductively. By (3.1), we can find; with inf.c, |2| < a; < 1 and
d(z,e1) > and(z,m(2)) forz € yN{|z| > a1}
Let+’ be the connected componentoh {|z| > a; } which ends at;. Since there is
20 € v N {|z| = a1}, we have from the triangle inequality that
diam m(y") > d(m(20), €1)
> d(zo,e1) — d(z0,7(20))
> (a1 — 1)d(z0,7(20))
= (g —1DV1—ay.



Let+” be a subcurve of’ connecting a point if|z| = a;} and a point nea#; such
that

1
diam m(y") > 3 diam 7 (v").

We takeb; so thatsupz@,, |z| < b1 < 1, and lety; be the connected component of
v N{a1 < |z| < by} containingy”. Then

-1
diam m(vy;) > diam (") > N A-ar.

We next choosa., by and~; as follows. Letas be such thab; < ay < 1 and

i\/l — by > d(z,e1) > asd(z,7(2)) for z € yN{|z| > az2}. (3.2)

By repeating the above procedure, we can figcand~, with a < b < 1 and
as < |z] < by for z € 9, and

-1
\/1—&2.

diam 7 (7ys) > a

It also follows from (3.2) andv, > 1 that

d(n(z),e1) < d(z,e1) + d(z,m(z)) < %\/ 1-b for z € 7o,

and sodiam 7(y2) < 4/1 — b1. Hencey, satisfies (iii). Continuing this procedure, we
obtain the required sequences. O

In the rest of this section, we suppose thaf}, {b,} and{~,} are as in Lemma 3,
and put

¢

. . 1/2
_ diam(3;) dmmwm)/ and p; — e T=a;

VN Cj( JI—a;

to simplify the notation. Note from Lemma 3 that

lim 4, =0, lim 22 =0 and lim ¢; = oc. (3.3)

j—o0 j—oo £ j—o0

Therefore, in the argument below, we may assumeghat ¢; for every;j € N.
For eacly € N, let us choose finitely many poinfg; }, in .S such that

(P1) S ={JoM,, ),

(P2) {Q(n},¢,/2)}, are mutually disjoint.

This is possible. In fact, we first take an arbitrary e S, and taken;.* e S\

Uff;} Q(nj, ;) inductively as long aS\UZ: Q(ny,4;) # 0. SincesS is compact, we
can get finitely many pointgn; },, satisfying (P1). It also fulfills thad(?, 775.”) > ¢ if



v # u by the definition of the non-isotropic ball. Hence (P2) follows from the triangle
inequality.
We put

My =| J{¢ €S d¢,n) =t}

Thenn(U~;) N M; # 0 for any unitary transformationg. In fact, there i’ such
that(U~;) N Q(nf,¢;) # 0 by (P1). Sinceliam 7 (U~;) = diamw(y;) = 4¢; and
diam Q(nY, ¢;) < 2¢;, we haver(Uv;) N {¢ € S : d(¢,n}) = ¢;} # 0, and so
m(U~;j) N M; # (. Let G, be the subset aB given by

Gj = {Z € B: aj; < |Z| < bj andw(z) S MJ}

SinceU~; C {a; < |z| < b;} by Lemma 3 (ii), it follows that/~; N G, # (. We also
put
E; =R,

whereRY = {( € S : {; — p; < d((,n}) < £; + p;} is the non-isotropic ring. Since
the values (RY) is independent of’ by unitary invariance, we write; for this value.
We note that 4

lim —L =0. (3.4)

In fact, we obtain from (2.1) and (3.3) that fore S,

K o(Qnl + pj)) —a(Qn, 45 — pj))

éQrL [2@
J J
_ (@' + Pj)zn o(Qn, & + pj)) (fj - Pj)% o(Q(n,4; — pj))
4 (4 + pi)*" Z (6 = pi)*"
—0 asj — oo.

Lemma4. Let{E;} be as above, and lgtz, denote the characteristic function &f.
Then the following properties hold.

(i) lim ( sup P[XEj}(z)> =0.

I7790 \ J=|<bj -1
(i) lim o(E;) =0.
J—00
Proof. Let z € B be such thafz| < b,_;. By Lemma 2 (i), we have

Plxe;l(2) < A2M. glxe J(n(2))
<Ay sup r ZU(R]”- NQ(r(z),r))

r>4/1—|z| v
<Ay sup 7 2"Ny(z,7)kj,
r>4/1—|z|



whereN;(z,) is the number of)y such thatR? N Q(r(z),r) # 0. Since\/1 — |z] >

diam 7(~;) by Lemma 3 (iii), we observe from; < ¢; < r/4thatif RYNQ(7(z2),7) #
0, thenQ(n?,¢;/2) C Q(n(2),2r). Therefore it follows from (2.2) and (P2) that
N;(z,7) < A4(r/€;)*™ with a positive constant, depending only on the dimension
n. Hence we obtain .
Plxe,l(2) < A2A4£T7n’

J

so that (i) follows from (3.4).
Takingz = 0 in (i), we obtain

o(E;) = Plxg,](0) — 0 asj — oo.
Thus (ii) follows. O

We now construct a bounded functigron S satisfying the property in Theorem.

Proof of Theorem.n view of Lemma 4, taking a subsequencejof necessary, we
may assume that 4
Plxe,l(z) <277 for [2[ < b;_1, (3.5)

ando(E;) < 277. Theno (N, U2, Ej) = 0. Let

o JEDEO e UL, B
fal¢) = {0 it ¢ ¢ U, Es,

where;({) is the maximum integet such that{ € E; for ¢ € Ule E;. Then we
observe thaf; converges almost everywhere Srio

10 = {(—1)1<<) it ¢ e U2, B\ N Uy B
0 if ¢ ¢ U2, Ejor¢ e N, Uiy B,

wherel(¢) is the maximum integersuch that € E; for ¢ € Uj‘;l Ei\Ng U‘;‘;k E;.
We also see that '

(@ f; =(-1) onE; and|f;] <1onS,
() [fj+1 = fil <2xE44,
(c) P|f;] converges t&®(f] on B.

Let U be a unitary transformation. Sin€gy intersects; for every; as stated in
the paragraph defining;, we can take;; € Uy N G;. Note thata; < |z;| < b; and
Q(m(25),cj+/1 —a;) C Ej;. If jis even, then it follows from Lemma 2 (i), Lemma 3



(i) and (3.5) that

PIf)z) = Pl () + > Plfuss = £il(z)

k=j
> Pfil(z) = Y Pllfisr — fell(z))
k=j
>1- ;2% - 2ZP[XEk+1](Zj)
J k=j

A oo

>1— 5 —2) 27k
k=3
— 7217]’.

Similarly, if j is odd, then

PII() < —1+ 5% + 217,

2n
]

Hence we obtain

liminf P[f](z) = —1 < 1 = limsup P[f](=)

[z|—1 |z|—1

zeUxy z€U~
by (3.3). Thus the theorem is proved. O
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