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Abstract

We show that a John domain has finitely many minimal Martin boundary points
at each Euclidean boundary point. The number of minimal Martin boundary points
is estimated in terms of the John constant. In particular, if the John constant is
bigger than

√
3/2, then there are at most two minimal Martin boundary points at

each Euclidean boundary point. For a class of John domains represented as the
union of convex sets we give a sufficient condition for the Martin boundary and
the Euclidean boundary to coincide.
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1 Introduction

Let D be a bounded domain inRn with n ≥ 2. Let δD(x) = dist(x, ∂D) andx0 ∈ D.
We say thatD is a John domain with John constantcJ > 0 and John center atx0 if
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eachx ∈ D can be joined tox0 by a rectifiable curveγ such that

δD(y) ≥ cJ`(γ(x, y)) for all y ∈ γ, (1.1)

whereγ(x, y) is the subarc ofγ from x to y and`(γ(x, y)) is the length ofγ(x, y).
In general0 < cJ ≤ 1. It is easy to see that an open ball with center atx0 is a John
domain with John constantcJ = 1 and John center atx0. We may say that the bigger
cJ is, the smootherD is.

Since the main concern of this paper is the boundary behavior of functions inD, we
may replacex0 by a compact subsetK0 of D. We call such a domain ageneral John
domain with general John centerK0 and general John constantcJ . Obviously, a John
domain is a general John domain and vice versa. Note that a general John constant
is improved, i.e., a John domain with John center atx0 and John constantcJ can be
regarded as a general John domain with general John constantc′J ≥ cJ by replacing
x0 by a larger compact setK0. In fact, a smooth domain is a general John domain with
general John constantcJ = 1; whereas it cannot be a John domain with John constant 1
unless it is an open ball. Several general John domains have been studied in connection
with the Martin boundary, e.g. Denjoy domains (Benedicks [10]), Lipschitz Denjoy
domains (Ancona [6, 7] and Chevallier [11]), sectorial domains (Cranston-Salisbury
[12]), quasi-sectorial domains (Lömker [18]), the connected union of a family of open
balls with the same radius (Ancona [5]) and so on. The general John constants for
these domains can be estimated by the geometrical assumption on the domains. For
example, the general John constantcJ = 1 for a Denjoy domain.

Let G(x, y) be the Green kernel forD. A Martin kernel atξ ∈ ∂D (with refer-
ence pointx0) is a limit of the ratioG(x, yj)/G(x0, yj) with yj → ξ. The totality
of Martin kernels gives an ideal boundary ofD, referred to as the Martin boundary
of D. We identify a Martin kernel and an ideal boundary point; a limit of the ratio
G(x, yj)/G(x0, yj) with yj → ξ is called a Martin boundary point atξ as well. We
say that a positive harmonic functionh is minimal if every positive harmonic function
less than or equal toh coincides with a constant multiple ofh. If a Martin kernel is
a minimal harmonic function, then we call it a minimal Martin kernel or a minimal
Martin boundary point. In general, the Martin boundary need not be homeomorphic to
the Euclidean boundary. There may be even infinitely many minimal Martin boundary
points at a Euclidean boundary point (Martin [19]).

The purpose of this paper is to show that every John domain has finitely many
minimal Martin boundary points at each Euclidean boundary point. Moreover, the
number of minimal Martin boundary points is estimated in terms of the John constant.

Theorem 1.1.LetD be a general John domain with general John constantcJ .

(i) The number of minimal Martin boundary points at every Euclidean boundary
point ξ ∈ ∂D is bounded by a constant depending only on the general John
constantcJ .

(ii) If cJ >
√

3/2, then there are at most two minimal Martin boundary points at
every Euclidean boundary pointξ ∈ ∂D
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Remark1.1. Let D be a sectorial domain whose boundary near the origin lies on three
equally distributed rays leaving the origin. ThenD is a general John domain with John
constantsin(π/3) =

√
3/2. There may be three different minimal Martin boundary

points at the origin. See Figure 1.1. This simple example shows that the boundcJ >√
3/2 in Theorem 1.1 is sharp. Note that the same boundcJ >

√
3/2 also applies to

the higher dimensional case.

x

γ

K0

Figure 1.1: The boundcJ >
√

3/2 in Theorem 1.1 is sharp.

Remark1.2. Theorem 1.1 generalizes some parts of [10], [6, 7], [11], [12] and [18].
One of the main interests of these papers was to give a criterion for the number of min-
imal Martin boundary points at a fixed Euclidean boundary point (via Kelvin transform
for [10]). Such a criterion seems to be very difficult for a general John domain, since
the boundary may disperse at every point (See e.g. [3, Figure 3 b]).

One might think that the number of minimal Martin boundary points at a Euclidean
boundary point would be equal to 1 provided the John constantcJ is sufficiently close
to 1. This is not the case in view of Benedicks’ work on a Denjoy domain ([10]).
The best upper bound obtained from the John constantcJ is at least two as given in
Theorem 1.1. Our second purpose is to find a certain class of John domains for which
each boundary point has one minimal Martin boundary point.

We shall need some other information different from the John constantcJ . Ancona
[5, Théor̀eme] gave a condition for the union of a family of open balls with the same
radius to have one minimal Martin boundary point at each Euclidean boundary point.
By B(x, r) we denote the open ball with center atx and radiusr. For a pair of distinct
pointsx andy let [x, y] be the (open) line segment connectingx andy. For0 < θ < π
we denote byΓθ(x, y) the open circular cone{z ∈ Rn : ∠zxy < θ} with vertex atx,
axis[x, y] and apertureθ. Ancona says that a domainD is admissibleif

(A1) D is the union of a family of open balls with the same radiusρ0.

(A2) Let ξ ∈ ∂D. If D includes two open ballsB1 andB2 with radiusρ0 tangential
to each other atξ, thenD includes a truncated circular coneΓθ(ξ, y) ∩ B(ξ, r)
for someθ > 0, r > 0 andy in the hyperplane tangent toBi at ξ. See Figure
1.2.

Theorem A (Ancona). LetD be a bounded admissible domain. Then every Euclidean
boundary point ofD has one Martin boundary point and it is minimal. Moreover, the
Martin boundary ofD is homeomorphic to the Euclidean boundary.
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B1 B2ξ

Γθ(ξ, y) ∩ B(ξ, r)

Figure 1.2: Condition (A2).

C(ξ)θ1

ξ

D

Figure 1.3: Condition (II).

Let us generalize both (A1) and (A2). Clearly, (A1) implies thatD is a general
John domain with general John constant 1. We would like to consider general convex
sets rather than balls with the same radius. They need not be congruent. Observe that
Ancona’s condition (A2) implies that two ballsB1 andB2 areconnectedby a truncated
coneΓθ(ξ, y) ∩ B(ξ, r). If 0 < θ′ ≤ θ, then we have⋃

y∈D
Γθ′ (ξ,y)∩B(ξ,r′)⊂D

Γθ′(ξ, y) ∩ B(ξ, r′) is connected and non-empty,

providedr′ > 0 is sufficiently small. In view of this observation, we generalize (A1)
and (A2) as follows. LetA0 ≥ 1 andρ0 > 0. We consider a bounded domainD such
that

(I) D is the union of a family of open convex sets{Cλ}λ∈Λ such thatB(zλ, ρ0) ⊂
Cλ ⊂ B(zλ, A0ρ0).

(II) For eachξ ∈ ∂D, there are positive constantsθ1 ≤ sin−1(1/A0) andρ1 ≤
ρ0 cos θ1 such that

C(ξ) =
⋃

y∈D
Γθ1 (ξ,y)∩B(ξ,2ρ1)⊂D

Γθ1(ξ, y) ∩ B(ξ, 2ρ1) is connected and non-empty.

(1.2)
See Figure 1.3.

We observe that a bounded domain satisfying (I) becomes a general John domain.
In fact, let K0 be the closure of{zλ}λ∈Λ. ThenK0 is compact. For eachx ∈ D
there isλx ∈ Λ such thatx ∈ Cλx . Since[x, zλx ] ⊂ Cλx ⊂ B(zλx , A0ρ0) and
δCλx

(zλx) ≥ ρ0, it follows from (2.4) in Section 2 that

δD(w) ≥ δCλx
(w) ≥ |x − w|

|x − zλx |
δCλx

(zλx) ≥ A−1
0 |x − w| for all w ∈ [x, zλx ].

HenceD is a general John domain with general John centerK0 and general John
constantA−1

0 . Thus Theorem 1.1 is applicable to such a domain, so that the number of
minimal Martin boundary points at every Euclidean boundary pointξ ∈ ∂D is bounded
by a constantN . Condition (II) implies thatN = 1.
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Theorem 1.2.LetD be a bounded domain satisfying (I) and (II). Then every Euclidean
boundary point ofD has only one Martin boundary point and it is minimal. Moreover
the Martin boundary ofD is homeomorphic to the Euclidean boundary.

Remark1.3. Ancona’s admissible domains satisfy (I) and (II) of Theorem 1.2. The
argument of Ancona depends on the special properties of a ball. His crucial lemma
([5, Lemme 1]) relies on the reflection with respect to a hyperplane, and is applied to a
ball by the Kelvin transform ([5, Corollarie 2]). This approach is not applicable to our
domains.

Remark1.4. A Denjoy domain can be represented as the union of a family of open
balls with the same radius. A Lipschitz Denjoy domain, a sectorial domain and a
quasi-sectorial domain can be represented as the union of a family of open convex sets
Cλ satisfying (I). However, they cannot be represented as the union of a family of open
balls with the same radius. Our Theorem 1.2 is applicable to these domains.

Remark1.5. Condition (II) is local in the following sense: SupposeD is the union of
a family of open convex sets{Cλ}λ∈Λ satisfying (I). If a particular pointξ ∈ ∂D
satisfies (II), then there is only one Martin boundary point atξ and it is minimal.

Remark1.6. Note that0 < θ1 < π/2 by 0 < ρ1 ≤ ρ0 cos θ1. The boundsθ1 ≤
sin−1(1/A0) andρ1 ≤ ρ0 cos θ1 are sharp. If one of the inequalities fails to hold, then
there is a domainD satisfying both (I) and (1.2) and yet having a Euclidean boundary
point ξ ∈ ∂D such that there are multiple Martin boundary points atξ. See Examples
8.1 and 8.2 in Section 8.

Both Theorems 1.1 and 1.2 are based on a common geometrical notion,a system
of local reference points. In Section 2, we shall introduce a quasihyperbolic metric
and define a system of local reference points. Then we shall observe that Theorems
1.1 and 1.2 are decomposed into three propositions, namely, Propositions 2.1, 2.2 and
2.3. The first two propositions are purely geometric and will be proved in the same
section. Proposition 2.3 involves many potential theoretic arguments. Among them,
a Carleson type estimate (Lemma 5.1 in Section 5) for bounded positive harmonic
functions vanishing on a portion of the boundary will be crucial. This estimate will
be deduced from a Domar’s type theorem (Domar [13]) for nonnegative subharmonic
functions, as was employed by Benedicks [10] and Chevallier [11]. Domar’s argument
is applicable also to nonlinear equations in a metric measure space ([4]).

By the symbolA we denote an absolute positive constant whose value is unimpor-
tant and may change from line to line. If necessary, we useA0, A1, . . . , to specify them.
We shall say that two positive functionsf1 andf2 are comparable, writtenf1 ≈ f2, if
and only if there exists a constantA ≥ 1 such thatA−1f1 ≤ f2 ≤ Af1. The constant
A will be called the constant of comparison. We writeB(x, r) andS(x, r) for the open
ball and the sphere of center atx and radiusr, respectively.

ACKNOWLEDGEMENT. The authors are very grateful to the referee for helpful com-
ments and suggestions.

5



2 Local reference points

2.1 Restatements of Theorems 1.1 and 1.2

We define the quasihyperbolic metrickD(x, y) by

kD(x, y) = inf
γ

∫
γ

ds(z)
δD(z)

,

where the infimum is taken over all rectifiable curvesγ connectingx to y in D and
ds(z) stands for the line element onγ. We say thatD satisfies a quasihyperbolic
boundary condition if

kD(x, x0) ≤ A log
δD(x0)
δD(x)

+ A′ for all x ∈ D. (2.1)

A domain satisfying the quasihyperbolic boundary condition is called a Hölder domain
by Smith-Stegenga [20, 21]. It is easy to see that a John domain satisfies the quasihy-
perbolic boundary condition (see [16, Lemma 3.11]). We need more precise estimates.

Definition 2.1. Let N be a positive integer and0 < η < 1. We say thatξ ∈ ∂D has
a system of local reference points of orderN with factorη if there existRξ > 0 and
Aξ > 1 with the following property: for each positiveR < Rξ there areN points
y1 = y1(R), . . . , yN = yN (R) ∈ D ∩ S(ξ,R) such thatA−1

ξ R ≤ δD(yi) ≤ R for
i = 1, . . . , N and

min
i=1,...,N

{kDR
(x, yi)} ≤ Aξ log

R

δD(x)
+ Aξ for x ∈ D ∩ B(ξ, ηR),

whereDR = D ∩ B(ξ, η−3R). If η is not so important, we simply say thatξ ∈ ∂D
has a system of local reference points of orderN .

The proofs of Theorems 1.1 and 1.2 can be decomposed into the following three
propositions. The first and the second are purely geometric; the third is potential theo-
retic.

Proposition 2.1.Let D be a general John domain with John constantcJ . Then every
ξ ∈ ∂D has a system of local reference points of orderN with N ≤ N(cJ , n) < ∞.
Moreover, if the John constantcJ >

√
3/2, then we can letN ≤ 2 by choosing a

suitable factor0 < η < 1.

Proposition 2.2.LetD be a bounded domain satisfying (I) and (II). Then everyξ ∈ ∂D
has a system of local reference points of order1.

Remark2.1. In Proposition 2.1, the constantsRξ andAξ in Definition 2.1 can be taken
uniformly for ξ ∈ ∂D, whereas they may depend onξ in Proposition 2.2.

By Hξ we denote the family of all kernel functions atξ normalized at the John
centerx0, i.e., the set of all positive harmonic functionsh on D such thath(x0) = 1,
h = 0 q.e. on∂D andh is bounded onD \ B(ξ, r) for eachr > 0. Here we say that a
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property holds q.e. (quasi everywhere) if it holds outside a polar set. A Martin kernel at
ξ (with reference pointx0) is a limit of the ratioG(x, yj)/G(x0, yj) of Green functions
with yj → ξ. Supposeyj ⊂ D ∩ B(ξ, r/2). Then the (global) boundary Harnack
principle for a John domain (Bass and Burdzy [9]) implies that theG(·, yj)/G(x0, yj)
is bounded onD \ B(ξ, r), and so is a Martin kernel atξ. Obviously, a Martin kernel
at ξ is a positive harmonic function vanishing q.e. on∂D with value 1 atx0, so that it
belongs toHξ. Thus Theorems 1.1 and 1.2 will follow from Propositions 2.1, 2.2 and
the following:

Proposition 2.3.Let D be a general John domain. Supposeξ ∈ ∂D has a system of
local reference points of orderN .

(i) The number of minimal functions inHξ is bounded by a constant depending only
onN .

(ii) If N ≤ 2, then there are at mostN minimal functions inHξ. Moreover, ifN = 1,
thenHξ is a singleton and consists of a minimal function.

Remark2.2. It is plausible that there are at mostN minimal functions inHξ even for
N ≥ 3. Unfortunately, our proof of Proposition 2.3 is based on (6.5), which is proved
only for N ≤ 2.

2.2 Proof of Proposition 2.1

For the proof of the second assertion in Proposition 2.1, we prepare an elementary
geometrical observation.

Lemma 2.1.Lete1, e2 ande3 be points on the unit sphereS(0, 1). Then

maxmin
i 6=j

|ei − ej | =
√

3,

where the maximum is taken over all positions ofe1, e2 ande3.

Proof. This is a well-known fact (Fejes [14]). For the convenience sake of the reader
we provide a proof. We can easily prove the lemma forn = 2. Let n ≥ 3. We observe
from the compactness ofS(0, 1) that the maximumd is taken by some pointse1, e2

ande3 on S(0, 1). There is a unique 2-dimensional planeΠ containinge1, e2 ande3,
since three distinct points onS(0, 1) cannot be collinear. Observe thatS(0, 1) ∩ Π is
a circle with radius at most 1. Sincee1, e2 ande3 are points on this circle, it follows
from the casen = 2 thatd ≤

√
3. The lemma follows.

Proof of Proposition 2.1.We prove the proposition withRξ = δD(K0). Let ξ ∈ ∂D
and0 < R < δD(K0). Let us prove the first assertion withη = 1/2. Takex ∈ D ∩
B(ξ,R/2). By definition there is a rectifiable curveγ starting fromx and terminating at
K0 such that (1.1) holds. Then the first hity(x) of S(ξ,R) alongγ satisfies2−1cJR ≤

δD(y(x)) ≤ R andkDR(x, y(x)) ≤ A log
R

δD(x)
. We associatey(x) with x, although

it may not be unique.
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Consider, in general, the family of ballsB(y, 4−1cJR) with y ∈ S(ξ,R). These
balls are included inB(ξ, (4−1cJ + 1)R), so that at mostN(cJ , n) balls among them
can be mutually disjoint. Hence we findN pointsx1, . . . , xN ∈ D ∩ B(ξ,R/2) with
N ≤ N(cJ , n) such that{B(y1, 4−1cJR), . . . , B(yN , 4−1cJR)} is maximal, where
yj = y(xj) ∈ D ∩ S(ξ,R) is the point associated withxj as above. This means that
if x ∈ D∩B(ξ,R/2), thenB(y(x), 4−1cJR) intersects some ofB(y1, 4−1cJR), . . . ,
B(yN , 4−1cJR), sayB(yi, 4−1cJR). SinceB(y(x), 4−1cJR) ∩ B(yi, 4−1cJR) 6= ∅
andB(y(x), 2−1cJR) ∪ B(yi, 2−1cJR) ⊂ DR, it follows thatkDR(y(x), yi) ≤ A′.
Hence

kDR
(x, yi) ≤ kDR

(x, y(x)) + kDR
(y(x), yi) ≤ A log

R

δD(x)
+ A′.

Repeating some points, sayy1 = y(x1), if necessary, we may assume that this property
holds withN independent ofR andN ≤ N(cJ , n). Thus the first assertion follows.

For the proof of the second assertion, let
√

3/2 < b′ < b < cJ andη = 1− b/cJ >
0. Let us prove thatξ has a system of local reference points of order at most 2 with
factor η. Let 0 < R < δD(K0). Supposex ∈ D ∩ B(ξ, ηR). In the same way as
in the proof of the first assertion, we findy(x) ∈ S(ξ,R) such thatkDR

(x, y(x)) ≤

A log
R

δD(x)
and

δD(y(x)) ≥ cJ(1 − η)R = bR > b′R >

√
3

2
R.

Lemma 2.1 says that at most two disjoint balls of radiusb′R can be placed so that their
centers lie on the sphereS(ξ,R). Hence we can choosex1, x2 ∈ D ∩ B(ξ, ηR) such
thatB(y(x), b′R) intersectsB(yi, b

′R) for somei = 1, 2, whereyi = y(xi). Since
B(y(x), b′R) ∩ B(yi, b

′R) 6= ∅ andB(y(x), bR) ∪ B(yi, bR) ⊂ DR, it follows that
kDR

(y(x), yi) ≤ A. Hence the proposition follows.

Remark2.3. In casecJ ≤
√

3/2, we may have an estimate ofN better than the above
proof, by considering a lemma similar to Lemma 2.1.

2.3 Proof of Proposition 2.2

In this subsection, we assume, by translation and dilation, thatξ = 0 andρ1 = 1 for
simplicity. The apertureθ1 ≤ sin−1(1/A0) is fixed and we writeΓ(x, y) for Γθ1(x, y).
Note that1 = ρ1 ≤ ρ0 cos θ1, so that0 < θ1 < π/2 and ρ0 ≥ sec θ1. Let Cλ

be a convex set appearing in (I) and letB(zλ, ρ0) ⊂ Cλ ⊂ B(zλ, A0ρ0). If x ∈
Cλ \ B(zλ, ρ0), then

Γ(x, zλ) ∩ B(x, 2) ⊂ co({x} ∪ B(zλ, ρ0)) ⊂ Cλ, (2.2)

whereco({x} ∪ B(zλ, ρ0)) is the interior of the convex hull of{x} ∪ B(zλ, ρ0). Let

Y = {y ∈ S(0, 1) : Γ(0, y) ∩ B(0, 2) ⊂ D}.

We first show thatY 6= ∅ and that the point 0 can be accessible along a ray issuing
from the origin toward a point inY.

8



Lemma 2.2.There is a positive constantR0 < 1 such that ifCλ ∩B(0, R0) 6= ∅, then
Cλ ∩ Y 6= ∅. In particular,Y 6= ∅.

Proof. Suppose to the contrary, there is a sequenceCλj with dist(0, Cλj ) → 0 and
Cλj ∩ Y = ∅. Let zλj be such thatB(zλj , ρ0) ⊂ Cλj ⊂ B(zλj , A0ρ0). Taking a
subsequence, if necessary, we may assume thatzλj converges, say toz0. We claim

Γ(0, z0) ∩ B(0, 2) ⊂
⋃
j

Cλj
. (2.3)

We findxλj ∈ ∂Cλj with xλj → 0. Takex ∈ Γ(0, z0) ∩ B(0, 2). Then∠x0z0 < θ1

and|x| < 2 by definition. Ifj is sufficiently large, then∠xxλj zλj < θ1 and|x−xλj | <
2 by continuity, so that

x ∈ Γ(xλj , zλj ) ∩ B(xλj , 2) ⊂ co({xλj} ∪ B(zλj , ρ0)) ⊂ Cλj ,

by (2.2). Thus (2.3) follows. Now, by definition,y0 = z0/|z0| ∈ Y andy0 ∈ Γ(0, z0)∩
B(0, 2) ⊂

⋃
j Cλj . This contradictsCλj ∩ Y = ∅. The lemma follows.

Observe that ifC is a convex set, then the distance functionδC(x) = dist(x, ∂C)
is a concave function onC, i.e.,

δC(z) ≥ |z − y|
|x − y|

δC(x) +
|x − z|
|x − y|

δC(y) for z ∈ [x, y], (2.4)

wheneverx andy are distinct points inC. This fact will be used in the following
lemma.

Lemma 2.3.Let0 < R0 < 1 be as in Lemma 2.2. Suppose0 < R < min{R0, 3−1 sin θ1}.
If Cλ ∩ B(0, R) 6= ∅ andy ∈ Cλ ∩ Y, then there exists a pointw ∈ Cλ ∩ Γ(0, y) ∩
B(0, 3R/ sin θ1) such that

δCλ∩Γ(0,y)(w) ≥ sin θ1

4
R.

Proof. Takex ∈ Cλ ∩ B(0, R). Then [x, y] ⊂ Cλ. Observe that there is a point
w1 ∈ [x, y] ∩ Γ(0, y) with |w1| ≤ R/ sin θ1. In fact, if x ∈ Γ(0, y), thenw1 = x
satisfies the condition. Otherwise, letw1 be the intersection of[x, y] and∂Γ(0, y). By
elementary geometry

R > dist(x, [0, y]) ≥ dist(w1, [0, y]) = |w1| sin θ1,

so that|w1| ≤ R/ sin θ1. Since|w1 − y| ≥ 1 − R/ sin θ1 and3R/ sin θ1 < 1, we find
a pointw2 ∈ [w1, y] ⊂ Cλ ∩ Γ(0, y) with |w1 − w2| = R/ sin θ1. See Figure 2.1.
By (2.4) withC = Γ(0, y) we obtain

δΓ(0,y)(w2) ≥
|w1 − w2|
|w1 − y|

δΓ(0,y)(y) ≥ R/ sin θ1

R/ sin θ1 + 1
sin θ1 >

R

2
.
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0

y

x

w1

w2 w

zλ

Cλ

θ1

R/ sin θ1
R/4

Γ(0, y)

Figure 2.1:δCλ∩Γ(0,y)(w) ≥ 4−1sin θ1R.

Moreover|w2| ≤ 2R/ sin θ1. Since|w2−zλ| ≥ ρ0−2R/ sin θ1 > R by 3R/ sin θ1 <
1 ≤ ρ0, we can take a pointw ∈ [w2, zλ] ⊂ Cλ such that|w − w2| = R/4. Then it
follows from (2.4) withC = Cλ that

δCλ
(w) ≥ |w − w2|

|zλ − w2|
δCλ

(zλ) ≥ R/4
A0ρ0

ρ0 ≥ sin θ1

4
R.

Hence

δΓ(0,y)∩Cλ
(w) ≥ min

{
R

2
− R

4
,
sin θ1

4
R

}
=

sin θ1

4
R.

Moreover,

|w| ≤ |w − w2| + |w2 − w1| + |w1| ≤
R

4
+

R

sin θ1
+

R

sin θ1
<

3R

sin θ1
.

Thus the lemma is proved.

Proof of Proposition 2.2.Let 0 < R0 < 1 be as in Lemma 2.2 and let0 < η3 <
6−1 sin θ1. Suppose0 < R < min{R0, 3−1 sin θ1}. By Lemma 2.2 we fixy0 ∈ Y and
write yR = Ry0. It is sufficient to show that

kDR
(x, yR) ≤ A log

R

δD(x)
+ A for x ∈ D ∩ B(0, ηR), (2.5)

whereA is independent ofx andR. Takex ∈ D ∩ B(0, ηR). Then there is a convex
setCλ containingx and there isy ∈ Cλ ∩ Y by Lemma 2.2. By Lemma 2.3 we find
a pointw ∈ Cλ ∩ Γ(0, y) ∩ B(0, 3R/ sin θ1) such thatδCλ∩Γ(0,y)(w) ≥ 4−1R sin θ1.
Then [x,w] ⊂ B(0, 2−1η−3R) ∩ Cλ, and thereforeδDR

(z) = δD(z) ≥ δCλ
(z) for

z ∈ [x, w]. Since

δDR
(z) ≥ δCλ

(z) ≥ |x − z|
|x − w|

δCλ
(w) ≥ sin2 θ1

16
|x − z| for z ∈ [x,w]
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by (2.4), it follows that

kDR
(x,w) ≤

∫
[x,w]

ds(z)
δDR(z)

≤ A log
R

δD(x)
+ A.

Since

δDR
(z) ≥ δΓ(0,y)(z) ≥ |w − z|

|w − Ry|
δΓ(0,y)(Ry) ≥ sin2 θ1

4
|w − z| for z ∈ [w,Ry],

it also follows that

kDR(w,Ry) ≤
∫

[w,Ry]

ds(z)
δDR

(z)
≤ A log

R

δD(x)
+ A.

Note thatC(0)∩S(0, 1) is connected by the assumption (II). In view ofdist(Y, S(0, 1)\
C(0)) ≥ sin θ1 andC(0) ⊂ D, we see thatkDR

(Ry, yR) ≤ A with A independent of
R, y andyR. Thus (2.5) follows from the triangle inequality.

3 Refinement of Domar’s theorem

Domar [13, Theorem 2] gave a criterion for the boundedness of a subharmonic func-
tion majorized by a positive function. We need its quantitative refinement, i.e., the
dependency of the bound is given explicitly.

Lemma 3.1.Let u be a nonnegative subharmonic function on a bounded domainΩ.
Suppose there isε > 0 such that

I =
∫

Ω

(log+ u)n−1+εdx < ∞.

Then
u(x) ≤ exp(2 + AI1/εδΩ(x)−n/ε), (3.1)

whereA is a positive constant depending only onε and the dimensionn.

For the proof we prepare the following.

Lemma 3.2.Letu be a nonnegative subharmonic function onB(x,R). Supposeu(x) ≥
t > 0 and

R ≥ Ln|{y ∈ B(x,R) : e−1t < u(y) ≤ et}|1/n, (3.2)

whereLn = (e2/vn)1/n andvn is the volume of the unit ball. Then there exists a point
x′ ∈ B(x, R) with u(x′) > et.

Proof. Observe that (3.2) is equivalent to

|{y ∈ B(x,R) : e−1t < u(y) ≤ et}|
|B(x,R)|

≤ 1
e2

.
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Supposeu ≤ et onB(x, R). Then the mean value property of subharmonic functions
yields

t ≤ u(x) ≤ 1
|B(x, R)|

∫
B(x,R)

u(y)dy

=
1

|B(x, R)|

(∫
B(x,R)∩{u≤e−1t}

udy +
∫

B(x,R)∩{u>e−1t}
udy

)
≤ e−1t +

1
e2

et < t.

This is a contradiction.

Proof of Lemma 3.1.Since the right hand side of (3.1) is not less thane2, it is sufficient
to show that

δΩ(x) ≤ AI1/n(log u(x))−ε/n, wheneveru(x) > e2. (3.3)

Fix x1 ∈ Ω with u(x1) > e2 and let us prove (3.3) withx = x1. Let

Rj = Ln|{y ∈ Ω : ej−2u(x1) < u(y) ≤ eju(x1)}|1/n for j ≥ 1.

We choose a sequence{xj} as follows: IfδΩ(x1) < R1, then we stop. IfδΩ(x1) ≥ R1,
thenB(x1, R1) ⊂ Ω, so that there existsx2 ∈ B(x1, R1) such thatu(x2) > eu(x1) by
Lemma 3.2. Next we considerδΩ(x2). If δΩ(x2) < R2, then we stop. IfδΩ(x2) ≥ R2,
thenB(x2, R2) ⊂ Ω, so that there existsx3 ∈ B(x2, R2) such thatu(x3) > e2u(x1)
by Lemma 3.2. Repeat this procedure to obtain a finite or infinite sequence{xj}. We
claim

δΩ(x1) ≤ 2
∞∑

j=1

Rj . (3.4)

Suppose first{xj} is finite. If δΩ(x1) < R1, then (3.4) trivially holds. IfδΩ(x1) ≥ R1,
then we have an integerJ ≥ 2 such that

δΩ(x1) ≥ R1, . . . , δΩ(xJ−1) ≥ RJ−1, δΩ(xJ) < RJ ,

x2 ∈ B(x1, R1), x3 ∈ B(x2, R2), . . . , xJ ∈ B(xJ−1, RJ−1).

Hence we have

δΩ(x1) ≤ |x1 − x2| + · · · + |xJ−1 − xJ | + δΩ(xJ) < R1 + · · · + RJ−1 + RJ ,

so that (3.4) follows. Suppose next{xj} is infinite. Sinceu(xj) > eju(x1) → ∞,
it follows from the local boundedness of a subharmonic function thatxj goes to the
boundary. Hence, there is an integerJ ≥ 2 such thatδΩ(xJ) ≤ 1

2δΩ(x1). Then

δΩ(x1) ≤ |x1 − x2| + · · · + |xJ−1 − xJ | + δΩ(xJ) ≤ R1 + · · · + RJ−1 +
1
2
δΩ(x1),

so that (3.4) follows. In view of (3.4) we observe that (3.3) follows from

∞∑
j=1

Rj ≤ AI1/n(log u(x1))−ε/n. (3.5)
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To show (3.5), letj1 be the integer such thatej1 < u(x1) ≤ ej1+1. Thenj1 ≥ 2 and

Rj ≤ Ln|{y ∈ Ω : ej1+j−2 < u(y) ≤ ej1+j+1}|1/n.

Since the family of intervals{(ej1+j−2, ej1+j+1]}j overlaps at most 3 times, it follows
from Hölder’s inequality that

∞∑
j=1

Rj ≤ 3Ln

∞∑
j=j1

|{y ∈ Ω : ej−1 < u(y) ≤ ej}|1/n

≤ 3Ln

( ∞∑
j=j1

1
j(n−1+ε)/(n−1)

)(n−1)/n( ∞∑
j=j1

jn−1+ε|{y ∈ Ω : ej−1 < u(y) ≤ ej}|
)1/n

≤ Aj
−ε/n
1

(∫
Ω

(log+ u)n−1+εdy

)1/n

≤ A(log u(x1))−ε/nI1/n.

Thus (3.5) follows. The lemma is proved.

4 Integrability of negative power of the distance func-
tion

Inspired by Smith and Stegenga [20, Theorem 4] we have proved that for a bounded
John domain there is a positive constantτ such that∫

D

δD(x)−τdx < ∞

([1, Lemma 5]). We need its local version.

Lemma 4.1.Let D be a general John domain with John constantcJ and generalized
John centerK0. Then there are positive constantsτ andA depending oncJ such that∫

D∩B(ξ,R)

(
R

δD(x)

)τ

dx ≤ ARn

for eachξ ∈ ∂D and0 < R < δD(K0).

Proof. Let

Vj = {x ∈ D ∩ B(ξ,R + (1 + c−1
J )21−jR) : 2−j−1R ≤ δD(x) < 2−jR}

for j ≥ 0. For a moment we fixx ∈
⋃∞

i=j+1 Vi. By definition there is a rectifiable
curveγ connectingx andK0 with (1.1). Hence we findy ∈ γ such thatδD(y) =
2−jR ≥ cJ |x − y|. In other wordsx ∈ B(y, c−1

J 2−jR). We observe

|B(y, 5c−1
J 2−jR)| ≤ A|Vj ∩ B(y, c−1

J 2−jR)|. (4.1)
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In fact, takey∗ ∈ ∂D such that|y − y∗| = 2−jR, and then takey′ ∈ [y, y∗] with
δD(y′) = 1

2 (2−jR + 2−j−1R). An elementary geometrical observation andcJ ≤ 1
giveB(y′, 2−j−2R) ⊂ Vj ∩ B(y, c−1

J 2−jR), so that (4.1) follows.
Now the covering lemma yields a sequence{yk} such that

∞⋃
i=j+1

Vi ⊂
⋃
k

B(yk, 5c−1
J 2−jR)

and{B(yk, c−1
J 2−jR)}k are disjoint. Hence

∞∑
i=j+1

|Vi| =
∣∣∣∣ ∞⋃
i=j+1

Vi

∣∣∣∣ ≤ ∑
k

|B(yk, 5c−1
J 2−jR)| ≤ A1

∑
k

|Vj∩B(yk, c−1
J 2−jR)| ≤ A1|Vj |

by (4.1). Let1 < t < 1 + A−1
1 . In the same way as in the proof of [1, Lemma 5] we

have

∞∑
j=0

tj |Vj | ≤
1

1 − (t − 1)A1

∞∑
j=0

|Vj | ≤ A|B(ξ,R + (1 + c−1
J )2R)| ≤ ARn.

Sincetj < (R/δD(x))τ ≤ tj+1 onVj with τ = log t/ log 2 > 0, it follows that∫
D∩B(ξ,R)

(
R

δD(x)

)τ

dx ≤
∞∑

j=0

tj+1|Vj | ≤ ARn.

Thus the lemma follows.

5 Growth of positive harmonic functions

In this section we shall show Proposition 2.3 (i) by investigating the growth ofh ∈ Hξ.
Throughout the section we letD be a general John domain and letξ ∈ ∂D be fixed.
We say thatx, y ∈ D are connected by a Harnack chain{B(xj ,

1
2δD(xj))}k

j=1 if x ∈
B(x1,

1
2δD(x1)), y ∈ B(yk, 1

2δD(yk)), andB(xj ,
1
2δD(xj))∩B(xj+1,

1
2δD(xj+1)) 6=

∅ for j = 1, . . . , k − 1. The numberk is called the length of the Harnack chain. We
observe that the shortest length of the Harnack chain connectingx andy is comparable
to kD(x, y). Therefore, the Harnack inequality yields that there is a constantA2 > 1
depending only onn such that

exp(−A2(kD(x, y) + 1)) ≤ h(x)
h(y)

≤ exp(A2(kD(x, y) + 1)) (5.1)

for every positive harmonic functionh onD. If D is a John domain with John constant
cJ and John centerx0, then we have from (2.1)

h(x)
h(x0)

≤ A3

(
δD(x0)
δD(x)

)λ

(5.2)
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with λ andA3 > 0 depending only on the John constantcJ . If D is a general John
domain with John constantcJ and John centerK0, then (5.2) holds with the sameλ
and anotherA3 depending only oncJ , x0 andK0.

Let Ω be an open set intersecting∂D. Let h be a bounded positive harmonic func-
tion inD∩Ω vanishing q.e. on∂D∩Ω. We extendh toΩ\D by 0 outsideD and denote
by h∗ its upper regularization. Then we observe thath∗ is a nonnegative subharmonic
function onΩ ([8, Theorem 5.2.1]). We shall apply the refinement of Domar’s theorem
(Lemma 3.1) to the subharmonic functionh∗ to obtain a Carleson type estimate.

Lemma 5.1.Let ξ ∈ ∂D have a system of local reference pointsy1, . . . , yN ∈ D ∩
S(ξ,R) of orderN with factorη for 0 < R < Rξ. Supposeh is a positive harmonic
function inD ∩ B(ξ, η−3R) vanishing q.e. on∂D ∩ B(ξ, η−3R). If h is bounded in
D ∩ B(ξ, ηR) \ B(ξ, η3R), then

h ≤ A
N∑

i=1

h(yi) onD ∩ S(ξ, η2R), (5.3)

whereA is independent ofh andR.

Proof. Let 0 < R < Rξ. Then we findy1, . . . , yN ∈ D ∩ S(ξ,R) with δD(yi) ≈ R
such that

min
i=1,...,N

{kDR(x, yi)} ≤ A log
R

δD(x)
+ A for x ∈ D ∩ B(ξ, ηR).

By (5.1) we find a constantA4 > 1 such that

h(x) ≤ A4

(
R

δD(x)

)λ N∑
i=1

h(yi) for x ∈ D ∩ B(ξ, ηR). (5.4)

Let us apply Lemma 3.1 toε = 1, u = h∗/
(
A4

∑N
i=1 h(yi)

)
andΩ = B(ξ, ηR) \

B(ξ, η3R). Let τ > 0 be as in Lemma 4.1. Apply the elementary inequality:

(log t)n ≤
(n

τ

)n

tτ for t ≥ 1

to t = R/δD(x) ≥ 1 for x ∈ Ω. Then[
log+

(
R

δD(x)

)]n

≤ A

(
R

δD(x)

)τ

,

so that it follows from (5.4) and Lemma 4.1 that

I =
∫

Ω

(log+ u)ndx ≤ A

∫
D∩B(ξ,R)

(
R

δD(x)

)τ

dx ≤ ARn.

Hence, Lemma 3.1 yields thatu ≤ exp(2 + AIR−n) ≤ A on S(ξ, η2R), i.e., (5.3)
holds.
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Let us apply Lemma 5.1 to a kernel functionh ∈ Hξ to obtain the following growth
estimate.

Lemma 5.2.Let ξ ∈ ∂D have a system of local reference pointsy1, . . . , yN ∈ D ∩
S(ξ,R) of orderN with factorη for 0 < R < Rξ. Leth ∈ Hξ. Then

h(x) ≤ A|x − ξ|−λ for x ∈ D,

whereλ > 0 is as in(5.2)andA is independent ofR, x andh.

Proof. By Lemma 5.1 we have (5.3). Sinceh is bounded apart from a neighborhood
of ξ, the maximum principle gives

h(x) ≤ A
N∑

i=1

h(yi) for x ∈ D \ B(ξ, η2R).

Apply (5.2) to eachyi ∈ D ∩ S(ξ,R) with δD(yi) ≈ R. Then obtainh(yi) ≤ AR−λ.
This, together with the above estimate, yieldsh(x) ≤ A|x − ξ|−λ for x ∈ D. The
lemma is proved.

Here we record another application of Lemma 5.1, as this will be useful later.

Lemma 5.3.Let ξ ∈ ∂D have a system of local reference pointsy1, . . . , yN ∈ D ∩
S(ξ,R) of order N with factor η for 0 < R < Rξ. Let h be a bounded positive
harmonic function onD ∩ B(ξ, η−3R) vanishing q.e. on∂D ∩ B(ξ, η−3R). Then

h ≤ A
N∑

i=1

h(yi) onD ∩ B(ξ, η2R),

whereA is independent ofR andh.

Proof. We have (5.3). Apply the maximum principle toD ∩ B(ξ, η2R).

The following lemma is well-known. For the sake of the reader’s convenience, we
state it with a proof.

Lemma 5.4.Suppose there exist a positive integerM and a positive constantA with
the following property: ifh0, . . . , hM ∈ Hξ, then there isj such that

hj ≤ A
∑
i 6=j

hi onD.

ThenHξ has at mostM minimal harmonic functions.

Proof. Suppose there areM + 1 different minimal harmonic functionsh0, . . . hM ∈
Hξ. If necessary relabeling, we may assume that

h0 ≤ A

M∑
i=1

hi onD.
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We may also assume thatA > 1. Then(A
∑M

i=1 hi − h0)/(AM − 1) ∈ Hξ. Let h be
this function. We have

1
AM

h0 + (1 − 1
AM

)h =
1
M

M∑
i=1

hi.

Compare the Martin representation measures for the both sides. The measure for the

left hand side has at least
1

AM
mass ath0, whereas the measure for the right hand side

has 0 mass ath0. This contradicts the uniqueness of the Martin representation.

Let u be an unbounded subharmonic function onRn. Fork ∈ R andx0 ∈ Rn we
define the limit component containingx0 by

C(x0, k) =
⋃

R>|x0|

CR(x0, k),

whereCR(x0, k) is the connected component of{x : u(x) ≥ k, |x| ≤ R} containing
x0. By N(k) we denote the total number of limit components. It is known thatN(k)
is an increasing function ofk and the limitlimk→∞ N(k) is referred to as the number
of tracts ofu. There is a close connection between the growth ofu and the number of
tracts. See [15, Section 1] and [17, Section 4.6] for details.

Proof of Proposition 2.3 forN ≥ 3. Let hj ∈ Hξ for j = 0, . . . ,M . Let h∗
j be the

upper regularization of the extension ofhj to Rn \ {ξ} as before Lemma 5.1 and let
Hj be the Kelvin transform ofh∗

j with respect toS(ξ, 1), i.e.,

Hj(x) = |x − ξ|2−nh∗
j (ξ + |x − ξ|−2(x − ξ)).

Observe thatHj is a nonnegative subharmonic function onRn which is positive and
harmonic on the Kelvin imageD∗ of D and is equal to 0 q.e. outsideD∗. Moreover,
Lemma 5.2 shows

Hj(x) ≤ A|x − ξ|2−n+λ.

ThusHj is of order at most2 − n + λ. As in Benedicks [10, Theorem 2], we let

w = max
j=0,...,M

{Hj −
∑
i 6=j

Hi}

and letw+ be the upper regularization ofmax{w, 0}. Thenw+ is a nonnegative sub-
harmonic function onRn of order at most2 − n + λ. If none of {x : Hj(x) >∑

i 6=j Hi(x)} is empty, thenw+ hasM + 1 tracts. Hence, [15, Theorem 3] yields

2 − n + λ ≥ 1
2

log
(

M + 1
4

)
+

3
2

if M ≥ 3.

Hence, ifM > 4 exp(1 − 2n + 2λ) − 1, then{x : Hj(x) >
∑

i6=j Hi(x)} = ∅ for
somej = 0, . . . ,M . This means thatHj ≤

∑
i 6=j Hi onD∗, so that

hj ≤
∑
i 6=j

hi onD.
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Hence Lemma 5.4 implies thatHξ has at mostM minimal harmonic functions, or
equivalently there are at mostM minimal Martin boundary points atξ. Thus the num-
ber of minimal Martin boundary points atξ is bounded by4 exp(1 − 2n + 2λ).

Remark5.1. The above proof gives a coarse estimate of the number of minimal har-
monic functions ofHξ in terms ofλ depending on the John constantcJ . More delicate
arguments will be needed for a sharp estimate.

6 Weak boundary Harnack principle

In this section we shall prove Proposition 2.3 forN ≤ 2. Throughout the section we
let D be a general John domain and fixξ ∈ ∂D. Since most arguments are valid for
anyN ≥ 1, except for (6.5), we shall state the results for generalN . Proposition 2.3
will be derived from a certain estimate of the Green function. There is a difference of
the behavior of the Green functionG for D between the casesn = 2 andn ≥ 3, i.e., if
n ≥ 3 andR > 0 is small, then

G(x, y) ≈ R2−n for x ∈ S(y,
1
2
δD(y)) with δD(y) ≈ R;

if n = 2, then this estimate does not necessarily hold. To avoid this difficulty we con-
sider the Green functionGR for the intersectioñDR = D∩B(ξ,A5R) with sufficiently
largeA5 > η−3. Then we have for anyn ≥ 2,

GR(x, y) ≈ R2−n for x ∈ S(y,
1
2
δD(y)) with δD(y) ≈ R, (6.1)

where the constant of comparison depends only onD andA5.
By ω(x,E,U) we denote the harmonic measure ofE for an open setU evaluated at

x. The box argument in [2, Lemma 2] (see [9] for the original form) gives the following
estimate of the harmonic measure.

Lemma 6.1.Let ξ ∈ ∂D have a system of local reference pointsy1, . . . , yN ∈ D ∩
S(ξ,R) of orderN with factorη for 0 < R < Rξ. If x ∈ D ∩ B(ξ, η3R), then

ω(x,D ∩ S(ξ, η2R), D ∩ B(ξ, η2R)) ≤ ARn−2
N∑

i=1

GR(x, yi), (6.2)

whereA depends only onn, cJ , Rξ andAξ.

Proof. Let us begin with an estimate of harmonic measure in a John domain. For
0 < r < δD(K0) let U(r) = {x ∈ D : δD(x) < r}. Then each pointx ∈ U(r) can be
connected toK0 by a curve such that (1.1) holds. Hence,B(x,A6r) \U(r) includes a
ball with radiusr, providedA6 is large. This implies that

ω(x, U(r) ∩ S(x,A6r), U(r) ∩ B(x,A6r)) ≤ 1 − ε0 for x ∈ U(r)
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with 0 < ε0 < 1 depending only onA6 and the dimension. LetR ≥ r and repeat this
argument with the maximum principle. Then there exist positive constantsA7 andA8

such that

ω(x,U(r) ∩ S(x,R), U(r) ∩ B(x, R)) ≤ exp(A7 − A8R/r). (6.3)

See [2, Lemma 1] for details.
Let 0 < R < Rξ. For eachx ∈ D ∩ B(ξ, ηR) there is a local reference point

y(x) ∈ {y1, . . . , yN} such that

kDR
(x, y(x)) ≤ Aξ log

R

δD(x)
+ Aξ

by definition. Lety′(x) ∈ S(y(x), 1
2δD(y(x))). Then we observe thatkDR\{y(x)}(x, y′(x)) ≤

Aξ log(R/δD(x)) + Aξ. Lettingu(x) = Rn−2
∑N

i=1 GR(x, yi), we obtain from (5.1)
and (6.1) that

u(x) ≥ A

(
δD(x)

R

)λ

for x ∈ D ∩ B(ξ, ηR)

with someλ > 0 depending only onn, cJ , Rξ and Aξ. Let Dj = {x ∈ D̃R :
exp(−2j+1) ≤ u(x) < exp(−2j)} andUj = {x ∈ D̃R : u(x) < exp(−2j)}. Then
we see that

Uj ∩ B(ξ, ηR) ⊂
{

x ∈ D : δD(x) < AR exp
(
−2j

λ

)}
.

Define a decreasing sequenceRj by R0 = η2R and

Rj =
(

η2 − 6(η2 − η3)
π2

j∑
k=1

1
k2

)
R for j ≥ 1.

Let ω0 = ω(·, D ∩ S(ξ, η2R), D ∩ B(ξ, η2R)) and put

dj =


sup

x∈Dj∩B(ξ,Rj)

ω0(x)
u(x)

if Dj ∩ B(ξ,Rj) 6= ∅,

0 if Dj ∩ B(ξ,Rj) = ∅.

It is sufficient to show thatdj is bounded by a constant independent ofR andj, since
Rj > η3R for all j ≥ 0. Apply the maximum principle toUj ∩ B(ξ,Rj−1) to obtain

ω0(x) ≤ ω(x,Uj∩S(ξ,Rj−1), Uj∩B(ξ,Rj−1))+dj−1u(x) for x ∈ Uj∩B(ξ,Rj−1).

Divide the both sides byu(x) and take the supremum overDj ∩ B(ξ,Rj). Then (6.3)
yields

dj ≤ exp
(

2j+1 + A7 − A8
Rj−1 − Rj

AR exp(−2j/λ)

)
+ dj−1,
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providedj is so large, sayj ≥ j0, that

Rj−1 − Rj

AR exp(−2j/λ)
=

6(η2 − η3)
π2

exp(2j/λ)
Aj2

≥ 1.

Hence, forj ≥ j0,

dj ≤ dj0−1 +
∞∑

j=j0

exp
(

2j+1 + A7 − A8
6(η2 − η3)

π2

exp(2j/λ)
Aj2

)
< ∞.

Forj ≤ j0 we havedj ≤ exp(2j+1) ≤ exp(2j0+1). Hence we obtainsupj≥0 dj < ∞.
Thus (6.2) follows.

Lemma 6.2.Let ξ ∈ ∂D have a system of local reference pointsy1, . . . , yN ∈ D ∩
S(ξ,R) of order N with factor η for 0 < R < Rξ. If x ∈ D ∩ B(ξ, η3R) and
y ∈ D ∩ S(ξ, η−3R), then

GR(x, y) ≤ ARn−2
N∑

i=1

GR(x, yi)
N∑

j=1

GR(yj , y), (6.4)

whereA depends only onn, cJ , Rξ andAξ.

Proof. Apply Lemma 5.3 toh(x) = GR(x, y) with y ∈ D ∩ S(ξ, η−3R). Then

GR(x, y) ≤ A
N∑

j=1

h(yj) for x ∈ D ∩ S(ξ, η2R).

Hence (6.2) yields

GR(x, y) ≤ ARn−2
N∑

i=1

GR(x, yi)
N∑

j=1

h(yj) for x ∈ D ∩ B(ξ, η3R)

by the maximum principle. The lemma follows.

For further arguments we need the following improvement of (6.4): Ifx ∈ D ∩
S(ξ, η9R) andy ∈ D ∩ S(ξ, η−3R), then

GR(x, y) ≤ ARn−2
N∑

i=1

GR(x, yi)GR(yi, y) (6.5)

whereA depends only onn, cJ , Rξ andAξ. Note that the cross termsGR(x, yi)GR(yj , y)
(i 6= j) disappear from the right hand side of (6.4).

If N = 1, then (6.5) is nothing but (6.4). IfN ≤ 2, then Ancona’s ingenious trick
[6, Théor̀eme 7.3] gives (6.5) from (6.4). However, the proof is rather complicated and
we postpone the proof to the next section. The remaining arguments are rather easy
and hold for arbitraryN ≥ 1, provided (6.5) holds. Let us show the weak boundary
Harnack principle defined by Ancona [6, Définition 2.3].
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Lemma 6.3(Weak Boundary Harnack Principle). Let ξ ∈ ∂D have a system of local
reference pointsy1, . . . , yN ∈ D ∩ S(ξ,R) of orderN with factorη for 0 < R < Rξ.
Moreover, suppose(6.5)holds. Leth0, h1, . . . , hN ∈ Hξ. Then

h0(x) ≤ A
N∑

i=1

h0(yi)
hi(yi)

hi(x) for x ∈ D \ B(ξ, η9R). (6.6)

whereA depends only onn, cJ , Rξ andAξ.

Proof. In (6.5) we replace the roles ofx andy and writez for y. By dilation and
changingA5 we obtain from the symmetry of the Green function that ifx ∈ D ∩
S(ξ, η9R) andz ∈ D ∩ S(ξ, η21R), then

GR(x, z) ≤ ARn−2
N∑

i=1

GR(x, zi)GR(zi, z),

wherez1, . . . , zN ∈ D ∩ S(ξ, η12R) are local reference points. Moreover, for eachzi

we find a local reference pointyj(i) ∈ D∩S(ξ,R) such thatk
eDR\{x,z}(zi, yj(i)) ≤ A.

In view of (5.1), we haveGR(x, zi) ≈ GR(x, yj(i)) andGR(zi, z) ≈ GR(yj(i), z),
wheneverx ∈ D ∩ S(ξ, η9R) and z ∈ D ∩ S(ξ, η21R). Hence we obtain that if
x ∈ D ∩ S(ξ, η9R) andz ∈ D ∩ S(ξ, η21R), then

GR(x, z) ≤ ARn−2
N∑

i=1

GR(x, yi)GR(yi, z). (6.7)

Letr = η−3R andρ = η21R. Observe that the regularized reduced functionR̂
D∩(S(ξ,r)∪S(ξ,ρ))
h0

with respect toD̃R is a Green potential of measuresµ concentrated onD∩S(ξ, r) and

ν onD∩S(ξ, ρ) such that̂RD∩(S(ξ,r)∪S(ξ,ρ))
h0

= h0 onD∩B(ξ, r)\B(ξ, ρ). It follows
from (6.5) and (6.7) that forx ∈ D ∩ S(ξ, η9R),

h0(x) =
∫

D∩S(ξ,r)

GR(x, y)dµ(y) +
∫

D∩S(ξ,ρ)

GR(x, z)dν(z)

≤ ARn−2
N∑

i=1

(∫
D∩S(ξ,r)

GR(x, yi)GR(yi, y)dµ(y)

+
∫

D∩S(ξ,ρ)

GR(x, yi)GR(yi, z)dν(z)
)

= ARn−2
N∑

i=1

GR(x, yi)h0(yi).

Letε = 1−η9. Observe from (6.1) and the Harnack inequality thathi(yi)Rn−2GR(x, yi)
≈ hi(x) for x ∈ S(yi, εδD(yi)), and sohi(yi)Rn−2GR(x, yi) ≤ Ahi(x) for x ∈
D ∩ S(ξ, η9R) ⊂ D̃R \ B(yi, εδD(yi)) by the maximum principle. Hence (6.6) fol-
lows forx ∈ D \ B(ξ, η9R) by the maximum principle.
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Proof of Proposition 2.3 (ii) forN ≤ 2. Obviously (6.5) holds forN = 1. As we shall
show in the next section, (6.5) holds forN = 2. Hence Lemma 6.3 is applicable.
Varying R in Lemma 6.3, we obtain relationships among kernel functions inHξ (cf.
Lemma 5.4), which yield Proposition 2.3. This procedure is the same as in Ancona [6,
Théorem̀e 2.5] and we omit the details.

Remark6.1. We do not know whether the weak boundary Harnack principle holds for
N ≥ 3. In special cases, such as a sectorial domain whose boundary lies onN rays
leavingξ, we can apply the weak boundary Harnack principle repeatedly to subdomains
containing just one ray and conclude the weak boundary Harnack principle for the
sectorial domain itself (cf. Cranston and Salisbury [12, p. 36]).

7 Proof of (6.5)

In this section we shall prove the following:

Lemma 7.1.Let ξ ∈ ∂D have a system of local reference pointsy1, y2 ∈ D ∩ S(ξ,R)
of order 2 with factor η for 0 < R < Rξ. If x ∈ D ∩ S(ξ, η9R) and y ∈ D ∩
S(ξ, η−3R), then(6.5)holds.

In order to apply (5.1) to the Green function, we need the following elementary
lemma.

Lemma 7.2.LetΩ be a subdomain ofRn and letz ∈ Ω. Then

kΩ\{z}(x, y) ≤ π + 3kΩ(x, y) for x, y ∈ Ω \ B(z,
1
2
δD(z)).

Proof. We first claim that

δΩ(w) ≤ 3δΩ\{z}(w) for w ∈ Ω \ B(z,
1
2
δΩ(z)).

Indeed, letw ∈ Ω\B(z, 2−1δΩ(z)). Observe thatδΩ\{z}(w) = min{δΩ(w), |z−w|}.
If δΩ\{z}(w) = δΩ(w), then there is nothing to prove. Otherwise,δΩ\{z}(w) = |z −
w| ≥ 2−1δΩ(z), so that

δΩ(w) ≤ δΩ(z) + |z − w| ≤ 3δΩ\{z}(w).

Now let γ be an arbitrary rectifiable curve inΩ connectingx to y. If γ ⊂ Ω \
B(z, 2−1δΩ(z)), then the claim shows that∫

γ

ds(w)
δΩ\{z}(w)

≤ 3
∫

γ

ds(w)
δΩ(w)

.

Supposeγ \B(z, 2−1δΩ(z)) 6= ∅. Letw1 andw2 be the first hit ofγ to S(z, 2−1δΩ(z))
and the last hit, respectively. Observe thatw1 andw2 can be connected by the circle
γ1 in S(z, 2−1δΩ(z)) whose length is at mostπ2−1δΩ(z). Let γ′ = γ(x,w1) ∪ γ1 ∪
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γ(w2, y), whereγ(x,w1) (resp. γ(w2, y)) is the subcurve ofγ connectingx andw1

(resp.w2 andy). It follows from the above claim that∫
γ′

ds(w)
δΩ\{z}(w)

≤
∫

γ1

ds(w)
|z − w|

+ 3
∫

γ(x,w1)∪γ(w2,y)

ds(w)
δΩ(w)

≤ π + 3
∫

γ

ds(w)
δΩ(w)

.

Taking the infimum with respect toγ, we obtain the lemma.

We employ Ancona’s trick [6, Th́eor̀eme 7.3]. Since our setting is slightly different
from Ancona’s, we provide a proof for the sake of the reader’s convenience.

Proof of Lemma 7.1.Besides the local reference pointsy1, y2 ∈ D ∩ S(ξ,R), we take
local reference pointsy∗

1 , y∗
2 ∈ D ∩ S(ξ, η6R) with

min
i=1,2

{kD∩B(ξ,η3R)(x, y∗
i )} ≤ Aξ log

η6R

δD(x)
+ Aξ for x ∈ D ∩ B(ξ, η7R).

Then

min
j=1,2

{kDR
(y∗

i , yj)} ≤ Aξ log
R

δD(y∗
i )

+ Aξ ≤ Aξ.

So, we may assume either

kDR
(y∗

1 , y1) ≤ A and kDR
(y∗

2 , y1) ≤ A, (7.1)

or
kDR(y∗

1 , y1) ≤ A and kDR(y∗
2 , y2) ≤ A, (7.2)

by replacing the roles ofy1 andy2, if necessary.
First consider the case when (7.1) holds. Letx ∈ D ∩ S(ξ, η9R) and suppose

y ∈ D∩S(ξ, η3R). Theny∗
1 , y∗

2 , y1 ∈ DR \
(
B(x, 2−1δDR(x))∪B(y, 2−1δDR(y))

)
.

By (7.1) and Lemma 7.2 we havekDR\{x}(y∗
i , y1) ≤ A andkDR\{y}(y∗

i , y1) ≤ A for
i = 1, 2. Hence (5.1) and (6.4) fory∗

1 andy∗
2 yield

GR(x, y) ≤ ARn−2
∑
i,j

GR(x, y∗
i )GR(y∗

j , y) ≤ ARn−2GR(x, y1)GR(y1, y).

By the maximum principle the same inequality holds fory ∈ DR \ B(ξ, η3R), and in
particular fory ∈ D ∩ S(ξ, η−3R). Hence the lemma follows in this case.

Next consider the case when (7.2) holds. LetΦ = {z ∈ D̃R : GR(z, y1) ≥
GR(z, y2)}. If either x, y ∈ Φ or x, y ∈ D̃R \ Φ, then (6.5) follows from (6.4).
Let us consider the remaining cases. If necessary, exchanging the roles ofy1 and
y2, we may assume thatx ∈ Φ ∩ S(ξ, η9R) andy ∈ (D̃R \ Φ) ∩ S(ξ, η−3R). Let
E = Φ\B(ξ, η3R) and consider the regularized reduced functionR̂E

GR(·,y) with respect

to D̃R. This function is represented as the Green potential of a measureµ concentrated
on∂E. For a moment letz ∈ E. Then we have from (6.4) fory∗

1 , y∗
2 and the maximum

principle
GR(x, z) ≤ ARn−2

∑
i,j

GR(x, y∗
i )GR(y∗

j , z). (7.3)
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It is easy to see from (7.2) thatkDR\{x}(y∗
i , yi) ≤ A, so thatGR(x, y∗

i ) ≤ AGR(x, yi)
for i = 1, 2 by (5.1). We also haveGR(y∗

j , z) ≤ AGR(yj , z) for j = 1, 2. In fact, if

z ∈ B(yj ,
1 − η6

2
δD(yj)), thenGR(yj , z) ≈ |yj − z|2−n ≥ AR2−n ≥ AGR(y∗

j , z);

if z ∈ D̃R \ B(yj ,
1 − η6

2
δD(yj)), then (7.2) giveskDR\{z}(y∗

j , yj) ≤ A , and hence

GR(y∗
j , z) ≈ GR(yj , z) by (5.1). Hence (7.3) becomes

GR(x, z) ≤ ARn−2
∑
i,j

GR(x, yi)GR(yj , z) ≤ ARn−2GR(x, y1)GR(y1, z)

by the definition ofΦ. Therefore

R̂E
GR(·,y)(x) ≤ ARn−2GR(x, y1)

∫
E

GR(y1, z)dµ(z)

= ARn−2GR(x, y1)R̂E
GR(·,y)(y1) ≤ ARn−2GR(x, y1)GR(y1, y).

(7.4)

Let vy = GR(·, y) − R̂E
GR(·,y). Then

vy = 0 q.e. onE = Φ \ B(ξ, η3R). (7.5)

By (6.4) we have

vy(z) ≤ GR(z, y) ≤ ARn−2GR(z, y2)GR(y2, y) for z ∈ D ∩ ∂Φ ∩ B(ξ, η3R).
(7.6)

Observe that

D ∩ ∂(Φ ∩ B(ξ, η3R)) ⊂ (Φ \ B(ξ, η3R)) ∪ (D ∩ ∂Φ ∩ B(ξ, η3R)).

Hence (7.5), (7.6) and the maximum principle yield

vy ≤ ARn−2GR(·, y2)GR(y2, y) onΦ ∩ B(ξ, η3R).

This, together with (7.4), implies

GR(x, y) ≤ ARn−2(GR(x, y1)GR(y1, y) + GR(x, y2)GR(y2, y)).

The proof is complete.

8 Sharpness of Theorem 1.2

In this section we give two examples to demonstrate the sharpness of the boundsθ1 ≤
sin−1(1/A0) andρ1 ≤ ρ0 cos θ1. Each example satisfies (I) in Section 1 and (1.2) with
ρ1 andθ1 violating the bounds; and yet there are two minimal Martin boundary points
at the origin. For simplicity we letn = 2, ρ0 = 1 andθ0 = sin−1(1/A0) with A0 > 1.
Write R2

+ = {(x1, x2) ∈ R2 : x2 > 0} andR2
− = {(x1, x2) ∈ R2 : x2 < 0}. For
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z, w ∈ R2 with |z − w| = A0 we letV (z, w) = co({z} ∪ B(w, 1)), where we recall
thatco({z} ∪ B(w, 1)) is the interior of the convex hull of{z} ∪ B(w, 1). Obviously,
B(w, 1) ⊂ V (z, w) ⊂ B(w,A0). Our domainsD in the following examples will be
given as unions of open balls of radius1 andV (z, w) with suitablez andw. Hence (I)
will be satisfied. Let us recall

C(0) =
⋃

y∈D
Γθ1 (0,y)∩B(0,2ρ1)⊂D

Γθ1(0, y) ∩ B(0, 2ρ1).

For both examples, we shall showC(0) = B(0, 2ρ1)∩R2
−, a connected set. Thus (1.2)

will hold.

Example8.1. The case whenθ1 > θ0 andρ1 > 0. We may assume that0 < ρ1 < 1.
Let z0 = (0, A0) and

D = V (0, z0) ∪
(
B(0, A0 + 1) \ (B(0, A0 − 1) ∩ R2

+)
)
.

See Figure 8.1. Obviously, there are two minimal Martin boundary points at 0. Since

D = V (0, z0)∪
(⋃

z∈E1
B(z, 1)

)
with E1 = S(0, A0)∪(B(0, A0)∩{(x1, x2) ∈ R2 :

x2 ≤ −1}), it follows thatD satisfies (I). It is easy to see thatB(0, 2ρ1)∩R2
− ⊂ C(0).

By an elementary geometrical observationV (0, z0) ⊂ Γθ0(0, z
0), so thatΓθ1(0, y) ∩

B(0, 2ρ1) is not included inV (0, z0) for θ1 > θ0. HenceC(0) = B(0, 2ρ1) ∩ R2
−, so

that (1.2) holds.

z0 V (0, z0)

0

D

Figure 8.1: Example 8.1:θ1 > θ0 and
ρ1 > 0.

w2

D

0

z1

z2

V (z2, w2)

Figure 8.2: Example 8.2:0 < θ1 ≤ θ0

andρ1 > cos θ1.

Example8.2. The case when0 < θ1 ≤ θ0 andcos θ1 < ρ1 < 1. Let z1 = (0, 1) and
we choose a pointz2 ∈ B(z1, 1) such that

V (z2, w2) ∩ R2
+ ⊂ B(0, 2 cos θ0) (8.1)
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and0 6∈ V (z2, w2), wherew2 = (z2
1 , z2

2 − A0). Define

D = V (z2, w2) ∪ B(z1, 1) ∪
(
B(0, 5) \ (B(0, 3) ∩ R2

+)
)
.

See Figure 8.2. SinceD = V (z2, w2)∪
(⋃

z∈E2
B(z, 1)

)
with E2 = {z1}∪S(0, 4)∪

(B(0, 4) ∩ {(x1, x2) ∈ R2 : x2 ≤ −1}), it follows that D satisfies (I). There are
two minimal Martin boundary points at 0 since0 6∈ V (z2, w2). It is easy to see that
B(0, 2ρ1) ∩ R2

− ⊂ C(0). Observe thatΓθ1(0, y) ∩B(0, 2ρ1) consists of rays of length
2ρ1 issuing from the origin; whileΓθ1(0, z1) ∩ B(z1, 1) consists of rays of length in
between2 and2 cos θ1 andB(z1, 1) \ Γθ1(0, z1) consists of rays of length not greater
than2 cos θ1. Sinceρ1 > cos θ1 ≥ cos θ0, we infer from (8.1) that ify ∈ R2

+, then
Γθ1(0, y)∩B(0, 2ρ1) cannot be included inD. HenceC(0) = B(0, 2ρ1)∩R2

−, so that
(1.2) holds.
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