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Abstract

We show that a John domain has finitely many minimal Martin boundary points
at each Euclidean boundary point. The number of minimal Martin boundary points
is estimated in terms of the John constant. In particular, if the John constant is
bigger thany/3/2, then there are at most two minimal Martin boundary points at
each Euclidean boundary point. For a class of John domains represented as the
union of convex sets we give a sufficient condition for the Martin boundary and
the Euclidean boundary to coincide.
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1 Introduction

Let D be a bounded domain R™ with n > 2. Letdp(x) = dist(xz,0D) andzg € D.
We say thatD is a John domain with John constaft > 0 and John center at if
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eachr € D can be joined ta;, by a rectifiable curves such that

op(y) = csl(y(z,y)) forally €, (1.1)

where~v(z,y) is the subarc ofy from x to y and/(v(z,y)) is the length ofy(x, y).
In generald < c¢; < 1. Itis easy to see that an open ball with centet@ts a John
domain with John constaat; = 1 and John center aty. We may say that the bigger
cy is, the smootheb is.

Since the main concern of this paper is the boundary behavior of functidnsire
may replacery by a compact subsét,, of D. We call such a domain general John
domain with general John centéf, and general John constany. Obviously, a John
domain is a general John domain and vice versa. Note that a general John constant
is improved, i.e., a John domain with John centez@tand John constant; can be
regarded as a general John domain with general John cor§tantc,; by replacing
xo by a larger compact séf,. In fact, a smooth domain is a general John domain with
general John constant = 1; whereas it cannot be a John domain with John constant 1
unless itis an open ball. Several general John domains have been studied in connection
with the Martin boundary, e.g. Denjoy domains (Benedicks [10]), Lipschitz Denjoy
domains (Ancona [6, 7] and Chevallier [11]), sectorial domains (Cranston-Salisbury
[12]), quasi-sectorial domains @imker [18]), the connected union of a family of open
balls with the same radius (Ancona [5]) and so on. The general John constants for
these domains can be estimated by the geometrical assumption on the domains. For
example, the general John constapt= 1 for a Denjoy domain.

Let G(z,y) be the Green kernel fab. A Martin kernel at{ € 9D (with refer-
ence pointzo) is a limit of the ratioG(x, y;)/G(xo,y;) with y; — £. The totality
of Martin kernels gives an ideal boundary bf, referred to as the Martin boundary
of D. We identify a Martin kernel and an ideal boundary point; a limit of the ratio
G(z,y;)/G(xo0,y;) with y; — ¢ is called a Martin boundary point gtas well. We
say that a positive harmonic functi@nis minimalif every positive harmonic function
less than or equal th coincides with a constant multiple af If a Martin kernel is
a minimal harmonic function, then we call it a minimal Martin kernel or a minimal
Martin boundary point. In general, the Martin boundary need not be homeomorphic to
the Euclidean boundary. There may be even infinitely many minimal Martin boundary
points at a Euclidean boundary point (Martin [19]).

The purpose of this paper is to show that every John domain has finitely many
minimal Martin boundary points at each Euclidean boundary point. Moreover, the
number of minimal Martin boundary points is estimated in terms of the John constant.

Theorem 1.1.Let D be a general John domain with general John constgnt

(i) The number of minimal Martin boundary points at every Euclidean boundary
point¢ € 0D is bounded by a constant depending only on the general John
constantc;.

(i) If ¢c; > +/3/2, then there are at most two minimal Martin boundary points at
every Euclidean boundary poitite 9D



Remarkl.1l Let D be a sectorial domain whose boundary near the origin lies on three
equally distributed rays leaving the origin. ThBns a general John domain with John
constantsin(r/3) = v/3/2. There may be three different minimal Martin boundary
points at the origin. See Figure 1.1. This simple example shows that the bgund
v/3/2in Theorem 1.1 is sharp. Note that the same baund- v/3/2 also applies to

the higher dimensional case.

Figure 1.1: The bound; > v/3/2 in Theorem 1.1 is sharp.

Remarkl.2 Theorem 1.1 generalizes some parts of [10], [6, 7], [11], [12] and [18].
One of the main interests of these papers was to give a criterion for the number of min-
imal Martin boundary points at a fixed Euclidean boundary point (via Kelvin transform
for [10]). Such a criterion seems to be very difficult for a general John domain, since
the boundary may disperse at every point (See e.g. [3, Figure 3 b]).

One might think that the number of minimal Martin boundary points at a Euclidean
boundary point would be equal to 1 provided the John constai# sufficiently close
to 1. This is not the case in view of Benedicks” work on a Denjoy domain ([10]).
The best upper bound obtained from the John constaid at least two as given in
Theorem 1.1. Our second purpose is to find a certain class of John domains for which
each boundary point has one minimal Martin boundary point.

We shall need some other information different from the John consjatncona
[5, Theoeme] gave a condition for the union of a family of open balls with the same
radius to have one minimal Martin boundary point at each Euclidean boundary point.
By B(z,r) we denote the open ball with centenaand radius-. For a pair of distinct
pointsz andy let [z, y] be the (open) line segment connectingndy. For0 < 6 < =
we denote by'y(z, y) the open circular conéz € R" : Zzxy < 0} with vertex atz,
axis[z,y] and aperturd. Ancona says that a domain is admissiblaf

(A1) D is the union of a family of open balls with the same radigs

(A2) Leté € 0D. If D includes two open ball®; and By with radiusp, tangential
to each other ag, thenD includes a truncated circular colig(§,y) N B(&, )
for somef > 0, r > 0 andy in the hyperplane tangent 8; at¢. See Figure
1.2.

Theorem A (Ancona) Let D be a bounded admissible domain. Then every Euclidean
boundary point ofD has one Martin boundary point and it is minimal. Moreover, the
Martin boundary ofD is homeomorphic to the Euclidean boundary.
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Figure 1.2: Condition (A2). Figure 1.3: Condition (II).

Let us generalize both (Al) and (A2). Clearly, (A1) implies tliats a general
John domain with general John constant 1. We would like to consider general convex
sets rather than balls with the same radius. They need not be congruent. Observe that
Ancona’s condition (A2) implies that two ball3; and B, areconnectedy a truncated
conel'y(&,y) N B(&,r). If 0 < 6’ <0, then we have

U Lo/ (€,y) N B(&, ") is connected and non-empty,
yeD
Lo/ (§y)NB(§,r)CD

providedr’ > 0 is sufficiently small. In view of this observation, we generalize (Al)

and (A2) as follows. Letdy > 1 andpy > 0. We consider a bounded domdinsuch
that

(I) D is the union of a family of open convex s€t§', }aca such thatB(zy, py) C
Cx C B(zx, Aopo)-

(I) For each¢ € dD, there are positive constams < sin~'(1/4,) andp; <
po cos B such that

C(¢) = U To, (&, y) N B(&,2p1) is connected and non-empty.

yeD
To, (§,y)NB(§,2p1)CD

1.2)
See Figure 1.3.

We observe that a bounded domain satisfying (I) becomes a general John domain.
In fact, let K be the closure ofz)}xeca. Then Ky is compact. For each € D
there is\, € A such thatr € C,,. Since[x,z),] C C\, C B(zx,,Aopo) and
dcy, (2a,) = po, it follows from (2.4) in Section 2 that

5p(w) > by (w) = 2L

> Scy (2x,) > Atz —w| forallw € [z, 2y, .
2=z, [ :

HenceD is a general John domain with general John ceifgrand general John
constant4d;'. Thus Theorem 1.1 is applicable to such a domain, so that the number of
minimal Martin boundary points at every Euclidean boundary pomto D is bounded

by a constaniV. Condition (Il) implies thatV = 1.



Theorem 1.2.Let D be a bounded domain satisfying (1) and (ll). Then every Euclidean
boundary point ofD has only one Martin boundary point and it is minimal. Moreover
the Martin boundary of) is homeomorphic to the Euclidean boundary.

Remark1.3 Ancona’s admissible domains satisfy (I) and (Il) of Theorem 1.2. The
argument of Ancona depends on the special properties of a ball. His crucial lemma
([5, Lemme 1)) relies on the reflection with respect to a hyperplane, and is applied to a
ball by the Kelvin transform ([5, Corollarie 2]). This approach is not applicable to our
domains.

Remarkl.4. A Denjoy domain can be represented as the union of a family of open
balls with the same radius. A Lipschitz Denjoy domain, a sectorial domain and a
guasi-sectorial domain can be represented as the union of a family of open convex sets
C,, satisfying (I). However, they cannot be represented as the union of a family of open
balls with the same radius. Our Theorem 1.2 is applicable to these domains.

Remarkl.5. Condition (11) is local in the following sense: SuppoBkis the union of
a family of open convex setsC) }rca satisfying (I). If a particular point € 9D
satisfies (Il), then there is only one Martin boundary poirg ahd it is minimal.

Remark1.6. Note thatd < 6; < w/2by 0 < p; < pocosf. The bound®; <
sin~'(1/Ao) andp; < po cos #; are sharp. If one of the inequalities fails to hold, then
there is a domaib satisfying both (1) and (1.2) and yet having a Euclidean boundary
point¢ € 9D such that there are multiple Martin boundary pointg.abee Examples
8.1 and 8.2 in Section 8.

Both Theorems 1.1 and 1.2 are based on a common geometrical reosgatem
of local reference pointsin Section 2, we shall introduce a quasihyperbolic metric
and define a system of local reference points. Then we shall observe that Theorems
1.1 and 1.2 are decomposed into three propositions, namely, Propositions 2.1, 2.2 and
2.3. The first two propositions are purely geometric and will be proved in the same
section. Proposition 2.3 involves many potential theoretic arguments. Among them,
a Carleson type estimate (Lemma 5.1 in Section 5) for bounded positive harmonic
functions vanishing on a portion of the boundary will be crucial. This estimate will
be deduced from a Domar’s type theorem (Domar [13]) for nonnegative subharmonic
functions, as was employed by Benedicks [10] and Chevallier [11]. Domar’s argument
is applicable also to nonlinear equations in a metric measure space ([4]).

By the symbolA we denote an absolute positive constant whose value is unimpor-
tant and may change from line to line. If necessary, wedjsed, . . ., to specify them.
We shall say that two positive functiorfs and f, are comparable, writteffy ~ fs, if
and only if there exists a constaAt> 1 such thatd—! f; < f, < Af;. The constant
A will be called the constant of comparison. We wiigéx, r) and.S(x, r) for the open
ball and the sphere of centeraatind radius-, respectively.

ACKNOWLEDGEMENT. The authors are very grateful to the referee for helpful com-
ments and suggestions.



2 Local reference points

2.1 Restatements of Theorems 1.1 and 1.2
We define the quasihyperbolic metkig (z, y) by
. ds(z)
kD(':E7 y) - 13f/y 6D(Z)’

where the infimum is taken over all rectifiable curvesonnectingz to y in D and
ds(z) stands for the line element on We say thatD satisfies a quasihyperbolic
boundary condition if

dp(20)
p(x)
A domain satisfying the quasihyperbolic boundary condition is calledldét domain

by Smith-Stegenga [20, 21]. It is easy to see that a John domain satisfies the quasihy-
perbolic boundary condition (see [16, Lemma 3.11]). We need more precise estimates.

kp(z,zo) < Alog + A" forallz e D. (2.1)

Definition 2.1. Let N be a positive integer antl < n < 1. We say that € 9D has
a system of local reference points of ord€érwith factor if there existR; > 0 and
A¢ > 1 with the following property: for each positivE < R there areN points
y1 = y1(R),...,yn = yn(R) € DN S(& R) such thatd; 'R < ép(y;) < R for
1=1,...,Nand

) R
i:rlI}‘l.r.l,N{kDR(x’yi)} < A¢log m + A forz e DN B(&,nR),

whereDr = D N B(¢,773R). If 5 is not so important, we simply say théatc 9D
has a system of local reference points of ori¥er

The proofs of Theorems 1.1 and 1.2 can be decomposed into the following three
propositions. The first and the second are purely geometric; the third is potential theo-
retic.

Proposition 2.1.Let D be a general John domain with John constant Then every
¢ € 9D has a system of local reference points of ordéwith N < N(c;,n) < co.
Moreover, if the John constant; > /3/2, then we can letV < 2 by choosing a
suitable factoil0 < n < 1.

Proposition 2.2.Let D be a bounded domain satisfying (1) and (). Then evesydD
has a system of local reference points of ortler

Remark2.1 In Proposition 2.1, the constan® andA, in Definition 2.1 can be taken
uniformly for ¢ € 0D, whereas they may depend &in Proposition 2.2.

By H. we denote the family of all kernel functions &tnormalized at the John
centerzy, i.e., the set of all positive harmonic functiohsn D such thati(z) = 1,
h =0qg.e. ondD andh is bounded orD \ B(¢,r) for eachr > 0. Here we say that a



property holds g.e. (quasi everywhere) if it holds outside a polar set. A Martin kernel at
& (with reference point) is a limit of the ratioG(z, y,) /G (z0, y;) of Green functions

with y; — £ Supposey; € D N B(,r/2). Then the (global) boundary Harnack
principle for a John domain (Bass and Burdzy [9]) implies thatGtie y;) /G (o, y;)

is bounded orD \ B(¢,r), and so is a Martin kernel gt Obviously, a Martin kernel

at¢ is a positive harmonic function vanishing g.e. @b with value 1 atxg, so that it
belongs tdH,. Thus Theorems 1.1 and 1.2 will follow from Propositions 2.1, 2.2 and
the following:

Proposition 2.3.Let D be a general John domain. Suppase 9D has a system of
local reference points of orde¥.

(i) The number of minimal functions . is bounded by a constant depending only
onN.

(i) 1If N <2, thenthere are at most¥ minimal functions irt{.. Moreover, ifN = 1,
then’H, is a singleton and consists of a minimal function.

Remark2.2 It is plausible that there are at mast minimal functions in#, even for
N > 3. Unfortunately, our proof of Proposition 2.3 is based on (6.5), which is proved
only for N < 2.

2.2 Proof of Proposition 2.1

For the proof of the second assertion in Proposition 2.1, we prepare an elementary
geometrical observation.

Lemma 2.1.Letey, es andes be points on the unit sphe®(0, 1). Then
max min |e; — e;| = V/3,
i#£]

where the maximum is taken over all positiongQfe; andes.

Proof. This is a well-known fact (Fejes [14]). For the convenience sake of the reader
we provide a proof. We can easily prove the lemmarfet 2. Letn > 3. We observe
from the compactness &f(0, 1) that the maximumi is taken by some points;, e
andes on S(0,1). There is a unique 2-dimensional pladecontaininge;, e; andes,

since three distinct points o$i(0, 1) cannot be collinear. Observe th&0,1) NII is

a circle with radius at most 1. Sineg, e; andes are points on this circle, it follows
from the caser = 2 thatd < v/3. The lemma follows. O

Proof of Proposition 2.1 We prove the proposition witlR; = dp(Ko). Leté € 0D
and0 < R < 0p(Kyp). Let us prove the first assertion with= 1/2. Takex € D N
B(&, R/2). By definition there is a rectifiable curgestarting frome and terminating at
Koy such that (1.1) holds. Then the first pitr) of S(¢, R) alongy satisfie2 !¢, R <
op(y(z)) < Randkp, (z,y(z)) < Alog i We associatg(z) with z, although

. . dp(z)
it may not be unique.



Consider, in general, the family of ball3(y, 4~ c;R) with y € S(¢, R). These
balls are included iBB(&, (4 tc; + 1)R), so that at mosN (cs, n) balls among them
can be mutually disjoint. Hence we fild pointszy,...,zx € D N B(£, R/2) with
N < N(cy,n) such that{ B(y1,47'csR), ..., B(yn,4 'c;R)} is maximal, where
y; = y(z;) € DN S R) is the point associated with; as above. This means that
if 2 € DNB(&, R/2), thenB(y(x),4 e, R) intersects some dB(y;,4 ¢ R), .. .,
B(yn,47tcsR), sayB(y;, 4 1csR). SinceB(y(x),4 c;R) N B(y;, 4 tcsjR) # 0
and B(y(z),2 ey R) U B(y;, 2 'csR) C Dg, it follows thatkp,, (y(z),y;) < A'.
Hence

+ A'.

kDR <x7yi) < kDR(‘T7 y(x)) + kDR(y(x)vyi) < AlOg S K

p()
Repeating some points, sgy = y(z1), if necessary, we may assume that this property
holds with N independent of: and N < N(c;,n). Thus the first assertion follows.

For the proof of the second assertion,\lé/Q <b <b<cyandn=1-b/c; >

0. Let us prove that has a system of local reference points of order at most 2 with
factorn. Let0 < R < dp(Kp). Supposer € D N B(§,nR). In the same way as

in the proof of the first assertion, we findz) € S(¢, R) such thatcp,, (z, y(x)) <

R
A IOg m and

dp(y(z)) > c;(1—n)R=bR >bR > ?R.

Lemma 2.1 says that at most two disjoint balls of radiug can be placed so that their
centers lie on the sphef&¢, R). Hence we can choosg, z, € D N B(£,nR) such
that B(y(z), ¥’ R) intersectsB(y;, b’ R) for somei = 1,2, wherey; = y(z;). Since
B(y(z),t’R) N B(y;,b'R) # 0 andB(y(z),bR) U B(y;,bR) C Dpg, it follows that
kp,(y(z),y:;) < A. Hence the proposition follows. O

Remark?.3. In casec; < \/§/2, we may have an estimate of better than the above
proof, by considering a lemma similar to Lemma 2.1.

2.3 Proof of Proposition 2.2

In this subsection, we assume, by translation and dilation £tkat) andp; = 1 for
simplicity. The aperturé, < sin~'(1/A,) is fixed and we writd(z, y) for 'y, (, y).
Note thatl = p; < pgcosfq, sothatd < 6; < ©/2 andpy > sect,. Let Oy
be a convex set appearing in (I) and B{z\,po) C C\ C B(zx,Aopo). If z €
a\ B(Z)\,p()), then

['(z,2)) N B(x,2) C co({z} UB(2x, po)) C Ci, (2.2)
whereco({z} U B(zx, po)) is the interior of the convex hull ofz} U B(zy, po). Let
Y={yeS50,1):T(0,y) N B(0,2) C D}.

We first show thad) # () and that the point 0 can be accessible along a ray issuing
from the origin toward a point iQ).



Lemma 2.2.There is a positive constaft, < 1 such that ifCy N B(0, Ry) # 0, then
CyNY # 0. In particular, ) # 0.

Proof. Suppose to the contrary, there is a sequefigewith dist(0,C»;) — 0 and
Cx, NY = 0. Letzy, be such thaiB(zy,,p0) C Cx, C B(zy,,Aopo). Taking a
subsequence, if necessary, we may assume thaonverges, say tey. We claim

I'(0,20) N B(0,2) | JCn,- (2.3)
J

We findzy, € 0Cy, with x5, — 0. Takexz € I'(0, 20) N B(0,2). ThenZz0zy < 6;
and|z| < 2 by definition. Ifj is sufficiently large, theo'zzy 2y, < 01 andjz—x;| <
2 by continuity, so that

x € T(wy;,2x,) N B(wy,,2) Cco({xx, } UB(zx;,p0)) C Cy,,

by (2.2). Thus (2.3) follows. Now, by definitiogy = z0/|20| € Y andyg € T'(0, z0)N
B(0,2) C Uj C),. This contradict”y, N Y = (). The lemma follows. O

Observe that i”' is a convex set, then the distance functder{z) = dist(x, 9C)
is a concave function of, i.e.,

|z — 2|

lz -yl

wheneverzr andy are distinct points inC. This fact will be used in the following
lemma.

bo(z) > |Z*y|5 (z) +

Fle dc(y) forz e [z,y], (2.4)

Lemma2.3.Let0 < Ry < 1 beasinLemma?2.2. Suppdse R < min{ Ry, 3 !sinb, }.
If Cx N B(0,R) # 0 andy € C\ N Y, then there exists a point € C, NT'(0,y) N
B(0,3R/ sin 6, ) such that

sin 6
dcnnr(o,y) (w) > 1 'R.

Proof. Takexz € C, N B(0,R). Thenz,y] C C,. Observe that there is a point
wy € [z,y] NT(0,y) with |w1| < R/sin6;. Infact, ifx € I'(0,y), thenw; = =
satisfies the condition. Otherwise, tef be the intersection df:, y] andorI'(0,y). By
elementary geometry

R > dist(x, [0,y]) > dist(w1,[0,y]) = |w:]|sin by,

so thatjw;| < R/sin#;. Sincelw; —y| > 1 — R/sin 6, and3R/sin 6, < 1, we find
a pointws € [w1,y] C Cx NT(0,y) with |w; — wa| = R/ sinb;. See Figure 2.1.
By (2.4) withC = T'(0, y) we obtain

|wy — ws] R/ sin 6, sin g, > E

5 > —=9 YR
roy) (w2) = lwy — o] row() = R/sinb; + 1 2



I'(0,y)

T N

Figure 2.1:0¢c, Ar(o,y)(w) > 4~ 'sin 61 R.

Moreover|ws| < 2R/ sin 61. Sincelws —z)| > po—2R/sinf; > Rby3R/sinb; <
1 < po, we can take a poinb € [ws, 25] C C, such thajw — ws| = R/4. Then it
follows from (2.4) withC = C), that

|w — ws R/4 sin 64
) > —"9 > > .
Cx (U)) = |Z)\ — w2| Cx (ZA) = AOPOpO =7y R
Hence R R sng g
. sin 04 sin 01
5F(O,y)mc>\ (w) = mln{2 T4 g } = 4 R.
Moreover,

R R R 3R
< _ — < — < .
[wl < fw = ws] + |wz —wi| + fun | < 4 * sinf;  sinf; sin 0¢

Thus the lemma is proved. O

Proof of Proposition 2.2Let 0 < Ry, < 1 be as in Lemma 2.2 and lét < n® <
6~ sin0;. Supposé® < R < min{ Ry, 3 !siné;}. By Lemma 2.2 we fix, € Y and
write yr = Ryp. It is sufficient to show that

kp,(z,yr) < Alogﬁ]?x)—i—A forz € DN B(0,nR), (2.5)

whereA is independent of andR. Takexz € D N B(0,nR). Then there is a convex
setC'y containingz and there i/ € C, N'Y by Lemma 2.2. By Lemma 2.3 we find
apointw € C NT(0,y) N B(0,3R/sin ;) such thabc, nr(o,) (w) > 47 Rsinb;.
Then[z,w] C B(0,27'n~3R) N Cy, and thereforép, (2) = dp(z) > dc, () for

z € [z, w]. Since

|z — z| sin? 6,
den () > T

dpp(2) > dc,(2) > |z —z| forz e [z,w]

| — wl

10



by (2.4), it follows that

+ A

< Alog

boaew) < | ds(z2)

R
[z,w] 5DR (Z) dp (SC)
Since

sin? 64

0pgp(2) 2 0r,y)(2) = [w = |lw—z| forz € [w, Ry],

Z|
- Ry) >
= |U} —Ry| F(O,y)( y) =
it also follows that

+ A

< Alog

ko, Ry) < [ ds(z)

R
[w,Ry] 5DR (Z) op (.’E)

Note thatC(0)N.S(0, 1) is connected by the assumption (I1). In viewdd$t (), S(0, 1)\
C(0)) > sinf; andC(0) C D, we see thakp, (Ry,yr) < A with A independent of
R, y andyg. Thus (2.5) follows from the triangle inequality. O

3 Refinement of Domar’s theorem

Domar [13, Theorem 2] gave a criterion for the boundedness of a subharmonic func-
tion majorized by a positive function. We need its quantitative refinement, i.e., the
dependency of the bound is given explicitly.

Lemma 3.1.Letu be a nonnegative subharmonic function on a bounded dofaain
Suppose there is > 0 such that
I= /(log+ u)" e dr < oo,
JQ
Then
u(x) < exp(2 + AIY6g(x)~"/¢), (3.1)
whereA is a positive constant depending only ©and the dimension.
For the proof we prepare the following.

Lemma 3.2.Letu be a nonnegative subharmonic function®tx, R). Suppose(z) >
t > 0and
R> Ly|{y € B(z,R) : e 't < u(y) < 6t}\1/", (3.2)

whereL,, = (62/1)n)1/n andu,, is the volume of the unit ball. Then there exists a point
z’ € B(z, R) withu(z') > et.
Proof. Observe that (3.2) is equivalent to

Hy € B(z,R) : e 't < u(y) < et}] < 1

|B(z, R)| T

11



Suppose: < et on B(z, R). Then the mean value property of subharmonic functions
yields

1
t< < —0 d
=) = 56 B /B(x,m“(y) !
1

= — udy —l—/ udy)
|B(x, R)| (/B(w,R)ﬂ{uge—lt} B(z,R)N{u>e-1t}

1 1
<elt+ et <t
e
This is a contradiction. O

Proof of Lemma 3.1Since the right hand side of (3.1) is not less th#rit is sufficient
to show that

5o (x) < ATY™(logu(z))~5/", whenevem(z) > 2. (3.3)
Fix 21 € Q with u(z1) > €? and let us prove (3.3) with = z;. Let
Rj = Lol{y € Q: ¢/ 2u(axy) < u(y) < u(z)}Y™ forj>1.

We choose a sequenge; } as follows: Ifoo(x1) < Ri, thenwe stop. 16 (1) > Ry,
thenB(z1, R1) C £, so that there exists, € B(z1, R1) such that(zz) > eu(z1) by
Lemma 3.2. Next we considég (z2). If do(z2) < Rs, then we stop. 15 (z2) > Ro,
then B(z2, R2) C €, so that there exists; € B(zz, R2) such thatu(xs) > e?u(z;)
by Lemma 3.2. Repeat this procedure to obtain a finite or infinite seqyenge We
claim

Sa(z1) <2 R;. (3.4)
j=1
Suppose firsfz;} is finite. If dq(z1) < Ry, then (3.4) trivially holds. [Bq(x1) > Ry,
then we have an integer > 2 such that

da(x1) > Ry,...,0a(xs-1) > Rj_1,0a(xs) < Ry,
ZTo € B(:Cl,Rl),Ig € B(:EQ,RQ),. L,y € B(:CJ_17RJ_1).

Hence we have
da(x1) <|z1—z2|+ -+ |xy_1 — 24| + da(zy) < R1+---+ Rj_1+ Ry,

so that (3.4) follows. Suppose nekt;} is infinite. Sinceu(z;) > e/u(z1) — oo,
it follows from the local boundedness of a subharmonic function thajoes to the
boundary. Hence, there is an intege® 2 such thado (z;) < 1dq(z1). Then

1
do(x1) <l|z1 —xo|+ -+ |zjo1 —2g| +da(zy) <R+ -+ Ry + 559(5101)7

so that (3.4) follows. In view of (3.4) we observe that (3.3) follows from

i R; < ATY™(logu(zy)) /™. (3.5)

j=1
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To show (3.5), letj; be the integer such that' < u(x;) < e/1*1. Thenj; > 2 and
R; < Lnl{y € Q: e 472 < y(y) < entitiyl/n,

Since the family of interval§(e/: 72, e71+i+1]} ; overlaps at most 3 times, it follows
from Holder’s inequality that

ZRj <3L, Z Hy e Q: el <u(y) <}
j=1

J=J1
oo 1 (n—1)/n ) " . ) 1/n

- n— € N J

§3L"<Z j(n—1+s)/(7z—1)> <Z] |{y€Q.e <U(y) <e H)
J=I1 J=J1
1/n

< Ajl_g/” </ (1Og+ u)n1+€dy)

Q
< A(logu(zy))~¢/m 1™,

Thus (3.5) follows. The lemma is proved. O

4 Integrability of negative power of the distance func-
tion

Inspired by Smith and Stegenga [20, Theorem 4] we have proved that for a bounded
John domain there is a positive constarguch that

/ op(z) Tdr < o
D

([1, Lemma 5]). We need its local version.

Lemma 4.1.Let D be a general John domain with John constaptand generalized
John centeti(y. Then there are positive constantsind A depending or; such that

/ (R) de < AR"
JDNB(E,R) dp(x)

for eaché € 9D and0 < R < 6p(Kp).
Proof. Let
Vi={r e DNBER+(1+c;")2""7R): 277 'R<ép(x) < 277R}

for j > 0. For a moment we fix: € JZ,,, Vi. By definition there is a rectifiable
curve connectingz and K with (1.1). Hence we find; € v such thatyp(y) =

277R > c;|lz — y|. In other wordse € B(y,c;'277R). We observe

|B(y,5¢;'277R)| < A|V; N B(y,c;'277R)|. (4.1)

13



In fact, takey* € 9D such thatly — y*| = 277R, and then take/ € [y,y*] with
6p(y) = 3(277R+ 2797'R). An elementary geometrical observation and< 1
give B(y/, 5= 2R) C V; N B(y,c;'277R), so that (4.1) follows.

Now the covering Iemma ylelds a sequerdgg} such that

U Vi cUB(yr.5c;'277R)
i=j+1 k

and{B(yx, c;' 279 R)}, are disjoint. Hence

Yovil=|U v

i=j+1 i=j+1

<Y IByk,5¢; 277 R)| < ALY [ViNB(yk, ;27 R)| < Ay|Vj]
k k

by (4.1). Letl <t < 1+ A7'. Inthe same way as in the proof of [1, Lemma 5] we
have

1 o0
J < — | < -1 < n.
E 1V 14, ?:O‘VJ' <A[B(, R+ (14+c; )2R)| < AR

Sincet! < (R/dp(z))” < t7T! onV; with 7 = logt/log 2 > 0, it follows that

R T e} )
— J de < #TYV| < AR™.
/DmB(g,R) <5D($)> Z | j‘

j=0

Thus the lemma follows. O

5 Growth of positive harmonic functions

In this section we shall show Proposition 2.3 (i) by investigating the growth®fH .
Throughout the section we |2 be a general John domain and §e€ 9D be fixed.
We say thatr,y € D are connected by a Harnack chgiB(z;, 26D(xj))}’f ifze
B(z1,30p(21)),y € B(yk, 500 (yx)), andB(z;, 50p(4))NB(xj41, 50p(j41)) #

¢ forj =1,...,k — 1. The numbel is called the length of the Harnack chain. We
observe that the shortest length of the Harnack chain connectingy is comparable
to kp(x,y). Therefore, the Harnack inequality yields that there is a constant 1
depending only om such that

h
exp(—Aa(kp(e,) + 1) £ 1) < eplalbp(@n) + 1) 6.)
for every positive harmonic functiatlhon D. If D is a John domain with John constant
¢y and John center,, then we have from (2.1)

h(z) dp(z0)\*
fmw§%<%@> (>:2)
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with A and A; > 0 depending only on the John constant If D is a general John
domain with John constamt; and John centekK, then (5.2) holds with the same
and anotherl; depending only oy, x¢ and K.

Let 2 be an open set intersectidg). Let h be a bounded positive harmonic func-
tion in DN vanishing g.e. 00 DNQ. We extendh to 2\ D by 0 outsideD and denote
by h* its upper regularization. Then we observe thais a nonnegative subharmonic
function onQ2 ([8, Theorem 5.2.1]). We shall apply the refinement of Domar’s theorem
(Lemma 3.1) to the subharmonic functigh to obtain a Carleson type estimate.

Lemma 5.1.Let¢ € 9D have a system of local reference poipts...,yy € DN
S(&, R) of order NV with factorn for 0 < R < R¢. Supposé is a positive harmonic
function inD N B(¢,n~3R) vanishing g.e. o@D N B(£,n2R). If h is bounded in
DN B(,nR)\ B(¢,n2R), then

N
h<AY h(y:) onDNSEn’R), (5.3)

=1
whereA is independent of and R.

Proof. Let0 < R < Re. Then we findy,...,yn € DN S(E, R) with dp(y;) = R
such that

+A forxze DN B nR).

R
dp(z)

By (5.1) we find a constamt, > 1 such that

min {kpp(z,y:)} < Alog

7

AN
h(z) < Ay ((ij)) ; h(y;) forz e DN B(E,nR). (5.4)

Let us apply Lemma 3.1to = 1, u = h*/(As 31 h(y;)) andQ = B(€,7R) \
B(&,m3R). LetT > 0 be as in Lemma 4.1. Apply the elementary inequality:

n n
n < _ T >
(logt)" < (T) £ fort>1
tot = R/op(z) > 1forxz € Q. Then

[ (5m)] < 4(5m)

so that it follows from (5.4) and Lemma 4.1 that

I :/(1og+ u)"dx < A/ (R) dr < AR™.
Q DNB(¢,R) dp(x)

Hence, Lemma 3.1 yields that < exp(2 + AIR™™) < AonS(¢,n?R), i.e., (5.3)
holds. O
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Let us apply Lemma 5.1 to a kernel functibre 7, to obtain the following growth
estimate.

Lemma 5.2.Let¢ € 9D have a system of local reference poipts...,yy € DN
S(&, R) of order N with factorn for 0 < R < Re. Leth € He. Then

h(z) < Alz — €7 forz € D,
where) > 0 is as in(5.2)and A is independent aR, x and h.

Proof. By Lemma 5.1 we have (5.3). Sinéeis bounded apart from a neighborhood
of &, the maximum principle gives

N
h(z) < AY h(y;) forze D\ B n’R).

Apply (5.2) to eachy; € D N S(&, R) with §p(y;) ~ R. Then obtaim(y;) < AR~
This, together with the above estimate, yields) < Alz — ¢|=* for z € D. The
lemma is proved. O

Here we record another application of Lemma 5.1, as this will be useful later.

Lemma 5.3.Let¢ € 9D have a system of local reference poipts...,yy € DN
S(&, R) of order N with factorn for 0 < R < Re. Leth be a bounded positive
harmonic function orD N B(&, =3 R) vanishing g.e. o@D N B(¢,n~3R). Then

N
h<AY h(y:) onDNB( n’R),

i=1
whereA is independent oR andh.
Proof. We have (5.3). Apply the maximum principle N B(¢, n?R). O

The following lemma is well-known. For the sake of the reader’s convenience, we
state it with a proof.

Lemma 5.4.Suppose there exist a positive integdrand a positive constamt with
the following property: ithg, ..., har € He, then there igi such that

h; < AZhi onD.
i#]
ThenH, has at mostl/ minimal harmonic functions.

Proof. Suppose there arkl + 1 different minimal harmonic functions, ... hys €
He. If necessary relabeling, we may assume that

M
hog<AY h; onD.
i=1
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We may also assume thdt> 1. Then(A Zf‘il hi — ho)/(AM — 1) € He. Leth be
this function. We have

1 1 1 &
pho (= p)h = M;h

Compare the Martin representation measures for the both sides. The measure for the

. 1 . .
left hand side has at least— mass at, whereas the measure for the right hand side
has 0 mass dt,. This contradicts the uniqueness of the Martin representation.]

Let u be an unbounded subharmonic function®h Fork € R andxg € R™ we
define the limit component containing by

C(:L'Oak) = U CR(:L'Oak)v

R>|zo]

whereCr(xo, k) is the connected component of : u(x) > k,|z| < R} containing
xo. By N (k) we denote the total number of limit components. It is known fkigk)

is an increasing function df and the limitlimy_. ., N (k) is referred to as the number
of tracts ofu. There is a close connection between the growth ahd the number of
tracts. See [15, Section 1] and [17, Section 4.6] for details.

Proof of Proposition 2.3 forV > 3. Let h; € H¢ for j = 0,..., M. Leth] be the
upper regularization of the extension/of to R” \ {£} as before Lemma 5.1 and let
H be the Kelvin transform ok with respect toS(¢, 1), i.e.,

Hj(z) = |z — €7 hj (€ + |z — €] 7% (x — €)).

Observe thafd; is a nonnegative subharmonic function BA which is positive and
harmonic on the Kelvin imag®* of D and is equal to O g.e. outside*. Moreover,
Lemma 5.2 shows

Hy(x) < Ale — ¢+

ThusH; is of order at mos2 — n + A. As in Benedicks [10, Theorem 2], we let
W= = 2L )
i#]
and letw™ be the upper regularization afax{w,0}. Thenw™ is a nonnegative sub-

harmonic function orR™ of order at mos2 — n + A. If none of {z : H;(z) >
>izj Hi(x)} is empty, thenw™ hasM + 1 tracts. Hence, [15, Theorem 3] yields

1 M+1 3
2—n—|—/\2210g< + >

S it M >3,
1 )72 =

Hence, if M > dexp(l — 2n + 2)A) — 1, then{z : H;(z) > >_,,; H;(x)} = 0 for
somej =0,..., M. This means that/; < >, H; on D*, so that

hj < th onD.
i#]
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Hence Lemma 5.4 implies that; has at most\/ minimal harmonic functions, or
equivalently there are at moaf minimal Martin boundary points &t Thus the num-
ber of minimal Martin boundary points gtis bounded byl exp(1 — 2n + 2\). O

Remark5.1 The above proof gives a coarse estimate of the number of minimal har-
monic functions oft{, in terms of\ depending on the John constapt More delicate
arguments will be needed for a sharp estimate.

6 Weak boundary Harnack principle

In this section we shall prove Proposition 2.3 fgr< 2. Throughout the section we

let D be a general John domain and §ixc 9D. Since most arguments are valid for
any N > 1, except for (6.5), we shall state the results for genafalProposition 2.3

will be derived from a certain estimate of the Green function. There is a difference of
the behavior of the Green functignfor D between the cases= 2 andn > 3, i.e., if

n > 3 andR > 0is small, then

1 .
G(z,y) =~ R*" foraz e S(y, §5D(y)) with 6p(y) ~ R;

if n = 2, then this estimate does not necessarily hold. To avoid this difficulty we con-
sider the Green functio@ s for the intersectioDr = DNB(&, A5 R) with sufficiently
large A5 > n—3. Then we have for any > 2,

Grlr,y) ~ R forz € Sy, 50n() with dn(y) ~ B, (6.1)

where the constant of comparison depends onlyamd As.

By w(z, E,U) we denote the harmonic measurefor an open sel/ evaluated at
x. The box argumentin [2, Lemma 2] (see [9] for the original form) gives the following
estimate of the harmonic measure.

Lemma 6.1.Let{ € 9D have a system of local reference poigts...,yny € DN
S(&, R) of order N with factorn for 0 < R < Re. Ifx € DN B(&,n3R), then

N
w(z, DNS(En*R), DN BER)) < AR Grlz.y),  (62)

i=1
whereA depends only on, c;, Re and Ag.

Proof. Let us begin with an estimate of harmonic measure in a John domain. For
0<r<dp(Kyp)letU(r)={x € D:dp(x) <r}. Then each point € U(r) can be
connected tdy, by a curve such that (1.1) holds. Hené¥x, A¢r) \ U(r) includes a

ball with radiusr, providedAg is large. This implies that

w(z,U(r)n S(x, Agr),U(r) N B(x, Agr)) <1—¢¢ forxz e U(r)
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with 0 < g9 < 1 depending only omg and the dimension. Le® > r and repeat this
argument with the maximum principle. Then there exist positive constangsid As
such that

w(z,U(r)nS(z,R),U(r)N B(z, R)) < exp(A7 — AsR/T). (6.3)

See [2, Lemma 1] for detalils.
Let0 < R < Re. Foreache € D N B(¢,nR) there is a local reference point
y(z) € {y1,...,yn} such that

R
kpp(o,y(@) < Aglog = — + Ag

p()
by definition. Lety'(z) € S(y(z), £6p(y(x))). Then we observe thap .\ ()} (z, ¥/ (z)) <
Aclog(R/dp(x)) + Ag. Lettingu(z) = R"2 "N | GR(x,v:), we obtain from (5.1)
and (6.1) that

5[)(1‘)
R

u(a:)zA( )A forz € DN B(¢,nR)

with some\ > 0 depending only om, ¢;, R and A¢. Let D; = {z € Dg :

exp(—27t1) < u(z) < exp(—27)} andU; = { € Dg : u(z) < exp(—27)}. Then
we see that

U;NB(&nR) C {x e D:dp(x) < ARexp(—QAj) }

Define a decreasing sequenggby Ry, = >R and

J
- 1
Rj_(2 60 —n7) 7’ ) kZ)R forj > 1.

k=1

Letwy = w(-, DN S(&,n*R), DN B(¢,1m*R)) and put

sp @) DN B(& R;) #0,
z€D;NB(E,R;) u(z)
dj =
0 if D; N B(&,R;) = 0.

It is sufficient to show that; is bounded by a constant independenfoéndj, since
R; > n3Rforall j > 0. Apply the maximum principle t&/; N B(£, R;_1) to obtain

wo(x) < w(x7 UjﬂS(§7Rj,1), Uij(f,ijl))—‘rdj,lu(.’I}) forx € UjﬂB(f,ijl).

Divide the both sides by(x) and take the supremum ovBy;, N B(, R;). Then (6.3)
yields
: R,_1—R;
< WA 4 Ay — Ag—— L T _
9 _exp( +A 8ARexp(2i/)\)) +dj-1,
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providedj is so large, say > jo, that

Ria—R; 60 —n’)exp(2/N)

ARexp(—27/X) 2 Aj?

Hence, forj > jo,

- : 6(n* —n*) exp(27/)
dj < djo—l + Z exp<2J+1 + A7 — AS 2 A]2 < 00.
J=Jo
Forj < jo we haved; < exp(2/"!') < exp(2/°*!). Hence we obtaisup, -, d; < oo.
Thus (6.2) follows. O

Lemma 6.2.Let¢ € 9D have a system of local reference poipts...,yy € DN
S(&, R) of order N with factorn for 0 < R < Re. If 2z € DN B(§,n*R) and
y€ DNS(E n3R), then

N N
Gr(z,y) < AR"> Gr(z,5:) Y Grly;,v), (6.4)
j=1

i=1
whereA depends only on, c;, Re and Ag.

Proof. Apply Lemma 5.3 toh(z) = Gr(x,y) withy € D N S(¢,n~3R). Then

N
Gr(z,y) < AY h(y;) forz e DNSEn’R).

j=1
Hence (6.2) yields
N N
Gr(z,y) < AR" 2 Z Gr(x,y;) Z h(y;) forz e DN B(£,m3R)
i=1 j=1

by the maximum principle. The lemma follows. O

For further arguments we need the following improvement of (6.4 § D N
S(¢,m°R)andy € DN S(&,n72R), then

N
Gr(z,y) < AR"*> " Gr(2,y:)Gr(yi,y) (6.5)

=1

whereA depends only on, ¢, Re andA,. Note that the cross ternisg (x, v;)Gr(y;, v)
(i # j) disappear from the right hand side of (6.4).

If N =1, then (6.5) is nothing but (6.4). W < 2, then Ancona’s ingenious trick
[6, Theoeme 7.3] gives (6.5) from (6.4). However, the proof is rather complicated and
we postpone the proof to the next section. The remaining arguments are rather easy
and hold for arbitraryV > 1, provided (6.5) holds. Let us show the weak boundary
Harnack principle defined by Ancona [6&Bnition 2.3].
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Lemma 6.3 (Weak Boundary Harnack Principld)et¢ € 9D have a system of local
reference pointg,...,yn € DN S(E, R) of order N with factorn for 0 < R < Re.
Moreover, suppos€s.5)holds. Lethg, ki, ..., hy € He. Then

N
ho(z) < AZ ZO((;/)) hi(z) forz € D\ B(€,n°R). (6.6)

whereA depends only on, ¢y, R and Ag.

Proof. In (6.5) we replace the roles of andy and writez for y. By dilation and
changingAs we obtain from the symmetry of the Green function that i D N
S(&,m°R) andz € DN S(&,7* R), then

N
Gr(r,z) < AR"? Z Gr(x,2)GRr(z,2),

=1
wherezy, ..., zx € DN S(€,m*2R) are local reference points. Moreover, for eagh
we find a local reference poipt ;) € DNS(&, R) such thakﬁR\{w7z}(Zi7yj(i)) < A.
In view of (5.1), we haveir(z, z;) =~ Gr(x,y;i)) andGr(zi,2) = Gr(Y;j@), 2),
wheneverr € DN S(¢,7°R) andz € DN S(¢,7*'R). Hence we obtain that if
z € DNSEn°R)andz € DN S(E,n* R), then

N
Gr(z,2) < AR Gr(z,4:)Gr(yi, 2)- (6.7)
i=1
Letr = n~3Randp = n?' R. Observe that the regularized reduced funcﬁﬁf(s(f’)us(&p))
with respect taDy, is a Green potential of measuresoncentrated o N .S(¢, r) and

vonDNS(&, p) such tha®k, >3 — by onDNB(E, )\ B(E, p). Itfollows
from (6.5) and (6.7) that far € D N S(¢,7°R),

mo@)= [ Grlewdu)+ [ Grle i)
DNS(&,r) DNS(&,p)

N
< ARy (/ Gr(x,y:))Gr(yi, y)du(y)
DNS(&,r)

i=1

+/ GR(x’yi)GR(yuZ)dV(z))
DNS(&,p)

N
= AR"* Y Gr(,y:)ho(ys)-

i=1

Lete = 1—7°. Observe from (6.1) and the Harnack inequality thay; ) " ~2Gr(x, y;)
~ hl(aﬁ) forx € Sv(yi,E(SD(yi)), and SOhi(yi)Rn_2GR($,yi) < Ahz(x) forz e

DN S n°R) C Dr\ B(yi,edp(y;)) by the maximum principle. Hence (6.6) fol-
lows forz € D\ B(&,7°R) by the maximum principle. O
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Proof of Proposition 2.3 (ii) forV < 2. Obviously (6.5) holds fo’V = 1. As we shall
show in the next section, (6.5) holds féf = 2. Hence Lemma 6.3 is applicable.
Varying R in Lemma 6.3, we obtain relationships among kernel functiorigr(cf.
Lemma 5.4), which yield Proposition 2.3. This procedure is the same as in Ancona [6,
Théoreng 2.5] and we omit the details. O

Remark6.1 We do not know whether the weak boundary Harnack principle holds for
N > 3. In special cases, such as a sectorial domain whose boundary |Esrays
leaving¢, we can apply the weak boundary Harnack principle repeatedly to subdomains
containing just one ray and conclude the weak boundary Harnack principle for the
sectorial domain itself (cf. Cranston and Salisbury [12, p. 36]).

7 Proof of (6.5)

In this section we shall prove the following:

Lemma 7.1.Let{ € 9D have a system of local reference poipisy: € DN S(&, R)
of order 2 with factorn for 0 < R < Re. If z € DN S(¢n°R) andy € DN
S(&,m~3R), then(6.5) holds.

In order to apply (5.1) to the Green function, we need the following elementary
lemma.

Lemma 7.2.Let) be a subdomain dk™ and letz € Q. Then

1
kov(zy (2, y) <7+ 3ka(z,y) foraz,y € Q\ Bz, §5D(Z))-

Proof. We first claim that
1
59(71}) < 35Q\{Z}(w) forw € Q \ B(Z, 5(59(2’))

Indeed, letw € Q\ B(z,27'dq(z)). Observe thaig 1.} (w) = min{do(w), |z —w]}.
If 00\ (23 (w) = da(w), then there is nothing to prove. Otherwisg, (.1 (w) = [z —
w| > 2715q(2), so that

da(w) < da(z) + [z — w| < 3\ (1 (w).

Now let v be an arbitrary rectifiable curve it connectingz to y. If v C Q\
B(z,2715(z)), then the claim shows that

ds(w) ds(w)
v O 23 (w) : 3/7 da(w)

Supposey\ B(z,2716q(2)) # 0. Letw; andw, be the first hit ofy to S(z,275q(2))
and the last hit, respectively. Observe thatandw, can be connected by the circle
1IN S(2,2716q(2)) whose length is at most2—1dq(z). Lety' = ~v(z,wy) Uy U
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~v(wa,y), wherey(z,w;) (resp. y(ws, y)) is the subcurve ofy connectingr and w,
(resp.ws andy). It follows from the above claim that

ds(w) < ds(w) +3/ ds(w) < 77—1—3/ ds(w).
v Oz} (w) v 12— wl (@ w1)Un (wa,y) 92(W) 5 a(w)
Taking the infimum with respect tg, we obtain the lemma. O

We employ Ancona’s trick [6, Teoreme 7.3]. Since our setting is slightly different
from Ancona’s, we provide a proof for the sake of the reader’s convenience.

Proof of Lemma 7.1Besides the local reference poigts y2 € DN S(§, R), we take
local reference pointg;, y5 € D N S(&,n%R) with

'R

+As forze DN B(,,n"R).
Sl e (&n"R)

min {kpap(e.em (@y7)} < A¢log

Then R
J.H:%I’E{kDR(yi ,Yj)} < Aglog m + Ae < Ag.

So, we may assume either

kDR (yik7y1) < A and kDR(yék’yl) < Aa (71)

or
kDR (yika yl) < A and kDR (y;, y2) < A7 (72)

by replacing the roles af; andys,, if necessary.

First consider the case when (7.1) holds. ket D N S(¢,7°R) and suppose
/S Dn S(f? 773R) Thenyiv y;v Y1 € DR \ (3(1.7 2_15DR (IE)) U B(y7 2_15DR(y)))'
By (7.1) and Lemma 7.2 we havig) .\ (1 (y;, y1) < Aandkp 13 (45, 1) < Afor
i =1,2. Hence (5.1) and (6.4) fa; andy; yield

Gr(z,y) < AR Gr(z,y))Gr(y},y) < AR" *Gr(z,11)Gr(y1,v).
i,
By the maximum principle the same inequality holdsf§or D \ B(¢,73R), and in
particular fory € D N S(&, 773 R). Hence the lemma follows in this case.

Next consider the case when (7.2) holds. Bet= {z € Dr : Gr(z,11) >
Gr(z,y2)}. Ifeitherz,y € ® orz,y € Dy \ @, then (6.5) follows from (6.4).
Let us consider the remaining cases. If necessary, exchanging the rojesantl
Y2, We may assume that € ® N S(¢,n°R) andy € (Dr \ ®) N S(&,n 3R). Let
E = ®\B(&,n?R) and consider the regularized reduced funcmﬁk(wy) with respect
to ER. This function is represented as the Green potential of a measimecentrated
ondE. Foramomentlet € E. Then we have from (6.4) fayf, y4 and the maximum
principle

Gr(z,2) < AR Grla,y!)Cr(y;. 2). (7.3)

.3

23



Itis easy to see from (7.2) thap .\ (-1 (v;, v:) < A, sothatGr(z,y;) < AGRr(x,y:)
fori = 1,2 by (5.1). We also havé&/r(y;,2) < AGRr(y;,2) for j = 1,2. In fact, if
6

1 _
z € By, Tnst(yj)): thenGr(y;. z) = |y; — 2|*7" = AR*™" > AGr(y;, 2);

> A
. ~ 1—n8 .
if 2 € Dr\ B(y;, TnéD(yj))7 then (7.2) givesip .\ -} (¥}, ;) < A, and hence
Gr(yj,2) = Gr(y;,2) by (5.1). Hence (7.3) becomes

GRr(z,2) < AR™ 2 ZGR(x,yi)GR(yj7z) < AR”_QGR(:C,yl)GR(yl,z)

2]
by the definition ofb. Therefore
RE,.) (@) < AR *Gr(e.) [ Grlin,2)du(2)
E

= ARn72GR($,yl)§gR(<,y) (y1) < AR"*Gr(z,91)Gr(y1,9).

(7.4)
Letv, = Gr(-y) — ﬁgR(.7y). Then
v, =0 g.e.0nE =&\ B(¢7n°R). (7.5)

By (6.4) we have
vy(2) < Gr(z,y) < AR"?Gr(2,y2)Gr(y2,y) forz e DNo® N B(,PR).
Observe that 7o
DNA@NBEn*R)) C (®\ B 1n*R)) U (DN N BEn3R)).
Hence (7.5), (7.6) and the maximum principle yield
vy < AR"?GR(,y2)Gr(y2,y) on® N B(E PPR).
This, together with (7.4), implies
Gr(z,y) < AR"*(Gr(z,y1)Gr(Y1,y) + Gr(z,42)Gr(Y2,)).

The proof is complete. O

8 Sharpness of Theorem 1.2

In this section we give two examples to demonstrate the sharpness of the Bpunds
sin~!(1/Ap) andp; < pg cos ;. Each example satisfies (1) in Section 1 and (1.2) with
p1 andéd, violating the bounds; and yet there are two minimal Martin boundary points
at the origin. For simplicity we let = 2, po = 1 andfy = sin™'(1/4,) with 4 > 1.
Write R3 = {(z1,22) € R? : 29 > 0} andR2 = {(z1,22) € R? : 25 < 0}. For
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z,w € R?2 with |z — w| = Ay we letV (z,w) = co({z} U B(w, 1)), where we recall
thatco({z} U B(w, 1)) is the interior of the convex hull ofz} U B(w, 1). Obviously,
B(w,1) C V(z,w) C B(w, Ap). Our domainsD in the following examples will be
given as unions of open balls of radiusandV (z, w) with suitablez andw. Hence (1)
will be satisfied. Let us recall

C(0) = U Ty, (0,) N B(0,2p1).
yeD
Te, (0,y)NB(0,2p1)CD

For both examples, we shall sha{0) = B(0,2p;) N"R?%, a connected set. Thus (1.2)
will hold.

Example8.1 The case whe#l; > 6y andp; > 0. We may assume théat< p; < 1.
Let z° = (0, 4p) and

D =V(0,2°U (B(O,AO +1)\ (B0, Ay — 1) N Ri)).

See Figure 8.1. Obviously, there are two minimal Martin boundary points at 0. Since
D =V(0,2)U (UzeEl Bz, 1)) with B, = S(0, Ag)U(B(0, Ap) N { (21, 2) € R? :

xy < —1}), it follows that D satisfies (1). It is easy to see that0,2p;) NR2 C C(0).

By an elementary geometrical observatiof, z°) C Ty, (0, 2°), so thatly, (0,y) N
B(0,2p1) is not included inl/ (0, 2°) for 6; > 6y. HenceC(0) = B(0,2p;) NR%, so

that (1.2) holds.

Figure 8.1: Example 8.16; > 6, and Figure 8.2: Example 8.20 < 6; < 6,
p1 > 0. andp; > cos 6.

Example8.2 The case whefl < #; < y andcosf; < p; < 1. Letz! = (0,1) and
we choose a point? € B(z',1) such that

V(z*,w*) NR% C B(0,2cos b)) (8.2)
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and0 ¢ V (22, w?), wherew? = (22,23 — Ap). Define

D =V(z%w?) UB(:4 1) U (B(o, 5)\ (B(0,3) N R‘i)).

See Figure 8.2. Sind® = V (22, w?)U (UZEEQ B(z, 1)) with B = {z'}US(0,4)U
(B(0,4) N {(w1,22) € R? : my < —1}), it follows that D satisfies (I). There are
two minimal Martin boundary points at 0 sinée¢ V' (22, w?). Itis easy to see that
B(0,2p1) NR2 C C(0). Observe thaly, (0,y) N B(0,2p;) consists of rays of length
2p; issuing from the origin; whildy, (0, 2*) N B(z!, 1) consists of rays of length in
betweer2 and2 cos 6; andB(z1, 1) \ Ty, (0, z!) consists of rays of length not greater
than2cosf;. Sincep; > cosf; > cosby, we infer from (8.1) that ify € Ri, then
Ty, (0,y) N B(0,2p1) cannot be included i. HenceC(0) = B(0,2p1) NR2, so that
(1.2) holds.
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