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Abstract

We investigate the boundary growth of positive superharmonic functiars
a bounded domaife in R", n > 3, satisfying the nonlinear elliptic inequality

0 < —Au < cdo(z)” “u? inQ,

wherec > 0, « > 0 andp > 0 are constants, anih(z) is the distance from:

to the boundary of2. The result is applied to show a Harnack inequality for such
superharmonic functions. Also, we study the existence of positive solutions, with
singularity on the boundary, of the nonlinear elliptic equation

—Au+Vu= f(z,u) inQ,

whereV and f are Borel measurable functions conditioned by the generalized
Kato class.

1 Introduction

The purpose of this paper is to investigate the boundary growth of positive superhar-
monic functions satisfying a certain nonlinear elliptic inequality. As applications, we
shall obtain a Harnack inequality for positive solutions of nonlinear elliptic equations
and an existence theorem for nontangential limits of certain Green potentials.

Let2 be adomain ilR™ and letd, (x) stand for the distance fromto the boundary
o0 of Q. A lower semicontinuous function :  — (—o0, +0c], whereu # +o0, is
calledsuperharmonion (2 if it satisfies the mean value inequality

1

v, r"

u(zx) > / u(y)dy, whenevel < r < dqo(x),
B(z,r)
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where B(z, r) denotes the open ball of centerand radius-, andv,, is the volume
of the unit ball. LetA be the Laplace operator ad™. It is well known that ifu is

a superharmonic function dn, then there exists a unique (Radon) meaguyen 2

such that

/ (@) (z) = — / w(@)Ad(z)dz forall € C2(Q),
Q Q

whereCg§°(9) is the collection of all infinitely differentiable functions vanishing out-
side a compact set ift (cf. [2, Section 4.3]). The measuge, is called theRiesz
measure associated with If ., is absolutely continuous with respect to the Lebesgue
measure andu, (z) = f,(x)dx, wheref, is a nonnegative locally integrable function
on Q, then we callf,, theRiesz function associated withfor convenience. It is clear
that f, = —Au whenu € C?(1Q).

The classical Littlewood theorem states that every Green potential on the unit ball
has radial limit0 almost everywhere on the boundary. However, the nontangential
and tangential limits do not necessarily exist. To avoid this, many authors have im-
posed weighted integrability conditions on the density functions of Green potentials
(cf. [3, 8, 21] and references therein). Such results were concerned with the bound-
ary behavior of solutions of the Poisson equation, but are not applicable to positive
solutions of stationary Scdinger equations or nonlinear elliptic equations. For this
reason, we study the boundary behavior of positive superharmonic funetsatisfy-
ing the nonlinear inequality

0 < fu < cdo(x)"*uP almost everywhere of, (1.2)

where f,, is the Riesz function associated withandc > 0, « > 0 andp > 0 are
constants.
First of all, we note from the Poisson integral representation that every positive
harmonic functior, on the unit ballB of R™ satisfies
h(0)
2n
As seen in Lemma 3.1 below, the lower estimate is extendable to any positive super-
harmonic function. However, the upper estimate does not necessarily hold even for
positive superharmonic functions satisfying (1.1). Our main purpose is to determine
the critical numbep* such that every positive superharmonic function satisfying (1.1)
with p < p* is bounded by a constant multiple &% (z)!~". By the symbolA4, we
denote an absolute positive constant whose value is unimportant and may change from
line to line. In what follows, we suppose th@tis a bounded”!'-domain inRR",
n > 3.

Theorem 1.1. Letc > 0. Suppose thal < p < (n+1)/(n —1) and0 < o <
n+1—p(n—1). Letu be a positive superharmonic function @rhaving an associated
Riesz functiory,, which satisfieg1.1). Then there exists a constastdepending only
onu, ¢, a, p and2 such that

u(z) < Adg(z)'™™ forz € Q. (1.2)

Sp(z) < h(x) < 2h(0)dp(x)'™" forz € B.

Furthermoreu € C1(Q).



As applications of Theorem 1.1, we have a Harnack inequality and an existence
theorem for nontangential limits of Green potentials satisfying (1.1).

Corollary 1.2. Letc > 0. Suppose thad < p < (n+1)/(n —1)and0 < o <
min{n+1—p(n—1),1+p}. Letu be a positive superharmonic function 8rhaving
an associated Riesz functigi) which satisfie€1.1). Then there exists a constant
depending only onm, ¢, «, p and2 such that

sup u < A inf u, 1.3
B(z,r) B(z,r) ( )

wheneveB(z, 8r) C .

For¢ € 09 andf > 0, we define
Ty(€) = {IE eQ:|lz—-¢& < (1 +9)5Q(:v)}.

Corollary 1.3. Letec > 0. Suppose thal < p < (n+1)/(n — 1) and0 < a <
min{n+1—p(n—1),1+p}. Letu be a positive superharmonic function @rhaving
an associated Riesz functigp which satisfie¢1.1). If the greatest harmonic minorant
of u is the zero function, then for eaéh> 0,

lim wu(z)=0 fora.e.£ e Q.
To()oz—¢

Remarkl.4. Actually, Corollary 1.2 is valid for arbitrary domains. Therefore Corollary
1.3 can be extended easily to Lipschitz and NTA domains. See proofs of them.

Note again that these results are applicable to positive solutien&'?(2) of
0 < —Au < cdg(z)"“u? inQ. 1.4

The following theorem shows that the boumel (n+1)/(n — 1) is sharp in Theorem
1.1.

Theorem 1.5. Let¢ € 092 andce > 0. Suppose that and « satisfy either
@) p>(n+1)/(n—1)anda > 0, or
(i) 0<p<(n+1)/(n—1)anda>n+1—p(n—1).

Then, for eaclp satisfying

24+ a(n—2)
n-1<pg<{@=—mptn n—2 (1.5)
00 iprL,
n—2

there exists a positive solutianc C2(Q) of (1.4) such that

limsup &g (z)u(z) >0 (1.6)
To(§)3z—¢

for anyé > 0. In particular, v does not satisf¢l.2).



Remarkl.6. Fromp > (n+1)/(n — 1) ora > n+ 1 — p(n — 1), we observe that
n—1<(2+a(n—2))/((2—-n)p+n). Thus we can takg satisfying (1.5).

Two positive functionsf andg are said to be comparable if there exists a constant
A such thatA='f < g < Af. Then we writef ~ ¢ and call A the constant of
comparison. Obviously, the Poisson kernel gives the sharpness of (1.2). The following
theorem is interesting itself and shows that the growth rate in (1.2) is sharp for positive
solutions of nonlinear elliptic equations as well.

Theorem 1.7. Let¢ € 02 andc > 0 (assumed to be small enough whes 1 only).
Supposethdl < p < (n+1)/(n—1)and0 < o < min{n+1—-p(n—1),1+p}. If g
is a locally Holder continuous function oft such thatlg(z)| < cdq(xz)~ = for z € Q,
then there exist infinitely many positive solutieans C?(Q) of

—Au =guP inQ 1.7)
such that 5o (2)
ol
u(x forz € Q. (1.8)
D g

In contrast to Theorem 1.7, there are many results concerning the existence and
nonexistence of positive solutions of the Lane-Emden equatitn = u?:

e the critical number for the homogeneous Dirichlet problertvist+ 2)/(n — 2)
(e.g. [20)),

e the critical number for the existence of positive solutions comparabjle|to™
near the origin i1/ (n — 2) (cf. [13, 16, 22] and references therein).

Theorems 1.7 and 6.1 below assert tfrat- 1) /(n — 1) is the critical number for the
existence of positive solutions comparable to the Poisson or Martin kernel.

The plan of this paper is as follows. In Section 2, we shall prove Theorem 1.1
after showing some elementary lemmas. Corollaries 1.2 and 1.3 will be shown in
Section 3. Section 4 includes the proof of Theorem 1.5. In Section 5, we introduce a
generalized Kato class and discuss the existence of positive solutions of the nonlinear
elliptic equation—Awu + Vu = f(x,u) rather than (1.7). As a special case of this, we
shall obtain Theorem 1.7 in Section 6. Also, we shall give a remark concerning the
sharpness gf < (n +1)/(n — 1) in Theorem 1.7.

2 Proof of Theorem 1.1

Let G(-,y) denote the Green function 6f with pole aty € (2, i.e. the distributional
solution of

-AG(hy) =46, inQ,

G(,y)=0 on o,
whereJ, is the Dirac measure gt Let{ € 9Q andxy € Q. Itis known from [12]

that the Martin boundary of a boundéd!-domain() coincides with the Euclidean
boundary, and therefore the raii®(-, y)/G(xo,y) converges to a positive harmonic



function on{2 asy — £. The limit function, writtenk (-, ), is called theMartin kernel
of Q with pole at¢. The following estimate for the Green function is well known (cf.
[5, 23]), and yields an estimate for the Martin kernel after elementary calculations.

Lemma 2.1. For z,y € Q and¢ € 012,

G(z,y) %min{l,W}u—yF", (2.1)
K(z,8) ~ m, (2.2)

where the constants of comparison depend onl§2on

In what follows, letu be a positive superharmonic function rhaving an asso-
ciated Riesz functiorf, which satisfies (1.1). Then the Riesz decomposition theorem
(cf. [2, Theorem 4.4.1]) yields that

u(x) = h(x) + /Q G(z,y) fu(y)dy forz e Q, (2.3)

whereh is the greatest harmonic minorantwobn 2. Note thath is nonnegative.

Lemma 2.2. If h is a nonnegative harmonic function 6y then there exists a constant
A depending only o and2 such that

h(x) < Adg(x)'™" forx € Q.

Proof. By the Martin representation theorem and (2.2), we have
h(z) = | K(z,y)dv(y) < Ada(z)' v (0Q),
o0

wherev is the measure ofi2 associated with. O

Lemma 2.3. There exists a constart depending only om and {2 such that

/S 2 da(y) fu(y)dy < A.

Proof. Let zy € Q be fixed, whereu(zy) < co. Then we observe from (2.1) that
G(wo,y) > A 'oq(y) for y € Q. Hence (2.3) implies thaf,, 6o (y) fu(y)dy <

Lemma 2.4. For eachj € N, there exists a constan} > 0 depending only o, u
andQ) such that forz € Q andz € B(z,dq(z)/27 1),

u(x) < cjéa(z)' " +/ _ %dy.
B(z,60(2)/27) |z — y|



Proof. Letz € Q andx € B(z,6q(z)/27"1). By (2.1), we have

do(z)da(y)
|z —y|"

G(z,y) < A < A2M5o(2) " "oq(y) fory € Q\ B(z,0q(2)/27).

Sincef, > 0, it follows from Lemma 2.3 that

/ Gz, y) fuly)dy < A2bo(z)' ",
Q\B(z,0a(z)/27)

and therefore

[ Gennway < aisa(ey—+ [ L),
Q

—5ay.
B(z,0a()/27) [T —y|" 2
This, together with (2.3) and Lemma 2.2, implies the required estimate. O

Proof of Theorem 1.1Let z € Q andj € N. By Lemma 2.3, we have

5al2) / Fuly)dy < A,
B(z,00(2)/2)

where A depends only o andQ2. Letr = dq(z). Making the change of variables
x = z+rnandy = z + r¢ and lettingy. (¢) = r"*1 f,(z + r¢), we have

[ o= a 2.4)
B(0,1/2)
and by Lemma 2.4,
" ru(z +) < ¢ +/ %dc forne B(0,27UtY).  (2.5)
B(0,2-5) |m—¢|"™

Supposethat < p < (n+1)/(n—1)and0 < a <n+1-—p(n—1),and let

ntl _ n [bywm—ln

TR I log(q/p)

1 and = i+
J <1 e

DefineV, ; : B(0,1) — [0, 4+00] by

() — ()
ey () = co /B(o,Qa‘) ln —¢|n=2 d.

To show (1.2), it is enough to prove th&t ,41(0) is bounded by a constant indepen-
dent ofz sincer™tu(z) < ¥, 441(0) by (2.5). We claim that for. > 1 there exists a
constant4d depending only om, cg, p, ¢, k andQ such that forl < j </,

19572 | La(Bo.2-G+vy) < A+ AlYEl L1 (B0,2-9))- (2.6)



Indeed, by the Jensen inequality for the probability measure|>~"d(/ JB0.2-3y In—
¢]*7™d¢ on B(0,277),

() )“ ¥=(Q)"
=k 4 T dC B(0,1),
(j;mg—nn—-d"—Q ‘) = B0 1 — ("2 ¢ forne B(0,1)

whereA depends only or andn. This gives that

Y. (¢)"
BRIV
/B(o,za') |- —¢|n—2 ‘

By the Minkowski inequality and(n — 2) < n,

%(C)K ( dT] >1/q .
‘ /B ‘ La(B(0,2-7)) /B(O,zj) /B(O,Qj) In — ¢|an=2) Y. (¢)"d¢

©,2-4) | - —=¢"™2
< AllYZ L (Bo,2-9))-
Therefore

19E il zaBo2-1) < A+ A‘

Lq(B(OQ*j)).

H‘Ijzj||Lq(B(<L2*f)) <A+ A||7/’§HL1(B(0,273'))-
Sincedq(z + rn) > r/2 for n € B(0,1/2), it follows from (1.1), (2.5),0 < p <
(n+1—a)/(n — 1) and the boundedness Qfthat
Vo(n) =" fu(z 4+ rp) < e (z 4+ rn) " u(z + )P
< AU, ;(n)P forae.n e B(0,270TD).
Therefore
”wzﬁ/pHL“(B(O)Q‘“’*”)) < A+ Al[YZ] L (Bo,2-9))

and so (2.6) holds.
Lets = g/p > 1. Then (2.6) implies that

q
/ %WYWH§A+A(/ %WVWO for1 <j<¢.
B(0,2-G+1) B(0,2-7)

We use thig times to obtain

RNV RN
( / b (n)® dn) <A+ A( / . (n)* dn)
B(0,2—(¢+1)) B(0,27%)
< 2.7)

q'/s*
§A+A(/ wz(n)dn) .
B(O,1/2)

Our choice off implies thats’ > ¢q/(¢ — 1), equivalent tos* < (s’ — 1)q. Therefore

st

ﬁ(n—Q)gq(n—2)<n.



Hence the WIder inequality, (2.7) and (2.4) give that

1/s
uﬂﬂmsA+A(/ wmﬁ%@ <A
B

(0,2—(£+1))

whereA is independent of. Hence we obtain (1.2).
Moreover, (1.1) and (1.2) imply the local boundednesg gfwhich by [18, Theo-
rem 6.6] impliesu € C1(£2). This completes the proof of Theorem 1.1. O

3 Proofs of Corollaries 1.2 and 1.3

We have the following lower estimate for positive superharmonic functiorf3.on

Lemma 3.1. Let u be a positive superharmonic function én Then there exists a
constantA depending only om and such that

u(x) > %59(:17) for z € Q. (3.1)

Proof. Let i, be the Riesz measure associated withBy the Riesz decomposition
theorem, we have

u(a) = h(a) + [ Gla)dua(o).
whereh is a nonnegative harmonic function éh If p,(2) = 0, thenu = h. The
Martin representation theorem and (2.2) yields that

u(x) = o K(z,y)dv(y) > 69/(130)

v(09),

and so (3.1) holds in this case.df,(2) > 0, then we find-y > 0 such thaj,,(E) > 0,
whereE = {x € Q: dq(x) > ro}. It follows from (2.1) that

u(z) > /E Gz, y)dpuu(y) > 59;{”),@@) Wheneverég(:v)<%0.

Also, the lower semicontinuity of yields thatu has a positive minimum ofw € € :
da(x) > ro/2}. Hence (3.1) follows. O

The following Harnack inequality for stationary Séldinger equations is found in
[9, Theorem 8.20].

Lemma 3.2. Letr > 0 be a constant and gt be a measurable function on a domain
D such thafp| < 2. If u € WH2(D) is a nonnegative weak solution &fu + pu = 0
in D, then there exists a constaAtdepending only on the dimensiarsuch that

sup u < AV inf
B(z,r) B(z,r)

wheneveB(z,4r) C D.



Proof of Corollary 1.2.Let B(y,8r) C Q and letD = B(y,4r). By Theorem 1.1,
we haveu € C1(Q) ¢ WH2(D). Letp(z) = f.(x)/u(x). Then it follows from the
definition of f,, that for¢ € C5°(D),

/D pugdz = /D fupdz = — /D uApdr = /D Vu - Védz.

Thereforeu is a weak solution oAAu + pu = 0in D. Also, we observe from (1.1) and
(1.2)thatifl <p < (n+1—a)/(n— 1), then

0 < p(z) < cdg(z) “u(z)P*
< Adp(y s (2) 0T < ASp g (2) 72 < Ar? forz € D.

If 0 <p<1,thend < a <1+ p, sothat we have by Lemma 3.1
0 < p(z) < cdo(z) *u(z)P~' < Adp(ysr)(z) *TP" 1 < Ar~? forz € D.
Hence (1.3) follows from Lemma 3.2. O

Proof of Corollary 1.3.Let u satisfy the assumption in Corollary 1.3. Theris the
Green potential of the density,. By [15, Theoeme 21] (cf. [2, Corollary 9.3.8]),
we see that, has minimal fine limit0 at{ € 0Q \ E, where the surface measure of
E'is zero. Let{z;} be arbitrary sequence iry(¢) converging tct. Since the bubble
setlJ; B(z;,da(x;)/8) is not minimally thin at{ (cf. [12, Lemma 5.3]), we find a
sequencey; € B(xj,da(x;)/8) converging taf such thatu(y;) — 0 asj — oo. By
Corollary 1.2,

0 < u(z;) < Au(y;) — 0.

Thus Corollary 1.3 is proved. O

4 Proof of Theorem 1.5

Proof of Theorem 1.5Let 3 be as in (1.5) and let

7:% and \=a+ fp. (4.1)

Then we observe that > 1 and
A<yn+ 1. 4.2)

Since () is a C!:'-domain, there exists a balb(z, p) such thatB(z,p) c Q and
¢ € 0B(z,p). Without loss of generality, we may assume thas the origin,z =
(10,0,...,0) andp = 10. Forj € N, letxz; = (2793,0,...,0) andr; = 2777, Note
thatB(z;,8r;) C QandB(x;,2r;) N B(xy,2r,) = 0 if j # k. Let A; be a constant
determined in the sequel and Igtbe a nonnegative smooth function @nsuch that
fj < A12)\j and

f' - A12/\j OnB(l'j,’f’j),
T 0 OnQ\B(.’L'j72’I“j).



Definef = 3772, f;. Then, by (4.2),

/Q Sa(y)f(y)dy = /B Sa(y)fi(y)dy

j=1 (x,275)
< Ay, 2ntt Z2j(71+/\77”) < 0.
j=1
Thusu := [, G(-,y)f(y)dy is well defined orf2. Sincef is locally Holder continuous
on €, it follows from [18, Theorem 6.6] that € C2() is a positive solution of

—Au = fin Q. Also, we observe from the mean value property and (2.1) that for
x € 0B(xj,2r;),

u(z) > / G(z,y)fi(y)dy = A12)‘junr;7G(x,xj) > 21(A=27),
B(xzj,rj) AL AQ
where A, is a constant depending only éhsuch thatG(z, z;) > Ay |z — ;>
Let A3 = (A1) /(272 A,). By the minimum principle,
u(m) > A32j()\_27) forx € B(.’IJ], QTJ) (43)
Hence it follows from (4.1) andq (z;) = 27713 that
'LL((E]) Z A32j(/\_27) = A52Jﬁ = A3236(59(.’L']’)_ﬁ,

and sou satisfies (1.6).
We finally show that-Au < cdo(x) " *u? on €. If z ¢ (J; B(z;, 2r;), then

cda(z) “u(z)? > 0= f(x) = —Au(z).
Letx € B(xj,2r;). Then, by (4.3) and (4.1),
O () " u(z)P > 271 AR (aFPA=2)) — cg—da gPoiX, (4.4)

Note that ifp # 1, then we can také; (large enough ip > 1; small enough ip < 1)
such that
27 AL > AL (4.5)

Hence we obtain
cda(x) %u(z)? > A12M > f(z) = —Au(z).

If p = 1, then the above inequality holds for> 24@*"=2 4, /u,,. For the case <
24atn=2 A, /v,,, see Remark 4.1 below. The proof of Theorem 1.5 is completel]

Remark4.1 Whenp = 1, we assumed thatis sufficiently largec > 24@t"=24, /u,,.
This assumption can be removed by modifying the above proof. Indeed, we need to
replace (4.1) by

_a+p(p-1)

5
= I n — _
5 5 and M=o+ 0p—c¢,

10



wheree > 0 is sufficiently small so that > 1 and (4.2) hold, and redefingby the
partial sumZ;?ijO f;, wherejy is sufficiently large so that

—4
c27*y,,
27L—2A2

2Jo€ > 1,

Then, sincex + p(A — 2v) = a+ pS = A + ¢, we can replace (4.4) by

Alyn

cda(e) u(e)’ > 2740 42009 = oo

23 (A+e) > 141247'/\7
2

wheneverj > jg.

5 The existence of positive solutions with singularity on
o

In this section, we consider the existence of positive solutions, with singulagtyat
011, of the nonlinear elliptic equation

{—Au +Vu=f(z,u) inQ, 5.0)

u=0 ondN\ {¢},

whereV and f are Borel measurable functions satisfying some appropriate conditions,
and the equatior-Au + Vu = f(x, u) is understood in the sense of distributions. We
introduce a new class of Borel measurable functions. Let

Gz, y)K(y,§)
K(z,§)

We say that a Borel measurable functipmn € belongs tahe generalized Kato class
K¢ (€2) associated witlg if

He(z,y) = forz,y € Q.

lin%<sup/ Hg(x,y)lw(y)ldy> =0, (5.2)
=Y \zeQ JonB(z,r)
n%(wp/ Hamwwwwm)zo (5.3)
=Y \zeQ JonNB(E,r)

Note that the classical Kato clas§((?) is the set of all Borel measurable functiops
on () satisfying

lim (sup/ W)'Qdy) =0

r—=0\zeq QNB(z,r) |‘L*y|n
for eachz € R™. In view of [7, Theorem 3.1], we see th&t(Q2) C K¢ (). Define

Il = sup [ Helz,)lotw)ldy.
z€Q JQ

We impose the following conditions dri and f:

11



(A1) V € Ke(Q) and ||V o) < 1/2,

(A2) fisaBorel measurable function éhx (0, co) such thatf(z, t) is continuous
with respect ta for eachx € (2,

(A3) |f(z,t)] < ty(z,t), wherey is a nonnegative Borel measurable function on
Q2 x (0, 00) such that for each € €, ¥(z, t) is nondecreasing with respect to
t andy(z,t) — 0 ast — 0,
(A4) (z,d0(x)/|x — &™) € Ke(€).
Theorem 5.1. Let ¢ € 9. Suppose that” and f are Borel measurable functions
satisfying(A1l)—(A4). Then(5.1) has infinitely many positive solutions € C(2)
such that o (2)
Q\T
ulr) ~
O~ e

forx € Q. (5.4)

We shall see that Theorem 1.7 is a special case of Theorem 8.k ib < (n +
1)/(n —1). For the cas@ < p < 1, we need to replace (A3) by

(A3) |f(z,t)| < ty(x,t), wherey is a nonnegative Borel measurable function on
Q2 x (0, 00) such that for each € €, ¥(z, t) is nonincreasing with respect to
t andy(z,t) — 0 ast — cc.

Theorem 5.2. Let ¢ € 9Q. Suppose that” and f are Borel measurable functions
satisfying(Al), (A2), (A3’) and(A4). Then(5.1)has infinitely many positive solutions
u € C(Q) satisfying(5.4).

Remarlb.3. If ICc(Q) is replaced by the classical Kato clds$(?), then Theorems 5.1
and 5.2 do not cover Theorem 1.7. So we need to consider the generalized Kato class.

Theorems 5.1 and 5.2 will be proved by using some properties of functions in the
generalized Kato class and the Schauder fixed point theorem. Note that we do not
use 3G inequalities (cf. [1, 7, 10, 19]), which were applied widely to the studies of
stationary Sclirdinger equations and nonlinear elliptic equations (cf. [4, 6, 11, 14, 17,
22] and references therein). We start with lower and upper estimatés: for

Lemma5.4. Letr > 0 and{ € 99Q2. Then, forlx — y| < r < |z — &|/2,

A
K(ya 5)2 < ﬁHﬁ(xv y)’
where A depends only of2.

Proof. Itis enough to show that fdr — y| < r < |z — £|/2,
,’,,TL
Let us assume first thét — y| < dq(x)/2. Then, by (2.1),
1 1
> 2N > 2—n.
Glay) 2 gl —yP " 2 v

12



Also, sincedq(y) < 20q(z) < 2|z — & and|x — &| < 2|y — ¢|, it follows from (2.2)
that

da(r)daly) Alz — £[20-m) < 4y20-m),
|z — &My =&~ -
Hence (5.5) holds in this case.|if — y| > dq(x)/2, then we have by (2.1) and (2.2)

1 552(1’)59(3/) rh )
G(x,y) > ZW > ZK(Ivg)K(yvg)a

K(z,)K(y,§) < A

sincely — | > r. Thus the lemma is proved. O

Lemma 5.5. Letr > 0 and¢ € 9Q. Then, forjz — y| > 7,

A
Hﬁ(l‘, y) S TTK(y7 5)27
where A depends only of.
Proof. By (2.1) and (2.2), we have

da(r)daly) _ A
G X, =~ A = —K Z, K IAVAL
(e,y) < AZ 2N < DR @ OK(:6)
sincef? is bounded. Thus the lemma follows. O

Obviously, if ¢ € K¢(£2), then (5.2) and (5.3) imply that for sufficiently small
0 >0,

swp [ Her el <
2€Q JONB(2,5)

sup/ He(z,y)|e(y)ldy < e.
z€Q JONB(E,5)

(5.6)

Lemma 5.6. If ¢ € K¢(£2), then for each > 0,

[ Kl < o
Q\B(&,r)

Moreover,|| ¢l (o) < oo.

Proof. Let0 < 6 < r/2 be small and let us covél \ B(&,r) by finitely many balls
B(z,,9), wherez; € Q\ B(¢,r). By Lemma 5.4 and (5.6), we obtain

A
K. &Plewldy < 5 3 [
Loy, K@it 237 [

Also, this and Lemma 5.5 give

5 He(zj,y)|e(y)ldy < oo.

Zj,

sup

/ He(x, y)|p(y)|dy < oo.
z€Q JO\(B(z,6)UB(E,9))

Combining this and (5.6), we obtajip||i, o) < oc. O
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Lemma5.7. If p € K¢(92), then for eachr € Q,

lim (sup/ Hg(m,y)lw(y)dy) =0.
=YV \zeQ JONB(z,r)

Proof. Letx € Q andr > 0. Then, by (5.6) and Lemma 5.5,

| el | He(, 9)lo(y)|dy
QNB(z,r) QNB(z,r)\(B(z,0)UB(£,5))

A
<%+ K(y,8)e(y)|dy.

" /QmB(z,r)\B(g,a)
In view of Lemma 5.6, we obtain the required property. O

The proofs of Theorems 5.1 and 5.2 are similar to each other. We give the proof
only for Theorem 5.1. Fok > 0, we let

2(1 - 2||V||IC§(Q)) 4 )\}

A<w<

W)\:{MGC(Q)I <w< ——
3 =2[[Vllke (o 3=2[[Vlke

and define the operat@s, on W, by
Yr)\w(x) =A- / H(.’E,y,U})dy,
Q

where

G(z,y)
K(z,£)

=Hamwmw(ww—

H(z,y,w) =

(V) w(y)K(y,€) — fly, wy)K(y,£)))

[y, w(y)K(y, 5)))
wy)K(y,§) )

For simplicity, we writep(y) = |V (y)| +¢(y, da(y) /|y —&|™). Let A4 be the constant
of comparison appearing in (2.2). Then it follows from (Al), (A3), (A4) and (2.2) that
p € K¢(Q2) and that forw € Wy,

4\ Asda(y) >

)] < B t) (V0] + 000, g2
(3

N (5.7)

< oo He(z,9)e(y),
3 =2[[Vllke ¢

whenevel < A < (3 —2[Vk,(a))/(444).
Remarls.8. If f satisfies (A3’) instead of (A3), then

4N

H(z,y,w)| < s
3 =2Vl

He(z,y)e(y),
wheneven > A4(3 — 2||[Vk. )/ (2 — 4|V Ik (@)
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LetT,\(W,\) = {T,\w TwE W,\}
Lemma 5.9. 7, (W,) is equicontinuous of. Moreover,7,w(z) — A asz — &.

Proof. Letz € Q\ {¢} and letzy, 2 € QN B(z,/2), whered < § < |z —&|/2. If
d > 0 is sufficiently small, then we have by (5.7) and Lemma 5.7

|Thw(z1) — Thw(zz)|
- K(y,&)e(y)dy.

<e +A/
O\(B(=0uBE) | K(T1,§)  K(x2,§)

Note that ify € Q\ B(z,0), thenG(x,y)/K(z,§) has a finite limit asc — = (cf.
[2, Theorem 8.8.6]). Since the integrand in (5.8) is bounded by a constant multiple
of K(y,&)%p(y) in view of Lemma 5.5, it follows from Lemma 5.6 and the Lebesgue
convergence theorem that the second term of the right hand side in (5.8) tends to zero
as|z; — xo| — 0. ThusT,w is continuous at uniformly for w € W,.

Next, letz = £. Then, by (5.7) and Lemma 5.7,

G(x1,y) G(x2,y) (5.8)

| Tw(z) — Al < e+ A/ He(z,y)p(y)dy.
O\B(£,0)

By the same reasoning as above, the second term of the right hand side tends to zero as
x — £ ThusTyw(z) — A uniformly forw € Wy asz — &. O

Lemma 5.10. There exists a constant > 0 such thatifd < A < Ao, thenZ, (W) C
Wy. Moreover,7, (W) is relatively compact irC' ().

Proof. Letw € W). Forn > 0, we define
¥ (o) = [ el (oK (. 6)dy.

As in the proof of Lemma 5.9, we see thaf, € C(Q) for sufficiently smally. More-
over, (A3) implies that for each € Q, ¥, (z) — 0 decreasingly ag — 0. By the

Dini theorem,
lim (sup ‘I/n(m)) =0.
n—0 T€EQ

Therefore there exists a constaigt>> 0 such that fol) < \ < Ay,

1 —2||V||x, ()
SUP ¥ (42)/(3-2|[V 1 0) () S ———
e
Here we note from (A1) that the right hand side is positive. Hence
T A< v
[Thw(@) = Al < m(ll‘/llwm + W0/ B2V llxg ) ()
L+ 2|V, (o)
3 -2[Vlke

This and7yw € C(Q) imply that7,(W,) C W,. The relative compactness follows
from Lemma 5.9 and the Ascoli-Arzetheorem. O

15



Remark5.11 If f satisfies (A3’) instead of (A3), then the first statement of Lemma
5.10 is replaced by that there exists a constant> 0 such that ifA > A, then
T(Wy) C W.

Lemmab5.12.If 0 < X < Ag, then7,, is continuous oV/y.

Proof. If w; € W) converges tav € W, uniformly on§?, then we observe from (A2)
that7,w; converges pointwisely t@,w. The relative compactness df (W, ) implies
the uniform convergence. O

Proof of Theorem 5.1Note thatl) is a nonempty bounded closed convex subset of
C(2). Since7, is a continuous mapping frof¥, into itself such thatZ, (W) is
relatively compact irC(Q2), it follows from the Schauder fixed point theorem (cf. [9])
that there isv € W), such thatl,w = w. Letu(x) = w(z)K(z,£). Thenu € C(Q)
satisfies (5.4) in view of (2.2) and

u(x) =AK(%S)—/QG(%y)V(yW(y)dy+/QG(w,y)f(y,U(y>)dy-

Therefore, using the Fubini theorem, we see that

[ u@ods = [ (Vi) ~ . u) oy for o e (@),
and sou is a distributional solution of (5.1). Moreover, we see from Lemma 5.9 that

) u(z) B
M R, g e )=

Thus the proof of Theorem 5.1 is complete. O

6 Proof of Theorem 1.7

In this section, we prove Theorem 1.7 by applying Theorem 5.1 or 5.2.
Proof of Theorem 1.7We first show that
b Pt
oat) ™ (20) e Kelo, 6.)
ly ¢
Suppose first thai > 1. Letz € Q andr > 0. Put

E, =QnB(z,r)N B(x,dq(x)/2),
Ey = (2N B(z,7) \ B(z,da(x)/2)
E3 = (2N B(z,7)\ B(z,da(x)/2)

)\ B |z —€/2),
) NB(E, |z —€/2).

p—1
e(y) = daly)™® (JQ(‘ZT,L) :

Let

16



By (2.1) and (2.2),

L oy |z —¢"
A
e o o iy
A

— |l‘ _ ylnp+a—1—p

fory € Fy,

and

He(z,y)o(y) < A (y)1+p_aﬂ

[z —yl" ly — &l

A
W fOI’y S EQ,

- A
fory € Es.

jy— e

Note thatF; # () implies thatE; C B(&,r). Hence we see that satisfies (5.2). Also,
(5.3) is shown by using (5.2). Indeed, for sufficiently snaait 0,

/ He(z,y)p(y)dy < e +/ He(z,y)p(y)dy
QNB(E,r) QNB(&,7)\B(z,5)
<e4 A@/ |y — £|1+Pmamrgy
o B(&,r)

A
S e+ ﬁrn—i-l—i-p—a—np.

Hence (6.1) holds in this case.
Suppose next that < 1. Observe from (2.1) and (2.2) that

|z — ¢
He(z,y)e(y) < AW fory € By,
and )
— n(l—p
A||xé’;l|+(x—l—p f0r Yy S EQ,
He(wy)py) < 77 :
A———————— fory e Ej.

jy— g

The same reasoning as above yields (6.1).

Now, let us apply Theorem 5.1 or 5.2.
Case 1:p # 1. SinceV = 0 and f(z,t) = g(z)t? fulfill (AL), (A2), (A4) and either
(A3) or (A3), it follows that (1.7) has infinitely many (distributional) positive solutions
u € C(Q) satisfying (1.8). The local boundednessiaind (1.7) yield that. € C*(£2)
(cf. [18, Theorem 6.6]). Sinceu? is locally Holder continuous oif2, we conclude
thatu € C?(Q) and—Au = gu? in Q.
Case 2:p = 1. Sincep € K¢(Q), it follows from Lemma 5.6 thafjy||x, (o) < oc.
Therefore if0 < ¢ < 1/(2[|¢llk, (o)), then||gllk. ) < 1/2. Applying Theorem 5.1
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with V' = g and f = 0 and repeating the same argument as above, we conclude that
—Au = gu has infinitely many positive solutionse C?(2) satisfying (1.8).
This completes the proof of Theorem 1.7. O

We finally note that the conditiop < (n + 1)/(n — 1) in Theorem 1.7 is sharp.

Theorem 6.1. Let¢ € 99 andc > 0. Suppose thgt > 1 anda > n+1—p(n —1).
Then
—Au = cdgo(z)"*u? InQ (6.2)

has no positive solutions satisfyift 8).

Proof of Theorem 6.1Suppose to the contrary that there exists a positive solutimn
(6.2) satisfying (1.8). Then it follows from (2.3), (2.1) and (1.8) thatifaF (2,

ulz) > / G, y)(~ Au(y))dy
Q\B(z,0a(x)/2)

p
> 2 Waﬂ(w_a( 5Q<y>n> g

AJa\B@sa@y2) 1T =Yl ly —¢]

1597(93)/ .
~ A (diam Q)" Jr, (e)\B(a50(2)/2) |y — E[MPTOPT

Sincenp + o — p — 1 > n, we conclude that = oo which is a contradiction. [

dy.
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