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Abstract

We introduce new classes of domains, i.e., semi-uniform domains and inner
semi-uniform domains. Both of them are intermediate between the class of John
domains and the class of uniform domains. Under the capacity density condition,
we show that the harmonic measure of a John dombsatisfies certain doubling
conditions if and only ifD is a semi-uniform domain or an inner semi-uniform
domain.
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1 Introduction

Let D be a bounded domain R™ with n > 2, §p(x) = dist(x, 0D) andzy € D. Let
us recall some nonsmooth domains. By the symbolve denote an absolute positive
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constant whose value is unimportant and may change from line to line. If necessary,
we usedy, Ay, . . ., to specify them. We shall say that two positive functignand f>
are comparable, writtefy = f5, if and only if there exists a constadt> 1 such that
A7l < fy < Afi. The constant will be called the constant of comparison. We
write B(z, R) and S(z, R) for the open ball and the sphere of centerand radius
R, respectively.

We say thatD is aJohn domairwith John constant; > 0 and John centet, € D
if eachx € D can be joined ta:y by a rectifiable curvey C D such that

op(y) = csl(v(z,y)) forally €7, (1.1

where~(x,y) and ¢(v(x,y)) stand for the subarc of connectingz andy and its
length, respectively. In generdl,< c¢; < 1. We say thatD is auniform domainif
there exists a constadt > 1 such that each pair of poinisy € D can be joined by a
rectifiable curvey C D such tha?(vy) < A|z — y| and

min{l(v(x, 2)), (v(z,9))} < Adp(z) forall z € ~. (1.2)

We call this curvey a cigar curveconnectingr andy. See [11, 12, 15]. If the com-
plement of a uniform domai satisfies the corkscrew condition, thenbecomes an
NTA domain([13]). Observe that connectivity of a uniform domain can be extended
fromz,y € Dtox,y € D. We introduce the following class of domains.

Definition 1. We say thaD is asemi-uniform domaiii every pair of pointst € D and
y € 0D can be joined by a rectifiable curyesuch thaty \ {y} C D, ¢(v) < Alz —y|
and (1.2) holds.

A Denjoy domain is a typical semi-uniform domain which is not necessarily uni-
form. The relationships among above domains are summarized as

NTA & Uniform & Semi-uniform & John. (1.3)

Letw(x, F,U) be the harmonic measure of the &tin an open sel/ evaluated at
x. Jerison-Kenig [13] proved that harmonic measure of an NTA dorbasatisfies the
strong doubling conditionthere is a constant, > 2 such that

w(z, B(¢,2R)NAD, D) < Aw(z, B(¢&, R)NdD, D) forz € D\ B(£, AgR), (1.4)

where¢ € 90D andR > 0 small, sayR < Rgp. If (1.4) holds only for some fixed
pointx = o, we say that the harmonic measure/dEatisfies theloubling condition
Obviously the strong doubling condition implies the doubling condition. Moreover,
they showed that a bounded planar simply connected domagan NTA domain if
and only if the harmonic measures both forand D° satisfy the doubling condition
([13, Theorem 2.7]). Kim and Langmeyer [14] gave the one-sided analogue; a bounded
planar Jordan domain is a John domain if and only if the harmonic measure oty for
satisfies the doubling condition. Their argument is based on complex analysis as well.
Balogh-Volberg [6, 7] showed a doubling condition similar to (1.4) in a planar
uniformly John domain, or inner uniform domain (see Definition 2 below and the re-
marks before it). They also pointed out that there is a planar inner uniform domain



for which (1.4) fails to hold. Indeed, léb be the complement of the line segments
[~1,1]andLg = {te™® : 0 < ¢t < 1} with0 < 6 < 7/2. Let By = B(te ¥, ct)
andB, = B(te™",2ct), where{ sinf < ¢ < sinf. SinceB; N [-1,1] = § and
ByN[—1,1] # 0, we haveu(zo, BiNAD, D) ~ t™/("=% andw(z¢, BsNdD, D) ~ t
ast — 0. Hencew(zg, B, N 9D, D)/w(xg, By N 0D, D) — co. See Figure 1.

By

By

Figure 1: Harmonic measure fails to satisfy the doubling condition.

In this paper, we characterize John domains whose harmonic measure satisfies
(1.4), the strong doubling condition. There is a John domain with polar boundary
whose harmonic measure vanishes. For such domains any doubling conditions for
harmonic measure is hopeless. To avoid such pathological domains, we assume the
capacity density conditiofabbreviated to CDC). See Section 3 for its definition. If
n = 2, then the CDC coincides with the uniform perfectness of the boundary. Our
main result is as follows.

Theorem 1. Let D be a John domain with John constant and suppose the CDC
holds. Then the following are equivalent:

() D is a semi-uniform domain.

(i) The harmonic measure db satisfies the strong doubling condition, i.€1,4)
holds whenevef € 9D and R > 0 is small.

(iii) For eacha > 1/c¢y, there exist constantd > 1 andr > 0 depending only on
D and« such that

w(z,0DNB(&, R), D) > - (

—A < _§|>T for |z —¢| < adp(x), (1.5)

R+ |z
whenevet € 9D and R > 0is small.

Remarkl. The constant/c; is a threshold; ifa is less tharc;, then{z € D :
| — &| < adp(z)} may be an empty set.

Next, we state a version of Theorem 1 with respect toitiner diameter metric
pp(z,y) defined by

pp(x,y) = inf{diam(y) : v is a curve connecting andy in D},



wherediam() denotes the diameter of If we replacediam(+) by £(~y) in the above
definition, then we obtain thimner length distance\p (z,y). Obviously|z — y| <
pp(z,y) < Ap(x,y). It turns out, however, thatp and \p are comparable for a
John domain (disala [16, Theorem 3.4]). We say that is aninner uniform domain

or uniformly John domainf there exists a constamt > 1 such that every pair of
pointsz,y € D can be connected by a curyeC D with ¢(y) < App(z,y) and
(1.2). See Balogh-Volberg [6, 7] and Bonk-Heinonen-Koskela [9]; actually, the latter
uselp(x,y) instead ofpp (z, y) in the definition. Howeveryp and\p are equivalent

as noted above. For a John domainwe can consider the completi@i* with respect

to pp ([4, Proposition 2.1]). Thew*D = D* \ D is the ideal boundary oD with
respect tgp. Observe that connectivity of an inner uniform domain can be extended
fromz,y € Dtox,y € D*. See [4, Lemma 2.1].

Definition 2. We say thatD is aninner semi-uniform domaiif every pair of points
x € D andy € 0*D can be joined by a rectifiable curwesuch thaty \ {y} C D,
(v) < App(x,y) and (1.2) holds.

Let ¢* € 0*D. Then there are a poigt € 0D and a sequencgr,;} C D con-
verging to¢ with respect to the Euclidean metric as well as converging*tavith
respect topp. We say thatt* lies overé and define the projection from D* to
D by m(¢*) = £for &* € 9*D andrw|p = id|p. Let B,(£, R) be the connected
component ofB(¢, R) N D from which £* is accessible. We observe thaj (¢, R)
plays a role of a ball with center &t in the completionD* ([4, Lemma 2.2]). Let
A&, R) = {z* € 0*D : pp(z*,£*) < R}. This is a surface ball with respect to
pp. Consider a version of (1.4) with respectdg: there is a constand, > 2 such
that

w(z,Ap(§",2R), D) < Aw(z, Ap(€7, R), D) forz e D\ B,(§", AoR), (1.6)
whereé* € 9* D andR > 0 small. We have the following.

Theorem 2. Let D be a John domain with John constatit and suppose the CDC
holds. Then the following are equivalent:

(i) D is aninner semi-uniform domain.
(ii) (1.6)holds wheneveg* € 9*D andR > 0 is small.

(ili) For eacha > 1/c¢y, there exist constantd > 1 andr > 0 depending only on
D anda such that

* 1 R ! * .
w(z,Ap(§", R), D) = 1 <R—i—pD(a:,£*)> for pp(z,£") < adp(z),

whenevet™* € 9*D andR > 0 is small.

By definition, a semi-uniform domain is an inner semi-uniform domain. The do-
main in Figure 1 is an inner semi-uniform domain and satisfies (1.6). Thus (1.3) is



refined as follows:

Inner uniform
* kg
NTA g Uniform Inner semi-uniform;Ct John.

< C
< Semi-uniform #

There is no direct relationship between the class of inner uniform domains and the class
of semi-uniform domains. Theorem 2 and the above implications yield that (1.4) is a
property stronger than (1.6). This is not straightforward from their definitions.

The plan of the present paper is as follows: In Section 2, some preliminary notions
such as the quasihyperbolic metric and local reference points will be recalled. The
relationship between the Green function and the harmonic measure will be extensively
studied in Section 3. Theorem 1 will be proved in Section 4 based on the results in
Section 3. Theorem 2 can be proved almost in the same manner. Necessary lemmas
will be stated in the last section.

Acknowledgments.The authors thank the referee for useful comments.

2 Preliminaries

We define the quasihyperbolic metkig (x, y) by

%mwzwfﬁ@,

¥ p(z)

where the infimum is taken over all rectifiable curwesonnectinge to y in D. We
observe that the shortest length of the Harnack chain connectingy is comparable
to kp(z,y)+ 1. Therefore, the Harnack inequality yields that there is a constantl
depending only om such that

(=9

=

exp(=A(kp(z,y) +1)) <

(3$WW%WMHD 2.1)

. We say thatD satisfies a quasihyperbolic

b =

for every positive harmonic functiolon
boundary condition if

5D(£C0)
5D(l‘)

It is easy to see that a John domain satisfies the quasihyperbolic boundary condition
(see [10, Lemma 3.11]). We have more precise estimate ([3, Proposition 2.1]).

kD (1’7 SCO) < AIOg

+ A forallz € D. (2.2)

Lemma A. LetD be a John domain with John constaft Then there exist a positive
integer N and constant®p > 0 and A > 1 depending only o with the following



property: for everyé € 9D and0 < R < Rp there areN pointsyft,... y& €
DN S R)suchthatd~'R < 6p(y?) < Rfori=1,..., N and

R
nin {kpy (r,y;7) ) < Alog o)+ A forz e DN B(E, R/2),

whereDr = DN B(£,8R). Moreover, every € DN B(&, R/2) can be connected to
somey’ by a curvey C Dy with £(y(x, 2)) < Adp(z) for all z € ~.

If the conclusion of the above lemma holds, then we sayéthats asystem of local
reference pointgf, ..., y% of orderN. We remark that the orde¥ depends only on
the John domai.

3 Green function and harmonic measure

We begin by recalling the capacity density condition (abbreviated to CDC).

Definition 3. By Cap we denote the logarithmic capacityrif= 2, and the Newtonian
capacity ifn > 3. We say that the CDC holds if there exist constaats> 0 and
Rp > 0 such that

AR if n =2,

Cap(B(§, R)\ D) > {AR"2 if n >3,

whenever € 90D and0 < R < Rp.

It is well known that the CDC is equivalent to the uniformiy-regularity ([5]).
Hence there is a positive constahsuch that it € 9D and0 < r» < R are small, then

sup w(-,DNS(ER),DN B R)) < A(r/R)’, 3.1)
DNB(&,r)

so that there is a constadf > 1 such that

inf . 0DNB D
DmB(l?,R/A1>w(’a NB(¢ R),D) .
> 3 . > .
> gt w(,0DNBER), DN B R) >

N =

Lemma 1. LetG(z,y) be the Green function fab with the CDC. Supposé, (y) =
R > 0issmall. Then

G(x,y) = R*™" forz € S(y, R/2). (3.3)
Moreover, there is a positive constahsuch that

G(z,y) < ARQ‘“’((SL;:))B forz € D\ B(y, R/2). (3.4)



Proof. If n > 3, then the first assertion is obvious. The planar case will be given in
Lemma 3. For the proof of (3.4) we may assume thatx) < R/4. Letz* € D

be a point such thgt:* — x| = dp(z) < R/4. Then|z* — y| > dp(y) = R. Hence
B(z*,R/2) N B(y, R/2) = 0, so that the maximum principle and (3.3) yield

G(x,y) < AR* "w(x, S(y, R/2), D\ B(y, R/2))
< AR "w(x, DN S(z*, R/2),D N B(z*, R/2)).

Hence we have (3.4) from (3.1). O

Lemma 2. LetG(z,y) be the Green function fab with the CDC. Supposé (y) =
R > 0is small andG(z,y) > A, R*>~™. Then there is a curve connectingr andy in
D such that/(y) < AR anddp(z) > R/A for all z € v, whereA depends only o
and As.

Proof. Observe from the maximum principle that= {z € D : G(z,y) > A, R*>~"}
is a connected open set.lf> 3, thenG(z,y) < |z — y|*>™, so thatdiam Q < AR.
The planar case will be given in Lemma 3. lkebe a curve connecting andy in €.
Lemma 1 says that

AR < G(z,y) < AR2*"(5D7]§Z))5 forz € Q\ B(y,dp(y)/2).

Henceip(z) > R/Aforall z € 5. Sincediam v < diam Q2 < AR, taking a polygonal
curve, we can modifyy so thaty C D, {(y) < AR anddp(z) > R/Aforall z € .
The proof is complete. O

Lemma 3. Letn = 2 and letG(z,y) be the Green function fob with the CDC.
Supposeép(y) = R > 0is small. Then the following statements hold:

() G(z,y) =~ 1forz € S(y, R/2).
(i) LetQ={z€ D:G(zy) > As}. Thendiam Q) < AR.

Proof. (i) Let My = supg, g/2) G(+,y). By the maximum principlé&(-,y) < M, on
D\ B(y,R/2). Lety* € 0D be a point such thay* — y| = 6p(y) = R. By (3.1)
we find a positive constas < 1/4 such thatz(-,y) < My/2 onD N B(y*,2e1R).
Lety’ be the pointinyy* with |y’ — y*| = 1 R. ThenG(-,y) < My/2on B(y',e1R).
Cover the spher&(y, (1 — e1)R) with finitely many balls with the same radii R.
We may assume thdB(y’, s, R) appears in the covering, consecutive balls have an
intersection with volume comparable te, R)™, and the number of balls is bounded
by a constant depending only en and the dimensiom. Applying the mean value
property ofG(-,y), we can conclud&(-,y) < (1 — ¢)My on S(y, (1 — 1)R), and
hence onD \ B(y, (1 — e1)R) with 0 < ¢ < 1 independent of? andy (see [2, Proof
of Lemma 2]). LetG'z be the Green function faB = B(y, (1 — ¢1)R). Then

Gp(z.y) = Glz.y) — Ro" () > G(z.y) - (1 - )My forz € B,



»D\B . . . .
WhereRg(\_,y) is the regularized reduced function 6f-, y) relative toD \ B in D.

Take the supremum ovéf(y, R/2) to obtain
A Z M() - (1 — C)M() = CM().

Thus (i) follows, since(z, y) > Gy, r)(7,y) = log2forz € S(y, R/2).
(ii) For the proof it is sufficient to show the following claim: there is a positive
constant\ such that if6 p (y) < 2|z — y| small, then

dp(y) \
G(x,y) gA(‘%y‘) . (3.5)
Let|z—y| = L be sufficiently small. The first named author ([2, Lemma 1]) showed the
uniform perfectness @fD. Hence we find a constahit> 2 and an increasing sequence
dp(y) =R=Ry < Ry <--- < Ri_1 < L < Ry suchthatS(y,R;) N 0D # () and
that2 < R;/R;_1 < bforj=1,...,k. HereRy = dp(y)/2. Letu = G(-,y) in D

and letu = 0 in R™ \ D. Thenu is a nonnegative subharmonic functior®fi \ {y}.

We employ an argument similar to (i). Cover the sphg&(g, R;) with finitely many

balls with the same radi; R;. We findy” € S(y,R;) N 9D. We may assume
that B(y”, 1 R;) appears in the covering, consecutive balls have an intersection with
volume comparable t¢s; R;)", and the number of balls is bounded by a constant
depending only ore; and the dimensiom. Moreover, observe that these balls lie
outsideB(y, R;_1). Applying the mean value property af we obtain

Mj= sup u= sup u<(l—c)M;_; <(1—c)My
R™\B(y,R;) S(y,R;)

forj =1,2,..., k. SinceL < R;, < b*Ry, it follows that
log(1 —¢) L RN\
< - < = S ) = i
My, < exp(klog(l—c)+log M) < exp (log Mo+ log log R0> MO(QL)
with A = —log(1 — ¢)/logb. Thus (3.5) follows. O

In the sequelN stands for the number of local reference points in Lemma A. We
note thatV depends only on a John domdinh

Lemma 4. Let D be a John domain with the CDC. L&t 9D have a system of local
reference pointg?,...,y% € DN S(¢, R) of order N for 0 < R < Rp. Then

N
R"2> " G(x,yf") < Aw(x,0D N B(¢,2A1R), D) forz € D\ B(,2R), (3.6)

i=1
whereA depends only o and A; is the constant irf3.2).
Proof. The maximum principle and (3.3) give

N
Ry G(x,yf) =1 forz e USyf op(yf")/2).

=1



Sincel; Sy, dp(y?)/2) € DN B(&,2R), it follows from (3.2) that

w(z,0D N B(§,2A1R), D) ~ 1 forz e US(y,0p(y/")/2).

The maximum principle completes the proof. O
The following is an estimate opposite to Lemma 4.

Lemma 5. Let D be a John domain. L&t € 9D have a system of local reference
pointsyf,...,y% € DN S(¢, R) of order N for 0 < R < Rp. Then

N
w(z,0D N B({, R/8),D) < AR">> G(z,yf) forze D\ B(,R/4), (3.7)

=1
where A depends only o).

Proof. For0 < r < dp(xo)/2letU(r) = {x € D : ép(z) < r}. Then each
pointaz € U(r) can be connected to, by a curve such that (1.1) holds. Hence,
B(z, Asr) \ U(r) includes a ball with radius, providedA; is large. This implies that

w(z,U(r)N S(z, Asr),U(r) N B(x, Asr)) <1—¢eq forz e U(r)

with 0 < g9 < 1 depending only o3 and the dimension. Le® > r and repeat this
argument with the maximum principle. Then

w(z,U(r) N S(z, R),U(r) N B(z, R)) < Aexp ( - A’?) forz e U(r) (3.8)

for someA’ > 0. See [1, Lemma 1] for details.
Let0 < R < Rp. Foreachr € DN B(§, R/2) there is a local reference point
y(z) € {yf, ...y} such that

kp(z,y(z)) < Alog +A

R
(5D(£L')

by Lemma A. Lety'(z) € S(y(x),dp(y(x))/2). Observe thak p\ () (7, ¥ () <
Alog(R/dp(x)) + A. Lettingu(z) = R*2YN | G(z,y?), we obtain from (2.1)
and (3.3) that
A
u(x) EA((SDT@> forz € DN B(¢, R/2)
with some) > 0 depending only orD.
Now let us employ a modified version of the box argument (cf. [8] and [1, Lemma
2). LetD; = {z € D : exp(—27T!) < u(z) < exp(—27)} andU; = {z € D :
u(r) < exp(—27)}. Then we see that

U, NB(£,R/2) C {x € D:dp(x) < ARexp ( — %) } (3.9)



Define sequenceR;, ; andp; by Ry = 3R/8, 7o = R/8 and

3 R 3. R
Pi= 2o RngR—ZPk, Tj=§+Zpk
k=1 k=1
for 7 > 1. We observe
R R 3
g=r0<r1<~-~<Z<~-~<R1<R0:§R. (3.10)

Let A(¢,r, R) = B(&,R) \ B(&,r) be the annulus with center gtand radiir and
R. SinceR;_; — R; = r; —rj_1 = pj, it follows that if z € A(,r;, R;), then
B(z,pj) C A(§, -1, R;—1). See Figure 2.

Figure 2: A box argument for annuli.

The maximum principle, (3.8) and (3.9) give

w(x,U; NOA(E,rj—1,Rj—1),U; N A&, 51, Rj—1))
- 97 (3.11)
<w(z,U; N S(x,p;),U; N B(x,p;)) < Aexp ( — Aj % exp (7))

forz € U; N A(E, rj, R;). Letwy = w(-,0D N B(§, R/8), D) and put

sup o (x)

x€D;NA(E,rj,R;) u(x)

if Dj N A(S,T’j,Rj) ?é ®7
d; =

0 if DjﬂA(f,T’j,Rj):@.

By (3.10) it is sufficient to show that; is bounded by a constant independeniaind
J- Apply the maximum principle t&/; N A(¢, -1, R;—1) to obtain

UJO(JJ) S w(x, Uj N 8A(£,Tj_1,Rj_1),Uj N A(g,’l“j_l,Rj_l)) + dj_lu(x).
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Divide the both sides by(z) and take the supremum ovex; N A(§,r;, R;). Then
(3.11) yields _ _

d; < Aexp (2771 — Aj 2 exp(27 /X)) + d;—1.
Since )" exp (271 — Aj % exp(2//X)) < oo, we obtainsup;s,d; < oo. Thus
(3.7) follows from the maximum principle. O

4 Proof of Theorem 1

Proof of Theorem 1(i) = (ii). Suppose firstD is a semi-uniform domain. Let
¢ € 0D and letR > 0 be sufficiently small. Then by Lemma 5 and scaling we find a
system of local reference poings, . ..,yn € D N S(&,16R) such that

N
w(xz,0D N B(§,2R), D) < AR"*> " G(x,y;) forz e D\ B(¢ 4R).
1=1
Let{y},...,yn} C DN S(& R/2A,) be a system of local reference points. Lemma
4 implies that

N
R " G(x,y}) < Aw(z,0D N B(§,R),D) forz e D\ B(¢, R/Ay).
i=1

By the semi-uniformity, each; is connected t@ by a cigar curvey;. Lety, € v, N
S(€, R/4A;). Observekp(y;,y;) < Afor somej. Sincekp(yi,y;) < kp(yi,yi) +
kp(yi,y;) < Aandy;,ys,y; € DN B(E,16R), it follows that

G(z,yi) = G(x,y;) forz e D\ B(£,32R),
so that
w(z,0D N B(,2R), D) < Aw(z,0D N B(§,R), D) forz € D\ B(&,32R).

Hence (1.4) follows wittdg = 32.

(i) = (iii). Suppos€& € 9D andR > Oissmallandz—¢| < adp(x). Itis easy
to see from (3.2) that (1.5) holds for — £] < R/A;. Now letr = |z — £] > R/A;.
Suppose firstdgr > Rsp with Rgp for (1.4). Takey € D N S(§, R/A;) with
dp(y) > R/A. Thenkp(z,y) < Alog(1/R) + A, so that (2.1) and (3.2) give

1 1
w(z,0DNB(¢,R). D) = 7 R™w(y,0DN B(,R), D) > 5o K’
with somer > 0 depending only o anda. SinceR+|x—&| > Rsp/Ap, We obtain
(1.5). Suppose nexdtyr < Rgp. We find a local reference poigt € DNS (&, AgAqr)
such that
kp(z,y) < A(D, ). (4.)

11



Note thatR < A;r. Applying (1.4) withy; in please ofr repeatedly, we obtain
w(yis 0D 0 B Air), D) < A (1) (0D 0 B(E, ), D),

whereA andr depend only omM; and the doubling constant. Therefore (2.1) and (4.1)
give
w(z,0D N B(E, Ayr), D) < A (%) w(z,dD N B(&, R), D).

Sincew(x,0D N B(, Ayr), D) > 1/2 by (3.2), we obtain (1.5) as

()= )

(i) = (). Letz € D and¢ € 9D. We may assume that — &| = R
is small. Then by Lemma A and scaling we find a system of local reference points
yl, . yR € DN S(E R) andy?t, ... y3R € DN S(&2R). We claim that every
y7 can be connected to som§ by a curvey with £(y) < AR andép(z) > R/A for
all z € . By (iii) and Lemma 5,

N
1 R n— R | R
1 Sww,0DNB(E R/8), D) AR Y G(y",y).

J=1

Hence there ig;* such thatG(y7 ", y') > AR®*~". Lemma 2 gives a curve connect-
ing 7 to y* in D such that’(y) < AR anddp(z) > R/Aforall z € 4. Thus the
claim follows.

Now the proof is easy. By Lemma A we find a poyft* which can be connected
to z by a cigar curve with length bounded bByR. The claim gives a poir@f which
can be connected t@’? by a cigar curve with length bounded Byfz. See Figure 3.

Figure 3: A cigar curve connectingto £.
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Repeat the claim again. We find a po@;ﬁ/2 which can be connected yf by
a cigar curve with length bounded b4R/2. Thus we can construct a cigar curve
connecting points as follows:

R/2
ro Ry e

The length of the curve is bounded HyR. ThusD is a semi-uniform domain. O

5 Proof of Theorem 2

Replacing Lemmas A, 4 and 5 by the following three lemmas, we can prove Theo-
rem 2 almost in the same way as for Theorem 1. The details are left to the reader.
Recall 7 is the natural projection fronD* to D. Let&* € 9*D, € = «(€*) and
S,(§*,R) = {x € D : pp(x,£*) = R}. Observe that,({*, R) C S(§, R), that
B,(£*, R) is the connected component Bf ¢, R) N D from which&* is accessible,

and that the boundary dB,(¢*, R) is included inS,(£*, R) U 0D. The following
lemma corresponds to Lemma A.

Lemma 6. Let D be a John domain with John constaft Then there exist a positive
integer M and constant®p > 0 and A > 1 depending only o with the following
property: for everyt* € 9*D and0 < R < Rp there areM pointsyf,... vy €
S,(&*,R)suchthatd 'R < §p(yft) < Rfori=1,...,M and

R .
55 () + A forz e B,({", R/2).

Moreover, everyr € B,(£*, R/2) can be connected to somg' by a curvey C
B,(&*,8R) with (y(z, z)) < Adp(z) forall z € 4.

:IlninM{kBp(E*ﬁR) (z, le)} < Alog

i

Proof. We prove the lemma witlRp = dp(x¢). Takez € B, (&, R/2). By definition
there is a rectifiable curve starting fromz and terminating at, such that (1.1) holds.
Then the first hity(z) of S,(¢*, R) along~y satisfie2~'c;R < ép(y(x)) < R and
kg, e+ sr)(2,y(x)) < Alog(R/ép(x)). We associatg(x) with x, although it may
not be unique.

Consider, in general, the family of ballg(y,4~'c; R) withy € S,(£*, R). These
balls are included iB(&, (47 tc; + 1) R), so that at mosN (c;,n) balls among them
can be mutually disjoint. Hence we find pointsz.,...,zx € B,(£*, R/2) with
M < N(ey,n) suchthat{ B(yf*,4-1c;R), ..., B(yF,4 tc;R)} is maximal, where
yJR = y(z;) € S,(£*, R) is the point associated with; as above. This means that
if z € B,(¢*, R/2), thenB(y(z),4 ¢ R) intersects some aB(yf*,4 ¢ R),...,
By, 47 ¢ R), sayB(yl',4 ¢ R). SinceB(y(z),4 ey R)NB(yE, 47 1c;R) # 0
andB(y(z),27'cyR) U B(y®,271c;R) C B,(£*,8R), it follows that

kg, e+ sr)(y(x),y:) < A'.

Hence

R
kg, e+ sr) (2, yi) < kp, e sr) (@, () + kg, e+ sr) (y(2), y:) < Alog @ T Al
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Repeating some points, say = y(z1), if necessary, we may assume that this property
holds with M independent oR andM < N(cj,n). O

If the conclusion of the above lemma holds, then we say ghat 0*D has a
system of inner local reference poini§, ...,y of order M. We emphasize that
inner local reference pointg?, ...,y lie on S,(¢*, R) and thatM < N in general.
The following two lemmas replace Lemmas 4 and 5.

Lemma 7. Let D be a John domain with the CDC. L&t € 9*D have a system of
inner local reference pointg!®, ..., y% € S,(¢*, R) of order M. Then

M
R " Gla,yf") < Aw(z, A, (€7,241R), D) forz € D\ B,(£*,2R),

=1
whereA depends only ol.
Proof. The maximum principle and (3.3) give

M
R"2Y " Gla,yf) ~1 forz e US(yl 6n(y)/2).

=1

Sincel; S(y7, 6p(yf*)/2) C B,(£*,2R) C B(&,2R), it follows from (3.2) that for
v € U; Sy, op(y{)/2)

w(z, Ay (€°,2A1R), D) > w(x,dD N B(¢,2A1R), D N B(¢,2A1R)) >

N | =

The maximum principle completes the proof. O

Lemma 8. Let D be a John domain. Let* € 0*D have a system of inner local
reference pointg{®, ...,y € S,(¢*, R) of order M. Then

M
w(w, A, (€°, R/8),D) < AR"*> " G(z,yf) forz e D\ B,(&", R/4),

=1
whereA depends only ol.

Proof. The proof is the same as the proof of Lemma 5. It is rather lengthy and the
details are left to the reader. O
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