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Abstract

This paper is concerned with the boundary behavior of solutions of the Helmholtz
equation inRn. In particular, we give a Littlewood-type theorem to show that the
approach region introduced by Korányi and Taylor (1983) is best possible.
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1 Introduction

Let n ≥ 2 and let us denote a typical point inRn by x = (x1, . . . , xn). The usual
inner product and norm are written respectively as〈x, y〉 = x1y1 + · · · + xnyn and
|x| =

√
〈x, x〉. The symbolO(n) stands for the set of all orthogonal transformations

onRn. Let λ > 0. We consider the Helmholtz equation

∆u = λ2u in Rn, (1.1)

where∆ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n. It is known that the Martin boundary for positive
solutions of (1.1) can be identified with the unit sphereS of Rn, and that every positive
solutionu of (1.1) can be represented asu = Kµ for some Radon measureµ on S,
where

Kµ(x) =
∫

S

eλ〈x,y〉dµ(y) for x ∈ Rn. (1.2)

See [4, Corollary to Theorem 4] and [9]. Letσ denote the surface measure onS.
SinceKσ(x) → +∞ asx → ∞ (cf. Lemma 2.1), we investigate the behavior at
infinity of the normalizationKµ/Kσ. Lete = (1, 0, . . . , 0) and letΩ be an unbounded
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subset ofRn converging toe at ∞ in the sense that|x/|x| − e| → 0 asx → ∞
within Ω. We write Ω(y) for the image ofΩ under an element ofO(n) mappinge
to y. Then{Ω(y) : y ∈ S} makes a collection of approach regions. By the notation
Ω(y) 3 x → ∞, we mean thatx → ∞ within Ω(y). Korányi and Taylor [9] considered
the following approach region. Forα > 0 andy ∈ S, define

Aα(y) =
{

x ∈ Rn :
∣∣x − |x|y

∣∣ ≤ α
√
|x|

}
.

Theorem A. Letα > 0 and letµ be a Radon measure onS. Then

lim
Aα(y)3x→∞

Kµ

Kσ
(x) =

dµ

dσ
(y) for σ-a.e.y ∈ S.

This result corresponds to Fatou’s theorem [5] for the boundary behavior of har-
monic functions in the unit ball or the upper half space ofRn (see also [8, 12] for
invariant harmonic functions in the unit ball ofCn). The result corresponding to Nagel–
Stein’s theorem [11] was established by Berman and Singman [3] and Gowrisankaran
and Singman [6]. These results show that there exists an unbounded subsetΩ of Rn

converging toe at∞ such that

lim sup
Ω3x→∞

∣∣x − |x|e
∣∣√

|x|
= +∞

and that

lim
Ω(y)3x→∞

Kµ

Kσ
(x) =

dµ

dσ
(y) for σ-a.e.y ∈ S,

wheneverµ is a Radon measure onS. Berman and Singman also showed its converse
(see [3, Theorem B and Remark 1. 13(a)]).

Theorem B. LetΩ be an unbounded subset ofRn converging toe at∞ and satisfying

lim sup
Ω3x→∞

∣∣x − |x|e
∣∣√

|x|
= +∞. (1.3)

Suppose in addition thatΩ is invariant under all elements ofO(n) that preserve the
pointe. Then there exists a Radon measureµ onS such that

lim sup
Ω(y)3x→∞

Kµ

Kσ
(x) = +∞ for everyy ∈ S.

Note that the second assumption onΩ can not be omitted from their construction
even if “lim sup” in (1.3) is replaced by “lim”.

The purpose of this paper is to show the following Littlewood-type theorem. See
[10, 1, 2, 7] for harmonic or invariant harmonic functions.

Theorem 1.1. Letγ be a curve inRn converging toe at∞ and satisfying

lim
γ3x→∞

∣∣x − |x|e
∣∣√

|x|
= +∞. (1.4)

Then there exists a solutionu of (1.1)such thatu/Kσ is bounded inRn and thatu/Kσ
admits no limits asx → ∞ alongTγ for everyT ∈ O(n).
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Remark1.2. We indeed constructu satisfying−1 ≤ u/Kσ ≤ 1 and

lim inf
Tγ3x→∞

u

Kσ
(x) = −1 and lim sup

Tγ3x→∞

u

Kσ
(x) = 1

for everyT ∈ O(n). Note that “lim” in (1.4) can not be replaced by “lim sup” as
mentioned above (cf. [3, 6]).

The proof of Theorem 1.1 is based on our previous work [7] for invariant harmonic
functions in the unit ball ofCn, which was a refinement of Aikawa’s method [1, 2]
for harmonic functions in the unit disc or the upper half space ofRn. In Section 4,
we remark that our construction and estimates are applicable to show the analogue of
Theorem B.

2 Lemmas

The symbolA denotes an absolute positive constant depending only onλ and the di-
mensionn, and may change from line to line. The following estimate is found in [3,
Lemma 4.1].

Lemma 2.1. There exists a constantA > 1 such that

1
A

eλ|x||x|(1−n)/2 ≤ Kσ(x) ≤ Aeλ|x||x|(1−n)/2

whenever|x| ≥ 1.

The surface ball of centery ∈ S and radiusr > 0 is denoted by

Q(y, r) = {x ∈ S : |x − y| < r}.

Then we observe that

lim
r→0

σ(Q(y, r))
rn−1

= νn−1, (2.1)

whereνn−1 is the volume of the unit ball ofRn−1. Moreover, there exists a constant
A > 1 such that

1
A

rn−1 ≤ σ(Q(y, r)) ≤ Arn−1 for 0 < r ≤ 2. (2.2)

Let π be the radial projection ontoS, i.e.,π(x) = x/|x| for x ∈ Rn \{0}. For a Radon
measureµ onS, we define the maximal functionM(c)µ with parameterc ≥ 1 by

M(c)µ(x) = sup

{
µ(Q(π(x), r))

rn−1
: r ≥ c√

|x|

}
.

Lemma 2.2. Let c ≥ 1 and letµ be a Radon measure onS. Then

Kµ

Kσ
(x) ≤ A

(
|x|(n−1)/2µ

(
Q(π(x), c/

√
|x|)

)
+

1
c
M(c)µ(x)

)
whenever|x| ≥ 1.
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Proof. Let |x| ≥ 1. Since|x| − 〈x, y〉 = |x||π(x) − y|2/2 for y ∈ S, it follows from
Lemma 2.1 that

Kµ

Kσ
(x) ≤ A|x|(n−1)/2

∫
S

e−(λ/2)|x||π(x)−y|2dµ(y). (2.3)

Let Q1 = Q(π(x), c/
√
|x|) andQj = Q(π(x), jc/

√
|x|) \ Q(π(x), (j − 1)c/

√
|x|)

for j = 2, . . . , N , whereN is the smallest integer such thatNc/
√
|x| > 2. Then, for

j = 1, . . . , N ,∫
Qj

e−(λ/2)|x||π(x)−y|2dµ(y) ≤ e−(λ/2)((j−1)c)2µ
(
Q(π(x), jc/

√
|x|)

)
.

Therefore the right hand side of (2.3) is bounded by

A

(
|x|(n−1)/2µ

(
Q(π(x), c/

√
|x|)

)
+

∑
j≥2

e−(λ/2)((j−1)c)2(jc)n−1M(c)µ(x)
)

.

Since
∑

j≥2 e−(λ/2)((j−1)c)2(jc)n−1 ≤ A/c, we obtain the required estimate.

For an integrable functionf onS, we writeKf = K(fdσ) andM(c)f = M(c)(|f |dσ).

Lemma 2.3. The following statements hold.

(i) Letµ be a Radon measure onS. Then

Kµ

Kσ
(x) ≤ AM(1)µ(x)

whenever|x| ≥ 1.

(ii) Lety ∈ S, 0 < r < 1 andc ≥ 1. Suppose thatf is a Borel measurable function
onS such thatf = 1 onQ(y, cr) and|f | ≤ 1 onS. Then

Kf

Kσ
(ty) ≥ 1 − A

c

whenever
√

t ≥ 1/r.

Proof. Lemma 2.2 withc = 1 gives (i). To show (ii), letg = (1 − f)/2. Theng = 0
on Q(y, cr) and|g| ≤ 1 on S. Observe from Lemma 2.2 and (2.2) that if

√
t ≥ 1/r,

then
Kg

Kσ
(ty) ≤ A

c
M(c)g(ty) ≤ A

c
sup

{
σ(Q(y, ρ))

ρn−1
: ρ ≥ c√

t

}
≤ A

c
.

SinceKf = Kσ − 2Kg, we obtain (ii).

For a setE, let diamE = sup{|x − y| : x, y ∈ E}.

Lemma 2.4. Let γ be a curve inRn converging toe at ∞ and satisfying(1.4). Then
there exist sequences of numbers{aj}j≥1, {bj}j≥1 and subarcs{γj}j≥1 of γ with the
following properties:
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(i) 1 < a1 < b1 < · · · < aj < bj < aj+1 < bj+1 < · · · → +∞,

(ii) aj ≤
√

|x| ≤ bj for x ∈ γj ,

(iii) bj−1 diamπ(γj) ≤ 1 if j ≥ 2,

(iv) lim
j→+∞

aj diam π(γj) = +∞.

Proof. Let {αj} be a sequence such thatαj → +∞ asj → +∞, and let us choose
{aj}, {bj} and{γj} inductively. By (1.4), we finda1 > max{1, infx∈γ

√
|x|} with√

|x||π(x) − e| ≥ α1 for x ∈ γ ∩ {
√
|x| ≥ a1}.

Let γ′ be the connected component ofγ ∩ {
√
|x| ≥ a1} which converges to∞, and

let x1 ∈ γ′ ∩ {
√
|x| = a1}. Then

diam π(γ′) ≥ |π(x1) − e| ≥ α1

a1
.

Let γ′′ be a subarc ofγ′ starting fromx1 toward∞ such that

sup
x∈γ′′

√
|x| < +∞ and diam π(γ′′) ≥ 1

2
diam π(γ′).

We takeb1 > supx∈γ′′

√
|x|. Letγ1 be the connected component ofγ∩{a1 ≤

√
|x| ≤

b1} containingγ′′. Then

diamπ(γ1) ≥
α1

2a1
.

We next choosea2, b2 andγ2 as follows. By (1.4) and the fact that|π(x) − e| → 0 as
x → ∞ alongγ, we finda2 > b1 such that

1
2b1

≥ |π(x) − e| ≥ α2√
|x|

for x ∈ γ ∩ {
√

|x| ≥ a2}. (2.4)

Repeat the above process to getb2 > a2 andγ2 such thata2 ≤
√
|x| ≤ b2 for x ∈ γ2

anddiamπ(γ2) ≥ α2/2a2. Then (2.4) also yields that

diam π(γ2) ≤ 2 sup
x∈γ2

|π(x) − e| ≤ 1
b1

.

Continue this process to obtain the required sequences.

3 Construction

Throughout this section, we suppose that{aj}j≥1, {bj}j≥1 and {γj}j≥1 are as in
Lemma 2.4. Let

`j =
diamπ(γj)

3
, cj =

√
aj diamπ(γj) and ρj =

cj

aj
. (3.1)

5



Then, by Lemma 2.4,

lim
j→+∞

`j = 0, lim
j→+∞

ρj

`j
= 0 and lim

j→+∞
cj = +∞. (3.2)

Therefore, in the construction below, we may assume thatρj < `j for everyj ∈ N.
For eachj ∈ N, we choose finitely many points{yν

j }ν in S such that

(I) S =
∪

ν Q(yν
j , `j),

(II) Q(yµ
j , `j/2) ∩ Q(yν

j , `j/2) = ∅ if µ 6= ν.

For example, a maximal family of pairwise disjoint surface balls{Q(yν
j , `j/2)}ν sat-

isfies (I) and (II). We define

Mj =
∪
ν

{
y ∈ S : |y − yν

j | = `j

}
, (3.3)

Gj =
{
x ∈ Rn : aj ≤

√
|x| ≤ bj andπ(x) ∈ Mj

}
. (3.4)

Then we have the following.

Lemma 3.1. Tγj ∩ Gj 6= ∅ for anyT ∈ O(n) andj ∈ N.

Proof. By (I), we find ν with π(Tγj) ∩ Q(yν
j , `j) 6= ∅. Sincediam π(Tγj) =

diamπ(γj) = 3`j , we see thatπ(Tγj) ∩ Mj 6= ∅. Therefore it follows fromTγj ⊂
{aj ≤

√
|x| ≤ bj} thatTγj ∩ Gj 6= ∅.

Let Rν
j = {y ∈ S : `j − ρj < |y − yν

j | < `j + ρj} and define

Ej =
∪
ν

Rν
j . (3.5)

Note thatQ(y, ρj) ⊂ Ej if y ∈ Mj . By XE we denote the characteristic function of
E.

Lemma 3.2. The following properties for the above{Ej}j≥1 hold.

(i) lim
j→+∞

(
sup

{
KXEj

Kσ
(x) :

√
|x| ≤ bj−1

})
= 0.

(ii) lim
j→+∞

σ(Ej) = 0.

Proof. Since the valueσ(Rν
j ) is independent ofν, we writeσj = σ(Rν

j ). For a mo-

ment, we fixj and let
√
|x| ≤ bj−1. By Lemma 2.3(i),

KXEj

Kσ
(x) ≤ AM(1)XEj (x)

≤ A sup

{∑
ν

σ(Rν
j ∩ Q(π(x), r))

rn−1
: r ≥ 1√

|x|

}

≤ A sup

{
σj

rn−1
Nj : r ≥ 1√

|x|

}
,
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whereNj is the number ofν such thatRν
j ∩ Q(π(x), r) 6= ∅. If r ≥ 1/

√
|x|, then

r ≥ 1/bj−1 ≥ diam π(γj) = 3`j by Lemma 2.4. ThereforeRν
j ∩ Q(π(x), r) 6= ∅

implies Q(yν
j , `j/2) ⊂ Q(π(x), 2r). It follows from (II) that Nj ≤ A(r/`j)n−1.

Hence we obtain

sup
{

KXEj

Kσ
(x) :

√
|x| ≤ bj−1

}
≤ A

σj

`n−1
j

. (3.6)

Observe from (2.1) and (3.2) that

σj

`n−1
j

=
(

`j + ρj

`j

)n−1
σ(Q(y, `j + ρj))

(`j + ρj)n−1
−

(
`j − ρj

`j

)n−1
σ(Q(y, `j − ρj))

(`j − ρj)n−1

→ 0 asj → +∞.

This together with (3.6) concludes (i).
Takingx = 0 in (i), we obtain

σ(Ej) = σ(S)
KXEj

Kσ
(0) → 0 asj → +∞.

Thus (ii) follows.

Proof of Theorem 1.1.In view of Lemma 3.2, taking a subsequence ofj if necessary,
we may assume that

KXEj

Kσ
(x) ≤ 2−j for

√
|x| ≤ bj−1, (3.7)

andσ(Ej) ≤ 2−j . Thenσ(
∩

k

∪
i≥k Ei) = 0. Forj ∈ N, let

fj(y) =

(−1)Ij(y) if y ∈
∪

1≤i≤j Ei,

0 if y 6∈
∪

1≤i≤j Ei,

whereIj(y) = max{i : y ∈ Ei, 1 ≤ i ≤ j}. Then we see thatfj convergesσ-a.e. on
S to

f(y) =

(−1)I(y) if y ∈
∪

i≥1 Ei \
∩

k

∪
i≥k Ei,

0 if y 6∈
∪

i≥1 Ei or y ∈
∩

k

∪
i≥k Ei,

whereI(y) = max{i : y ∈ Ei} for y ∈
∪

i≥1 Ei \
∩

k

∪
i≥k Ei. Also, we have the

following:

|fj | ≤ 1, |fj+1 − fj | ≤ 2XEj+1 onS; fj = (−1)j onEj ; Kfj → Kf onRn.

Let T ∈ O(n). By Lemma 3.1, we findxj ∈ Tγ ∩ Gj for eachj ∈ N. Then
aj ≤

√
|xj | ≤ bj andQ(π(xj), cj/aj) ⊂ Ej . If j is even, then Lemma 2.3(ii) and
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(3.7) give

Kf

Kσ
(xj) =

Kfj

Kσ
(xj) +

∑
k≥j

K(fk+1 − fk)
Kσ

(xj)

≥ Kfj

Kσ
(xj) − 2

∑
k≥j

KXEk+1

Kσ
(xj)

≥ 1 − A

cj
− 21−j .

Similarly, if j is odd, then

Kf

Kσ
(xj) ≤ −1 +

A

cj
+ 21−j .

Hence we conclude from (3.2) that

lim inf
Tγ3x→∞

Kf

Kσ
(x) = −1 < 1 = lim sup

Tγ3x→∞

Kf

Kσ
(x).

Obviously,u = Kf is a solution of (1.1) such that−1 ≤ u/Kσ ≤ 1 on Rn. Thus the
proof of Theorem 1.1 is complete.

4 Remark

Our construction and estimates in Sections 2 and 3 are applicable to show the analogue
of Theorem B.

Theorem 4.1.LetΩ be an unbounded subset ofRn converging toe at∞ and satisfying
(1.3). Suppose in addition thatΩ is invariant under all elements ofO(n) that preserve
the pointe. Then there exists a solutionu of (1.1) such thatu/Kσ is bounded inRn

and thatu/Kσ admits no limits asx → ∞ alongΩ(y) for everyy ∈ S.

Proof. We give a sketch of the proof and its detail is left to the reader. By the assump-
tion onΩ, we find a sequence{xj} in Ω converging toe at∞ such that

lim
j→+∞

∣∣xj − |xj |e
∣∣√

|xj |
= +∞.

Taking a subsequence ofj if necessary, we may assume that
√
|xj−1||π(xj)− e| ≤ 1.

Letωj = {Te(xj) : Te ∈ O(n) preservese} and letω =
∪

j ωj . Note thatω is a subset

of Ω converging toe at∞. Let aj = bj =
√
|xj | and define

`j =
|π(xj) − e|

3
, cj =

√
aj |π(xj) − e| and ρj =

cj

aj
,

in place of (3.1). Then these satisfy (3.2) and3`j ≤ 1/bj−1. Let Mj , Gj andEj be
as in (3.3), (3.4) and (3.5) respectively. Then the conclusions in Lemma 3.2 hold in
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this setting as well. Note thatωj andGj lie on the sphere of center at the origin and
radius|xj |. Let T ∈ O(n). Since{y ∈ S : |y − Te| = 3`j} ⊂ π(Tωj), we see that
π(Tωj) ∩ Mj 6= ∅, and soTωj ∩ Gj 6= ∅. Hence we observe the existence off such
that

lim inf
Tω3x→∞

Kf

Kσ
(x) 6= lim sup

Tω3x→∞

Kf

Kσ
(x) for everyT ∈ O(n).

ThusKf/Kσ admits no limits asx → ∞ alongΩ(y) for everyy ∈ S.
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