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Abstract

This paper is concerned with the boundary behavior of solutions of the Helmholtz
equation inR™. In particular, we give a Littlewood-type theorem to show that the
approach region introduced by Kmyi and Taylor (1983) is best possible.
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1 Introduction

Letn > 2 and let us denote a typical point R* by z = (x1,...,2,). The usual
inner product and norm are written respectively(asy) = xz1y1 + - -+ + z,y, and

|x| = v/{z,z). The symbolO(n) stands for the set of all orthogonal transformations
onR™. Let A > 0. We consider the Helmholtz equation

Au=Nu inR", (1.1)

whereA = 9?/0z% + - - - + 8% /0x2. Itis known that the Martin boundary for positive
solutions of (1.1) can be identified with the unit sph&ref R™, and that every positive
solutionu of (1.1) can be represented as= K for some Radon measufeon S,
where

Ku(z) = /S ATV du(y) forz € R™. 1.2)

See [4, Corollary to Theorem 4] and [9]. Letdenote the surface measure 8n
Since Ko(z) — 400 asxz — oo (cf. Lemma 2.1), we investigate the behavior at
infinity of the normalizationk 1/ Ko. Lete = (1,0, ...,0) and let2 be an unbounded
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subset ofR™ converging toe at oo in the sense thate/|z| — e|] — 0 asxz — oo
within Q. We write Q(y) for the image of2 under an element ab(n) mappinge
toy. Then{Q2(y) : y € S} makes a collection of approach regions. By the notation
Q(y) > x — oo, we mean that — oo within Q(y). Koranyi and Taylor [9] considered
the following approach region. Fer > 0 andy € S, define

Aa(y) = {:v ER™: |z —|zly| < a\/H}.
Theorem A. Leta > 0 and lety be a Radon measure ¢h Then

. Kp
lim —

dp
= — for o-a.e. S.
Aa(y)dz—00 Ko (l‘) (y) 7 ye

do

This result corresponds to Fatou’s theorem [5] for the boundary behavior of har-
monic functions in the unit ball or the upper half spaceRdf (see also [8, 12] for
invariant harmonic functions in the unit ball@f*). The result corresponding to Nagel—
Stein’s theorem [11] was established by Berman and Singman [3] and Gowrisankaran
and Singman [6]. These results show that there exists an unbounded Quifset’
converging tce at co such that

lim sup w = +00
Q3>x—00 \/m

and that
Kp

. dp
1 = — for o-a.e. ,

whenever is a Radon measure ¢ Berman and Singman also showed its converse
(see [3, Theorem B and Remark 1. 13(a)]).

Theorem B. Let(2 be an unbounded subset®f converging te at oo and satisfying

e
imsup ————
Q3zx—00 \/ |$‘

Suppose in addition tha&? is invariant under all elements @(n) that preserve the
pointe. Then there exists a Radon measuren S such that

= +o0. (1.3)

K
lim sup K

—— = for ever S.
Q(y)dz—00 Ko (‘T) e e

Note that the second assumption@rcan not be omitted from their construction
even if “lim sup” in (1.3) is replaced by!m”.

The purpose of this paper is to show the following Littlewood-type theorem. See
[10, 1, 2, 7] for harmonic or invariant harmonic functions.

Theorem 1.1. Let~ be a curve inR™ converging tee at oo and satisfying
oz zle]
hm —_— =
Y x—00 /|.’17|

Then there exists a solutianof (1.1)such that:/ Ko is bounded iR™ and thatu/ K o
admits no limits ag — oo alongT'y for everyT € O(n).

+00. (1.4)



Remarkl.2 We indeed construat satisfying—1 < u/Ko < 1 and

Tl}/rarlgjlilgo %(aj) =-1 and Tlﬁgl:ggo %(J‘) =1

for everyT € O(n). Note that Tim” in (1.4) can not be replaced byitn sup” as
mentioned above (cf. [3, 6]).

The proof of Theorem 1.1 is based on our previous work [7] for invariant harmonic
functions in the unit ball ofC", which was a refinement of Aikawa’s method [1, 2]
for harmonic functions in the unit disc or the upper half spac®&f In Section 4,
we remark that our construction and estimates are applicable to show the analogue of
Theorem B.

2 Lemmas

The symbolA denotes an absolute positive constant depending only amd the di-
mensionn, and may change from line to line. The following estimate is found in [3,
Lemma 4.1].

Lemma 2.1. There exists a constart > 1 such that
%exm 2|02 < Ko (x) < AeMel |z 1=/

whenevetz| > 1.

The surface ball of centere S and radius- > 0 is denoted by

Qly,r)={xeS:|lz—y|<r}

Then we observe that
L o(Q.r)
r—0 7""71
wherev,,_; is the volume of the unit ball dR”~!. Moreover, there exists a constant
A > 1 such that

=Vp—1, (21)

1

A

Let 7 be the radial projection ont$, i.e.,w(z) = x/|z| for x € R™\ {0}. For a Radon
measure: on S, we define the maximal functio/ ., with parameter > 1 by

M, )H(I)_SUP{N(Q(W(I),T)) N }
c et T VRl

Tl < o(Qy,r)) < Arm=l for0 < r < 2. (2.2)

Lemma 2.2. Letc > 1 and letu be a Radon measure ¢h Then

o) < AJel " 2u(Qr(e). e/ aD) + EMlo))

whenevetz| > 1.



Proof. Let |z| > 1. Since|z| — (x,y) = |z||7(x) — y|?/2 for y € S, it follows from

Lemma 2.1 that
Ep
Ko

Let Q1 = Q(n(x),¢//]a]) andQ; = Q(r(x), je//I2]) \ Q(r (), (j — 1)c/V/Ix])
forj = 2,..., N, whereN is the smallest integer such thaic//|z| > 2. Then, for
j=1,...,N,

/Q e~ O/Dlalln(@)~vl* g,y < e_(’\/Q)((j_l)c)Qu(Q(ﬂ(x),jc/ /Jz])).

J

2
(2) < A|x|<n71>/2/Sefu/z)lwuw(w)fm duly). 2.3)

Therefore the right hand side of (2.3) is bounded by
A1l 2 u@Unta), o/ TaD) + 3 e M e () ).
j>2
Since)" -, e~ (V2(G-D*(je)n=1 < A/c, we obtain the required estimate. [
For anintegrable functiofion S, we write K f = K (fdo) andM ) f = M)(|f|do).
Lemma 2.3. The following statements hold.

(i) Lety be a Radon measure ¢gh Then

Ku
ng(@ < AM(yyp()

whenevetz| > 1.

(i) Lety € S,0 <r < 1andc > 1. Suppose thaf is a Borel measurable function
on S such thatf = 1onQ(y,cr) and|f| <1onS. Then

Kf A
=) >1_ 2
Ko W) Z 1=

whenever/t > 1/r.

Proof. Lemma 2.2 withe = 1 gives (i). To show (i), lety = (1 — f)/2. Theng =0
onQ(y,cr) and|g| < 1 onS. Observe from Lemma 2.2 and (2.2) thatit > 1/r,

then
Ky A A a(Q(y,p)) c
< . < > <
KO_ (ty) — c M((/)g(ty) — c Sup{ pn_l p — \/E —_

SinceK f = Ko — 2K g, we obtain (ii). O

A

c .

For a sett, letdiam F = sup{|z — y| : z,y € E}.

Lemma 2.4. Let~ be a curve inR™ converging taee at co and satisfying1.4). Then
there exist sequences of numbgis};>1, {b;},>1 and subarcg~, };>1 of v with the
following properties:



() 1<ai<bi < --<aj <bj<ajq1 <bjp < -+ — 400,
(i) a; < +/|z| < b;forz €y,
(iii) bj—q diamm(y;) < 1ifj > 2,
(iv) jEI-Poo a; diam(vy;) = 4o0.
Proof. Let {«;} be a sequence such thatf — +o00 asj — +oo, and let us choose
{a;}, {b;} and{y;} inductively. By (1.4), we findi; > max{1,inf,c, v/]z[} with
Vigl|m(z) —e| > a1 forz e yn{y/|z] > a1}
Let+' be the connected componentpf {+/]z| > a1} which converges teo, and

letz, € ¥ N{y/|z| = a1}. Then

diam7 (") > |m(x1) —e| > “
ay

Let~" be a subarc of’ starting fromz; towardoo such that

1
sup /|z| < +oo and diamnw(y") > §diam7r(7’).
zey”

We takeb; > sup,¢. /|z|. Lety; be the connected componentgofi{a; < /|| <
b1 } containingy”. Then

. ai
d > —.
fam (1) > e

We next chooses, b, and~y, as follows. By (1.4) and the fact that(z) — e|] — 0 as
x — oo along~, we findas > b; such that
1 (65)

—_— > xr)—el >
oy 2 ) —el > —5

Repeat the above process to get> a; andvs such thas < /|| < by forz € 4o
anddiam 7(2) > @2 /2as. Then (2.4) also yields that

forz € vN {/]z| > as}. (2.4)

1
diam () < 2 sup |7w(z) —e| < —
TEY2 bl
Continue this process to obtain the required sequences. O

3 Construction

Throughout this section, we suppose that};>1, {b;},>1 and{v;};>1 are as in
Lemma 2.4. Let

= BT Gy and =S @)

J



Then, by Lemma 2.4,

dim ¢; =0, lim Pi_o and lim ¢; = 4o0. 3.2)
j—+o0 J—-+oo j J—-+oo

Therefore, in the construction below, we may assume ghat ¢; for everyj € N.
For eacly € N, we choose finitely many pointg/’ },, in S such that

0 S=U, Q. 4),
(1) QY £;/2) NQ(yY, £;/2) = 0if p# v.

For example, a maximal family of pairwise disjoint surface b&lly’,¢;/2)}, sat-
isfies (I) and (I1). We define

M=\ J{yeS:ly—vl=1} (3.3)

Gj={z €R":a; < /|z| <b; andn(z) € M;}. (3.4)
Then we have the following.
Lemma 3.1. Ty, N G; # 0 foranyT € O(n) andj € N.
Proof. By (I), we find v with =(Ty;) N Q(v¥,¢;) # 0. Sincediamn(T7y;) =

7 )
diam7(v;) = 3¢;, we see thatr(Ty;) N M; # 0. Therefore it follows fromil'y; C
{aj < |$‘ < b]} thatT’y]' N Gj # 0. O

LetRY ={y € S:4; —p; <ly—yi| <{; + p;} and define
B =Ry (3.5)

Note thatQ(y, p;) C E; if y € M;. By Xr we denote the characteristic function of
E.

Lemma 3.2. The following properties for the aboye; } ;> hold.

O tm_ <sup{K[ffj () : ol < bj1}> o,

(i) lim o(E;) =0,

J

Proof. Since the valuer(RY) is independent of, we writeo; = o(RY). For a mo-
ment, we fixj and let\/|z| < b;_;. By Lemma 2.3(j),

KXg,

Q) }

AV

i 1
§Asup{7jJ1Nj:r2 },

<A sup{




where N; is the number of such thatR? N Q(7(x),r) # 0. If r > 1/+/z], then
r > 1/bj_1 > diamm(y;) = 3¢; by Lemma 2.4. Therefor&? N Q(n(x),r) # 0
implies Q(y%,¢;/2) C Q(w(x),2r). It follows from (Il) that N; < A(r/;)"~*.
Hence we obtain

KXE (o]
sup{ KgJ () : V]z| < bj_l} < Aﬂ‘il' (3.6)

J

Observe from (2.1) and (3.2) that
o0 _ (4- +pj>“a<c2<y,ej + ;) _ (@- - m)“o(@(ywj )
ot Z (6 +pj)"! Z (4 = pj)n!

— 0 asj — +oo.

This together with (3.6) concludes (i).
Takingxz = 0 in (i), we obtain

KX,
Ko
Thus (ii) follows. O

o(E;) =0(S) (0) -0 asj — +oc.

Proof of Theorem 1.1In view of Lemma 3.2, taking a subsequencej af necessary,
we may assume that

KXp,

W(x) S 27‘7 for \ |1'| S bj_l, (37)

ando(E;) < 277. Theno (N, U,» Ei) = 0. Forj € N, let

(71)11'(34) if y e U1<i<j Ei,
fily) = i N
0 ity & Ui<ic; Eis

wherel;(y) = max{i : y € E;,1 < i < j}. Then we see thaf; convergesr-a.e. on

Sto
(-1’ ify e UiZl Ei\ N UiZk B,
0 IfygUzZl Ei OryeﬂkUiZkEi,

wherel(y) = max{i : y € E;} fory € U,~; Ei \ N U;>x Ei- Also, we have the
following: a a

fly) =

|fj‘ < 1, |fj+1 — f]' < 2XEj+1 OnS; fj = (—1)j OnEj; Kf] — Kf onR".

LetT € O(n). By Lemma 3.1, we findc; € Ty N G, for eachj € N. Then
a; < +/|z;| < by andQ(n(x;),cj/a;) C Ej. If jis even, then Lemma 2.3(ii) and



(3.7) give

ﬁ(xj)_Kf7 +Z fk+1 )( j)

Ko
k>j
Kf; KXg, .,
Z % () — 22 W(%‘)
k>j
>1-— 4 217,
¢j
Similarly, if j is odd, then
Kf A 1
—1 2 J
KO_( J) + CJ +

Hence we conclude from (3.2) that

K K
it 226 =<1 <1= Jimowp 2260

Obviously,u = K f is a solution of (1.1) such thatl < u/Ko < 1 onR". Thus the
proof of Theorem 1.1 is complete. O

4 Remark

Our construction and estimates in Sections 2 and 3 are applicable to show the analogue
of Theorem B.

Theorem 4.1. Let{2 be an unbounded subset®f converging te at oo and satisfying
(1.3). Suppose in addition th&? is invariant under all elements ¢¥(n) that preserve
the pointe. Then there exists a solutianof (1.1) such thatu/ Ko is bounded irR™
and thatu/ K o admits no limits ag — oo along€(y) for everyy € S.

Proof. We give a sketch of the proof and its detail is left to the reader. By the assump-
tion on(2, we find a sequencgr; } in © converging tee atoco such that
x; — |zjle]
lim 7‘ J 7 = 4.
imtee /|l
Taking a subsequence pff necessary, we may assume thatr; ;|| (z;) —¢| < 1.
Letw; = {Te(x;) : T € O(n) preserves} and letw = J; w;. Note thatv is a subset
of Q converging tce atoco. Leta; = b; = +/|z;| and define
|m(2;) — el ¢
U= —"——  ¢j=/ajlr(z;)—e| and p; = -,
3 aj

in place of (3.1). Then these satisfy (3.2) &fd < 1/b;_;. Let M;, G; andE; be
as in (3.3), (3.4) and (3.5) respectively. Then the conclusions in Lemma 3.2 hold in



this setting as well. Note that; andG; lie on the sphere of center at the origin and
radius|z;|. LetT € O(n). Since{y € S : |y — Te| = 3¢;} C n(Tw,), we see that
n(Tw;) N M; # 0, and saTw; N G; # (. Hence we observe the existencefauch

that
.. Kf . Kf
lim inf K—(x) # limsup E(x) for everyT € O(n).

Tw3z—co Ko Tw3z—00

ThusK f/Ko admits no limits ag: — oo along€(y) for everyy € S. O
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