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Abstract

In a uniform domairt2, we investigate the boundary behavior of positive su-
perharmonic functions satisfying the nonlinear inequality

—Au(z) < cdo(z)” “u(z)? fora.e.xz €

with some constants> 0, a € R andp > 0, whereA is the Laplacian andq (x)

is the distance from a pointto the boundary of2. In particular, we present a Fatou
type theorem concerning the existence of nontangential limits and a Littlewood
type theorem concerning the nonexistence of tangential limits.
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1 Introduction

The study of the boundary behavior of harmonic, superharmonic and subharmonic
functions and solutions of linear elliptic and parabolic equations has a long history.
In 1906, Fatou [20] proved that every positive harmonic function in the unit disk has
finite boundary limits almost everywhere along nontangential approach regions. The
higher dimensional analogue was established by Bray and Evans [10]. Littlewood [37]
showed the best possibility of nontangential approach regions in the following sense:
there exists a bounded harmonic function which diverges almost everywhere along tan-
gential curves. This was improved by Aikawa [1, 2] showing “everywhere” divergence.
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See also [17]. Carleson [12] obtained a local version of the Fatou theorem by establish-
ing a boundary estimate for positive harmonic functions vanishing on a portion of the
boundary. As an application of the study of maximal functions, Nagel and Stein [47]
showed that all positive harmonic functions have finite boundary limits along some
tangential sequences. For some generalizations, see [4, 39]. Also, the boundary be-
havior of harmonic functions with finite weighted Dirichlet integrals was investigated

by many authors (see [25, 43, 46] etc.). Furthermore, the Fatou theorem was extended
to two directions: one is to nonsmooth domains and trees. See [32, 57] for Lipschitz
domains, [33, 51] for nontangentially accessible domains (abbreviated to NTA), [3] for
uniform domains and [5, 16] for trees. Another is to solutions of several equations. See
[27, 35] and references therein for the Laplace equation associated with the Bergman
metric on the unit ball ofC™, [9, 24, 29, 36] for the boundary behavior at infinity of
solutions of the Helmholtz equatiahu = Au in R™, [8, 44] for a-harmonic functions

and [19, 34] for parabolic equations.

In 1928, Littlewood [38] proved that every positive superharmonic function in the
unit disk has finite radial limits almost everywhere. The higher dimensional analogue
was due to Privalov [49]. Dahlberg [15] introduced the notion of radial limits to extend
Littlewood's result to Lipschitz domains. See also [60] for the extension to NTA do-
mains. However, considering a positive superharmonic function which takesn a
countable dense subset of the unit disk, we see that nontangential limits of superhar-
monic functions do not necessarily exist. Tolsted [52, 53, 54] gave several sufficient
conditions for positive superharmonic functions to have nontangential limits. Arsove
and Huber [7] and Wu [58] refined his results and obtained the following result. See
also [42] for Riesz potentials.

Theorem A. Letu be a positive superharmonic function on the unit ballof R™,
n > 2, whose Riesz measurg, is absolutely continuous with respect to Lebesgue
measure, sayu., (z) = f,(z)dxz. If there isq > n/2 such that

/ (1 — |2])20 fu(2)"da < oo,
B

thenu has finite nontangential limits almost everywhere on the boundary. In particular,
if there exists a constamt such that

fulz) < (1A|)2 for almost every: € B,
— |T

thenu has finite nontangential limits almost everywhere on the boundary.

In contrast to the above concrete resultsimif5] studied the boundary behavior
of Green potentials in general domains by introducing the notion of minimal fine limit.
In [18], Doob obtained a result for minimal fine limits of superharmonic functions.
These results were further extended by Gowrisankaran [22, 23] to general axiomatic
situations. The relation between nontangential limits and minimal fine limits of har-
monic functions in the unit ball was investigated in [11].

By the way, we can know from Theorem A the existence of nontangential limits for
solutions of the Poisson equatierAu = f with a suitable density. However, such



classical results are not (directly) applicable to solutions of nonlinear elliptic equations.
Recently, the existence of positive solutions of nonlinear elliptic equations of the form
—Au = VuP was studied widely by many mathematicians, using the method of not
only partial differential equations but also the probabilistic and classical potential the-
ories. See [13, 28, 50, 55, 59, 61] and references therein. But, because of the difficulty
of analysis involving the nonlinearities, it seems that there is no potential theoretic
investigation for solutions of such nonlinear equations.

The purpose of this paper is to investigate the boundary behavior of positive solu-
tions of nonlinear elliptic equations and, more generally, positive superharmonic func-
tions satisfying nonlinear inequalities. To state our results, we need to prepare some
notations and terminology. L& be a domain iR”, n > 2, and letdq (z) stand for
the distance from a pointto the boundarys? of 2. A lower semicontinuous function
u: Q — (—o0,+00], whereu # +o0, is calledsuperharmonion € if it satisfies the
mean value inequality

1
>
u(zx) > e

/ u(y)dy for0 < r < do(x),
B(z,r)

where B(z, r) denotes the open ball of centerand radius- andv,, is the volume
of the unit ball. LetA be the Laplace operator k™. It is well known that ifu is

a superharmonic function dn, then there exists a unique (Radon) meaguyen 2

such that

/ () dpin (x) = — / w(@)Ad(z)dz forall € C2(Q),
Q Q

whereC§°(Q2) is the collection of all infinitely differentiable functions vanishing out-
side a compact set ift (see [6, Section 4.3]). The measyrg is called theRiesz
measureassociated with:. If p,, is absolutely continuous with respect to Lebesgue
measure andu,, () = f,(x)dz with f, being a nonnegative locally integrable func-
tion on {2, then we callf,, the Riesz functiorassociated with, for convenience. It is
clear thatf,, = —Au for u € C%(Q).

In the previous papers [30, 31], the author studied positive superharmonic functions
u on ) having an associated Riesz functifnand satisfying the nonlinear inequality

fu(z) < cda(z) “u(z)? for almost every: € , (1.1)

wherec > 0, « > 0 andp > 0 are constants. The following boundary growth estimate
was proved.

Theorem B. LetQ) be a bounded!>'-domain inR™, n > 2. Suppose that

1
0<p§n7+1 and a<n+1-—pn-—1).
7 —
If u is a positive superharmonic function énhhaving an associated Riesz functifp
which satisfiegl.1), then there exists a constaAtdepending only om, ¢, a;, p and {2
such that

A
u(z) < —— forz € Q.
(z) < S (z)n1



Now, let0 < p < 2/(n—1) anda < 2—p(n—1). If uis a positive superharmonic
function on the unit balB having an associated Riesz functifjnwhich satisfies (1.1),
then Theorem B implies that

ful@) < (1= [a])” " u(x)?
A <
1 — [afjplr=ite = (1 — [a])?

< ( for almost everyr € B.

Hence, this together with Theorem A yields the following.

Theorem C. Letu be a positive superharmonic function éhhaving an associated
Riesz functiory,, which satisfie¢l.1)with Q = B and some constants

2
0<p§71 and a<2-—p(n-—1).
n

Thenu has finite nontangential limits almost everywheredds

The main result (Theorem 1.1) in this paper asserts that the conclusion of Theorem
C is valid for the almost sharp range< p < n/(n — 2) anda < 2. We will
show this in uniform domains, introduced by Martio and Sarvas [41] in their study of
approximation and injectivity properties of mappings. See also [21, 40, 56]. A proper
subdomair2 of R™ is called auniform domainif there exists a constant such that
each pair of pointg;, y € Q can be connected by a rectifiable curvén 2 with the
following properties:

t(y) < Az —yl, (1.2)
min{l(v(x, 2)),l(v(z,y))} < Ada(z) forall z € v, (1.3)

where/l(y(x, z)) denotes the length of the subaygr, z) of v from x to 2. A uniform
domain is a domain satisfying only the interior conditions for an NTA domain (see
[26, 33]). Note that the conditions (1.2) and (1.3) can be extendedgos €, and
therefore the nontangential set with apertignd vertex at € 912 defined by

Do) ={z € Q:|z—¢| < 0da(x)}

is nonempty and is accessible frofiy (£) whenevebt is sufficiently large, sag > 6.

A functionw on (2 is said to havenontangential limitZ at¢ € 99 if u(z) tends tof as

x approaches t¢ within T’y (§) for any# > 6. We defineN'S,, () as the collection
of every positive superharmonic functianon 2 having an associated Riesz function
fu and satisfying

1im( ess sup fu(ﬂf)(x)p) < 00 (1.4)

r=0\zery (6)nB(e,r) 0 (T) "

for each¢ € 092 andf > 6. The Fatou type theorem in our context is stated as
follows.



Theorem 1.1. LetQ2 be a uniform domain ifR™, n > 3. Suppose that
n
0<p<—— and a<2.
n—2

If u € NS, (), thenu has finite nontangential limits 002 except for a set of
harmonic measure zero.

For two dimensional result, we require the following conditionfanAt £ € 012,
the Green functioiiz (z, y) for Q satisfies

G
lim sup ( sup 2@, y) ) < o0 (1.5)
To(6)30—¢ \yeB(z,00(x)/2) 108(0a(z)/|z — y|)

for eachy > 0q. The elementary geometrical sufficient condition for this is the exterior
corkscrew condition: there exist constamts > 0 and A > 1 such that for each

0 < r < ¢, there is a ball of radius/A, contained inB(¢, ) \ Q. Therefore, every
boundary point of an NTA domain iR? satisfies (1.5).

Theorem 1.2. Let( be a uniform domain ifiR? such thaiR?\ 2 is non-polar. Suppose
that
0<p<oo and a<2.

If u € NS, (), thenu has finite nontangential limits 002 except for a set of
harmonic measure zero. Furthermore, if we assume that every poiid cfatisfies
(1.5), then the conclusion is valid far = 2 as well.

If Qis a Lipschitz domain, then its harmonic measure is absolutely continuous with
respect to the surface area measuredtn(see [14]). Thus the following corollary
holds.

Corollary 1.3. Let{2 be a Lipschitz domain iR, n > 2, and let0 < p < n/(n —2)
anda < 2. Ifu € N'S,, o(2), thenu has finite nontangential limits almost everywhere
on of).

Note that the bounds < n/(n — 2) anda < 2 are almost sharp in Corollary 1.3.

Theorem 1.4. Let B be the unit ball oR"™, n > 2, and letc > 0 be a constant. Assume
either
n
p>—— Oor a>2.
n—2

Then there exists a positive functiare C?(B) satisfying
0 < —-Au(z) <c¢(l - |z])"u(z)? inB
such thatu fails to have nontangential limits everywhere®B. In particular,

limsup wu(z) = oo
Tg(&)3z—¢€

for every¢ € 9B andf > 1.
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Figure 1: The ranges ¢@f > 0 anda > 0.

The above results are figured as follows:

Also, we shall obtain the following Littlewood type theorem concerning the best
possibility of nontangential approaches. By we denote the group of all orthogonal
transformations oiR™.

Theorem 1.5. Let B be the unit ball ofR™, n > 2, and letp > 0, @« < 2 andc¢ > 0
be constants. Assume that- 0 is sufficiently small only whem = 1, and thatV is a
measurable function oB such that

[V (z)| < ¢(1—|z|)~® foralmost every: € B.
Suppose that is a curve inB ending ate = (1,0, - - - ,0) such that

. |z — e
lim =
ydz—e 1 — ‘x|

(1.6)

Then there exists a positive bounded distributional solutieghC'( B) of
—Au=Vu? inB

such that

liminf wu(x)# limsup wu(z) forall O € O.
lz|—1,z€0y |&]—1,2€0y

The rest of the paper is organized as follows. In Section 2, we recall the known
results concerning minimal fine topology. The proofs of Theorems 1.1 and 1.2 are pre-
sented in Section 3. Theorem 1.4 is proved in Section 4. After showing the existence of
positive solutions of-Awu = Vu? which are comparable to a given positive harmonic
function, we prove Theorem 1.5 in Section 5.



2 Preliminary

Let 2 be a domain iR™, n > 2. Whenn = 2, we require thaR? \ € is non-polar.
Thus the Green functio@ (z, y) for Q always exists. Let, € Q be fixed. If{y,} is

a sequence if2 with no limit point in 2, then we observe from the Harnack principle
that{Gq(-,y;)/Ga(zo,y;)} converges locally uniformly to a positive harmonic func-
tion on2. By A(Q2), we denote the collection of all positive harmonic functiongdn
obtained in such a way. Inducing a suitable metric, we see(thatA(2) becomes a
metric compactification of2. ThenQ U A(Q2) andA(Q2) are called theMartin com-
pactificationand theMartin boundaryof €2, respectively. See [6, Chapter 8] for the
details. LetKq(+, &) be theMartin kernelof Q2 associated witl§f € A(Q2) and letE be

a subset of2. By ﬁ’,}’;ﬂ(,é), we denote the lower semicontinuous regularization of the
reduced function of{, (-, &) relative toF in 2 defined by

RIEEQ("@(:&) = igf u(x),

where the infimum is taken over all nonnegative superharmonic functions? satis-
fying Kq(-,&) <uonkE. In generalREQ(,f) < Kq(+, ). AsetE is calledminimally
thin at¢ (with respect ta?) if '

EEQ(.,g) () < Kq(z,§) forsomez € Q.

We say that a functioif on Q2 hasminimal fine limit/ at ¢ if there exists a subsét of
Q, which is minimally thin att, such that
li =/
Q\Eglalt—% f@)
For a measurg on (2, a functionz — [, Ga(z,y)du(y) is called aGreen potential

of pif [, Ga(zo,y)du(y) < oo for somez, € Q. Letr; be the measure oA(Q)
corresponding to the constant functibim the Martin representation

1:/A(Q)K(x,§)dV1(§)-

The following general result was proved by Doob [18] andrhN§5].

Lemma 2.1. Letu be a nonnegative superharmonic functionfénThenu has finite
minimal fine limits/; -almost everywhere afA(§2). Moreover, ifu is a Green potential
on 2, thenu has minimal fine limid v -almost everywhere oA ().

Next, let us recall Aikawa’s results [3]. 2 is a bounded uniform domain, then the
boundary Harnack principle guarantees that the Martin compactific@tion\ (Q?) is
homeomorphic to the Euclidean closuf2e so that the Martin boundarx(£2) can be
identified with the Euclidean boundaf}f2. Moreover, the following result holds (see
[3, Lemma 5]).

Lemma 2.2. Let (2 be a uniform domain and I&€t € 9Q2. Suppose that < 8 < 1
and that{x;} is a sequence converging §owithin I'y(§) for somed > 6. Then the
bubble set J; B(z;, 8da(x;)) is not minimally thin at.



Observe that; and the harmonic measuref@fare mutually absolutely continuous.
The following Fatou theorem for harmonic functions was obtained from Lemmas 2.1
and 2.2 (see [3, Theorem 4] and its proof).

Lemma 2.3. Let Q be a uniform domain and let be a positive harmonic function
on Q. If h has minimal fine limit’ at £ € 02, thenh has nontangential limit at
£. Furthermore,h has finite nontangential limits ofi(2 except for a set of harmonic
measure zero.

3 Proofs of Theorems 1.1 and 1.2

Throughout this section, we suppose thais a uniform domain iR, n > 2. The
symbol A stands for an absolute positive constant whose value is unimportant and may
change from line to line. We start with the following extension of the last assertion of
Theorem A.

Proposition 3.1. Leté € 090, 0 > 0 anda < 2. If n = 2 and(1.5)does not hold at
£, we assumer < 2. Suppose thaf is a nonnegative measurable function @rsuch
that

fz) < for almost every: € I'yp(§) N B(&, p) 3.1)

A
da(x)e
with some constantd > 0 andp > 0. If the Green potentiafQ Ga(-,y)f(y)dy has
minimal fine limit0 at &, then it has limit0 at £ alongT'y(£).

Proof. Letz € Q2 befixed andleD = O\ B(xo, da(z0)/2). Sincef, Ga(-,y) f(y)dy
is nonnegative superharmonic @n it follows from the Riesz decomposition theorem
that

/ Gl 9)f (w)dy = hp(z) + / G, 9) f(w)dy, T
Q D

whereh p is a nonnegative harmonic function én Let us first show thafD Gp(,y)f(y)dy
has limit0 at¢ alongI'y(§). For0 < e < 0/(260 + 1) andx € D, let

Uy(z) = / G (. 9)/ (v)dy,
D\B(z,e6q(x))

Un(z) = / G () f () dy.
B(.’I,‘,E(SQ (’I‘))

Let {z;} be arbitrary sequence Iy (&) N B(&, 0 (z0)/4) converging t&€. By Lemma
2.2, we find points;; € B(z;,£dq(2;)/2) such that

lim [ Ga(wi,y)f(y)dy = 0.

i—oo Jo

TThis is to guarante& p (z,y) < Alog(1/|z — yl) in the general case of = 2. If R? \  contains a
disk, then we need not consider this decomposition.



It follows from the Harnack inequality that

Ur(zi) < A Gp(zi,y) f(y)dy < A/ Gal(zi,y) f(y)dy,
D\B(z;,e60(z;)) Q
where A depends only om. HencelU; (z;) — 0 asi — oo, and sal; has limit0 at¢

alongT'y(&).
We next considel/;. Letx € T'y(§) N B(&, da(xo)/4) be sufficiently close t@

and lety € B(x,edq(x)). Then
Sa(y )

ly =&l <ly— 2|+ ]z & < (e +0)da(x) < (e +9) < 2050(y),

and soy € I'39(€) N B(&, p). Observe that

1 .
GRz\m(xvy) < Alog m if n = 2 (general case)
Go(%,9) <4 Go(,y) < Alog |i9£2| if n = 2 and (1.5) holds
Al —y]2m if n> 3.

Therefore

/ (z,y)dy <
B(x,€5g(m))

1 .
Adq(z)%e?( 1+ log e )> if n = 2 (general case)

Abdq(x)?e?( 1+ log 1) if n = 2 and (1.5) holds
Adq(z)%e if n > 3.
< A6

Sincef(y) < Ada(y q(x)~ fora.e.y € B(z,edq(x)) by (3.1), we obtain

A5Q( )2 ag2( 1 4 log —— ) if n=2 (general Case)
59(30)

1 .
Ua(®) < § g2 (1 + log - if n =2 and (1.5) holds
Ag? if n> 3.

Here we used: < 2. Lettingz — ¢ within 'y (¢) ands — 0, we seethaf, Gp (-, y) f(y)dy
has limit0 at¢ alongI'y (§).

By the same way t&/;, we observe that, has limit0 at£ alongI'y(§) as well.
This completes the proof. O

In the rest of this section, we suppose that NS, ,(Q2) with p > 0 anda € R.
By the Riesz decomposition theorem, we have

u(z) = h(x) + /Q Gaol(z,y) fuly)dy forz € Q,

whereh is the greatest harmonic minorant @fon Q and f,, is the Riesz function
associated with.. Thenh is nonnegative. By Lemmas 2.1 and 2.3, we observe that
there exists a sdf C 92 of harmonic measure zero such that for eachof2 \ E,



e h has nontangential lim#t at&,
o [, Gal-y)fu(y)dy has minimal fine limi0 até.
Here, we state an immediate consequence of Proposition 3.1.

Corollary 3.2. Leté € 09,0 > 0q,p > 0anda < 2. If n = 2 and(1.5)does not hold
at&, we assumer < 2. Suppose that € N'S, () is bounded o'z (&) N B(&, p)
with somep > 0 and has minimal fine limit at £. Thenu has limit¢ at £ alongI'y (£).

Proof. By assumptiony < A onTy4(£) N B(&, p). Therefore, by (1.4),
fulz) < Adg(z) %u(z)? < Adg(x)~* for almost everyr € I'yp(€) N B(E, p).

Proposition 3.1 implies thaf, Ga (-, y) fu(y)dy has limit0 at alongl'y(¢). Thus the
conclusion follows from this and Lemma 2.3. O

In particular, the following holds.

Corollary 3.3. Letp > 0anda < 2. If n = 2 and(1.5)does not hold af, we assume
a < 2. Suppose that € N'S,, ,(2) is bounded oif2. Thenu has finite nontangential
limits on o2 except for a set of harmonic measure zero.

Remark3.4. In the above corollaries, we need not impose the upper boung dbr
though the boundedness ©fis required forn > 3 andp > n/(n — 2). See Section
4. As seen in the argument below, we can remove the boundedness dfie case

p<n/(n—2).
Let us continue the proof of Theorems 1.1 and 1.2. In what follows, &0\ E.
By Corollary 3.2, it is enough to prove the following proposition.

Proposition 3.5. Suppose that > 0 anda € R are asin Theorem 1.1 or 1.2. Lét>
0q. Then there exists > 0 such that, € N'S,, »(2) is bounded o'y (&) N B(&, p).

Let us prove Proposition 3.5. Lete T'y(£) N B(&, p) with 8 > 6 and0 < p < 1
being sufficiently small. In view of Lemma 2.2, we may assume that

T € Bz, 60(2)/4) sit. /Q Go(w,y) fuly)dy < 1. 3.2)

The following lemma is elementary.
Lemma 3.6. There exists a constant depending only om such that forz € 2 and
x,y € B(z,00(2)/4),
Gole.y) > Hle—yP " > Tba(=) "
Qlt,y) = A Y = 1% .

Proof. Let z,y € B(z,0a(z)/4) and letB = B(y,30a(z)/4). Then|z — y| <
da(2)/2 andB C Q. SinceGg > G on B x B, the required inequality is obtained
by using the explicit formula fo€ 5 (see [6, Theorem 4.1.5]). The detail is left to the
reader. O

10



Lemma 3.7. There exists a constart depending only on such that

a2 | Fuly)dy < A
B(Z,(ng(z)/ﬁl)
Proof. Letw € B(z,0q(z)/4) be asin (3.2). By Lemma 3.6,

1
12 [ Gty 2 g [ oy

Thus the lemma is proved. O

Forzx,z € Q andj € N, we define
HZ,J'(I) = h(l‘) +/ ) GQ(I, y)fu(y)dyv
Q\B(2,27-150(2))
Vu@= [ Galea)fuwdy
3(2,27371552(2))

As in the proof of Proposition 3.1, the use of the Harnack inequality leads to the
following.

Lemma 3.8. For eachj € N, the functionz — H. ;(z) has nontangential limif at£.
In particular, this function is bounded dry () N B(&, p).

To obtain Proposition 3.5, it is enough to show the following lemma because of
u(z) = Haj(2) + Ve (2).
Lemma 3.9. There exist a constamt andm € N such that
Vom(z) <A forz eTy(&) NB(E, p). (3.3)

The proof of Lemma 3.9 is given separately in two dimensions (thecas& and
« = 2) and higher dimensions.

Proof of Lemma 3.9 fon > 3. Let

log(q/(qg — 1))

n
max{l,p} <¢< — and N= [ log(q/p)

[+

Takez € T'y(§) N B(&, p). Since
Go(z,y) < AGa(z,y) forxz € B(z,2777%6q(2)) andy € Q\ B(z,277 15q(2))

by the Harnack inequality, it follows from Lemma 3.8 that there exists a congtant
(independent of) such that ift < j < N, then

H.;(x) <AH, ;(z) < AH.n(2) < A forz e B(z,2_j_269(z)). (3.4)

11



Letr = dq(z) and lety, (¢) = r2f.(z + r¢). Thenr < p < 1. For simplicity, we
write B(r) = B(0,r). Noting Go(z,y) < Alz — y|>~™ and making the change of
variablesr = z + rn andy = z + ¢, we have

00 5)

al ) Ba-i-1) N —C["2 3¢

Letl < j < N andxk > 1. Applying the Jensen inequality for the probability measure

|n — ¢[P7"d¢ .
fB(Q*j—1) In — ¢|2—md¢ onB(2777h),

we have
V()"

VS
B(2-i-1) [n— (]2

V.jz+m)t <A

By the Minkowski inequality and < n/(n — 2),

1/q
([, )
B(2-i-1)
(0" > )”q
SA(/B(zfl)(/ B(2-i-1) [n—=¢|"7? =z (3.6)

dn 1/q
A _— L (O)d
= /B(2 i- 1)(/}3(2 -1y 77—C|q("2)> v:(0"

<A/ ¢)~dc.
271)

By (3.4),
u(z4+rn) =H, ;j(z+rn) +Vo;(z4+rn) < A+V, (2 +rn) forne B(27772).

Sincedq(z + 1) =~ dq(z) = r < 1forn € B(1/2), it follows from (1.4) andy < 2
that

Y. (n) = T2fu(2’ +rn) < ATQ_O‘u(z +rn)?
<A+ AV, ;(z+rn)P foraene B2 77?).

Here we used the inequality. + b)! < 2!(a’ + ') for a,b,t > 0. Lets = q/p > 1.
Then, by (3.6),

/ Galn)dn < A+ A / V.. (z + rn)dy
B(2-1-2) 2-i-1)

q
<ava(f - wrac) .
B(2-7-1)

12



We use this inequalityv times to obtain

Jrw et aesasa(f o )
B@=4) B(2—N-1)

2

N-—-2 q
<A+A(/ (0 dc)
B(2-N)

qN
3A+A(/ wz@)dc).
B(1/4)

Our choice ofV implies thats’™ > ¢/(¢—1), equivalent ta™ < (s —1)q. Therefore

VAN

SN
By (3.5) and the i8lder inequality,
v 1/sN
Vawa() <4 U-(0) g < A< [ e dc)
B(2-N-2) q B(2-N-2)

< A+A(/ wz(C)dc) .
B(1/4)

Therefore Lemma 3.7 yields that

. pN
Vont1(2) <A+ A</ 5Q(Z)anu(y)dy> < A4,
B

(2:00(2)/4)

whereA is independent of. Hence (3.3) withn = N+1 holdsinthecase > 3. O

Proof of Lemma 3.9 fon = 2; general case.We show (3.3) withn = 2. By consid-
ering?\ B(xzo, da(xo)/2) instead of if necessary (see the proof of Proposition 3.1),
we may assume that

Go(z,y) < Alog

forz,y € QN B(,1). 3.7)
|z -yl
The proof is similar to one of higher dimensions, so the detail of computations below
is left to the reader. Let = 1,2. Letr = dq(z) andy.(¢) = r2f.(z + r¢). Making

the change of variables= z + rn andy = z + r(, we have by (3.7)

1
Veslerrm <A [ wOlon

dc.

Letg > max{1,p} ands = ¢/p > 1. By the Minkowski inequality,

l/q 1
</ Vea(z+ m)qdn> < A<1 + log > / Y. (¢)dC.
B(1/4) T/ JB(1/4)

13



Since
V.(n) < Ar?™® + Ar?7°V, 1 (z +rn)P  fora.e.n € B(1/8),

it follows that

1 q q
/ Y. (n)°dn < Ars=a) 4 Aps(2-) (1 + log ) (/ ¢z(§)dC> .
B(1/8) r B(1/4)

By the Holder inequality,

V. <A 1
2(2) < B(1/8)¢ 2(¢)log — qu

1 1/s
A — L (0)°
< <1+logr) (/B(l/g)zb © dc)
P P
o)t (] o))

If a < 2, then
1 P
2“<1+1og>§r2a<1+log) <A foro<r<l.
T r

This and Lemma 3.7 yield (3.3) withh = 2. O

Proof of Lemma 3.9 forn = 2; (1.5) holds. Assume that satisfies (1.5). Let € Q
be sufficiently close tg and letz, y € B(z, dq(z)/4). Then (1.5) implies

da(2)

Ga(z,y) < Alog o=yl

Lettingr = dq(z) andy, (¢) = r2f,(z + r¢), we have
V. <A 2(¢)log ——dq,
et < /B(W)w (€)1og ¢

and so by the similar way to the above general case-6f2,

[ wtran< A+A( / wz(oczc) .
B(1/8) B(1/4)

Hence the BIder inequality and Lemma 3.7 give

V. <A )1
2(2) < /B(l/g)w (O)log = |<|

1/s
ca( [ wra) <a
B(1/8)

This completes the proof. O
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4 Proof of Theorem 1.4

In this section, we show Theorem 1.4 by constructing an unbounded function. The
proof is given separately for > 3 andn = 2. DenoteB(r) = B(0, ).

Proof of Theorem 1.4 for > 3. Letx > 1 be such that

14 2O if p >
K e o
p(n—2)—n P02

o—2 n
<l4+ —— ifp<——anda > 2.
" +n—p(n72) Ps0 2 “

Let A = nk — n + 2. Note that for any paifp, @) & (—oo,n/(n — 2)] x (—o0, 2],
a+pA—2k)— A >0. (4.1)

For simplicity, we writea; = 2. Let1 < 6 < 2. For eachi € N, we takeN;-points
{z:;}%, iIn9B(1 — a; ") such that
o {B(x;;,5 " a; (0 — 1))}}%, is mutually disjoint,

e 9B(1—a;") c Uy Blzij.a; (0 —1)).
Observe that for each € 9B, the nontangential sdt,(¢) contains infinitely many
pointsz; ; and that
N; < Aa? ™t 4.2)

Letr; = a; "(0 —1). ThenB(x; ;,r;) C BandB(x; ,r:/5) N B(xyk,,ry/5) = 0 if
(i,7) # (k,1). Let f; be a nonnegative smooth function dnsuch thatf; < a?/i? on

B and

a)

7 N;
fi= 27 on Uj:l B(wz}jﬂ"i/l()%
0 onB\UY, B(xi;,r:i/5).

Let A; be a constant such that
1
Gp(x,y) > A—|x - y\27" fory € Bandz € B(y, (1 — |y|)/2). (4.3)
1

By (4.1), we can tak&, € N such that

c I/n(ﬂfl)z paq+p(/\—2n)—>\
< M52 A, > i2(p—1)

51l >1 fori> i, (4.4)

wherev,, is the volume ofB. Definef = Z;’iig fi- Then (4.2) anth—2+A—nk =0

15



imply that

[ a=ubseas =3 [ 1=ty

1=10

<ay > | (1= LoD i (w)dy

B(Ii,j.ﬂ“i/s)

o0 —14+A—nk oo n—2+)\—7m

SAZ%T]\QSAZGZT<OO.

i=ig 1=ig

Thusu := [, Gp(-,y)f(y)dy is well defined onB. Sincef is locally Holder con-
tinuous onB, it follows from [48, Theorem 6.6] that € C?(B) is a positive so-
lution of —Au = f in B. Also, the mean value property and (4.3) imply that for
T < 8B(xi,j,r7;/5),

u(z) > / Gp(z,y) fi(y)dy
B(z;,j,r;/10)

A n 2 A—2k
al} rl V(0 —1)% a;
= ﬁ”nﬁlnGB(x’xivj) > 952 A, 12.2

By the minimum principle,

Un(0 — 1)2 g} 2%
u(z) > 25152/11) L forz € Blai,ri/5) (4.5)

In particular,
V(0 —1)? a} 2%
2752 A, 12
Since — 2k > 0 andI'y(§) contains infinitely many points, ;, it follows that

u(wij) >

limsup wu(z) = oo,
Lo (§)dz—¢

and sou fails to have nontangential limits everywhere@B.
We finally show that-Au < e(1—[z[)~uPin B. If = & U2, UM, Blzij.r4/5),
then
(1 —|z|)"“u(z)? > 0= f(x) = —Au(z).

Letz € B(x; j,r;/5). Then, by (4.5) and (4.4),

2\ P oat+p(A—2k)
Cleheu(pr > & (0 =D\ a;
et = |z u(@)" = 57 —gegea, i2p
a.

2 > f(z) = —Au(z).

>

N

Y

Hence—Au(z) < ¢(1—|x|)~“u(z)? for z € B. This completes the proof of Theorem
1.4 forn > 3. O
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Proof of Theorem 1.4 fon = 2. The proof forn = 2 is parallel to that fon > 3. We
need to consider only the cage R anda > 2. Letl < k < /2. Then\ = 2k < o
Take {z; ;} and definef; and f in the same way. The same reasoning implies that
u = [ Gp(-,y)f(y)dy is a positiveC?-solution of—Aw = f in B. But, instead of
(4.3), we use

1
Ay

1— |yl
|z — 1y

Gp(z,y) > —log fory € Bandz € B(y, (1 - [y[)/2).

Then (4.5) is replaced by

(0 —1)%(k — 1) log?2 .
1004,

u(z) > forz € B(x;;,7:/5),

becauséog a ! = i%(k — 1) log 2. Henceu fails to have nontangential limits every-
where ondB. Also, this inequality implies that far € B(x; j,7:/5),

o c (m(0—1)%(k—1)log2\” X pt2 a}
R e ag A

a)\

> %> f(@) = —Au(@)

whenevet > iy is sufficiently large. Hence Theorem 1.4 is valid foe= 2. O

5 Proof of Theorem 1.5

First, we show the existence of positive solutions-aku = Vu?, which are compa-
rable to a given positive harmonic function.

Lemma 5.1. Letp > 0, @« < 2 andc > 0 be constants. Assume that> 0 is
sufficiently small only whep = 1. Suppose that” is a measurable function on the
unit ball B such that

[V(z)] <c(1—|z|)~ foralmostevery € B.
Let h be a harmonic function o such that

0<infh <suph < cc.
B B

Then there exist a constaint> 0 and a positive distributional solution € C(B) of
—Au=VuP inB
such that

%h(x) <u(x) < %h(l‘) forx € B. (5.1)

17



Proof. For X > 0, let

N | >

Wy = {w €C(B): 2 < w(z) < 3;}

Define the operator oWy, by
zmmm=A+E%l/Gm%wvwmwwmwwyfmxea
B

Now, letg(z) = [, Gg(z,y)(1 — |y|)~“dy. Observe that
g(z) = g(x) forz € Bandz € 0B(|z]).

By the mean value inequality and< 2, we have

1
g(z) = S@B()) /(BB(I) g(z)do(z) < ¢(0) < oo forz e B\ {0},

whereo is the surface area measure®B(|x|). Let A\ > 0 satisfy

i3 T if p £ 1. (5.2)

1
2
Also, if p = 1, then we assume that> 0 is sufficiently small so that (5.2) holds. Let
w € Wy. Takez, z € B andr > 0 (small). Then

/B(z,r)

SA/B(z,r){GB(:C’y)+GB(Z7y)}(1|y|)ady*>0 (r = 0).

G («T,y) G (Zvy) P p
z@)__iw)\wwmwﬂw@nw

Also, since there is a constaAtdepending om such that
Gp(z,y) < A(1—[2])(1 = |y|) forz € B(z,r/2)andy ¢ B(z,7),
it follows from the Lebesgue convergence theorem that

[ | ERE ) g Pl dy 0 (o 2).
B\B(z,r)
Therefore

h(z) h(z)

[Thw(z) — Thw(z)] =0 (z— 2),
and sol\w € C(B). Moreover, by (5.2),

3A\" (supp h)?
— < - ~ -2 7
[Thw(z) — A < < ) nfnh

A
< —.
5 cg(0) < 5
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HenceT\w € Wy. If wy, ws € Wy, then it follows from the mean value theorem and
(5.2) that

(supp h)”
IThwr — Tawzlleo < infl; 5 cg(0)[|w} — w ||
3A\""" (supp )P
<o(5) B g0 el

1
< 5”1‘}1 - w2||00~

ThereforeT), is a contraction mapping on the Banach spHée By the fixed point
theorem, we findv € W), such thatl\w = w. Letu(x) = h(z)w(x). Then

u(w) = h)Tyw(o) = Mh(e) + [ Galen)V@)ulw)Pdy.
B
The Fubini theorem implies that
- [ w@sotrts = [ Viutrowi fors e CF(B).
B B

and sou is a distributional solution of Au = Vu? in B. Moreover,
éh(ac) <u(z) < %h(:v)
2 2

Thus Lemma 5.1 is proved. O

Itis well known that bounded harmonic functions do not necessarily have tangential
limits. The following result was proved by Aikawa [1, 2]. See also [27].

Lemma 5.2. Let~ be a curve inB ending ate = (1,0,--- ,0) and satisfying1.6).
Leta,b € R be such that: < b. Then there exists a bounded harmonic funcficon
B suchthate < h <bonBand

liminf h(zx) =a<b= limsup h(z) foral O € O,
|z]—=1,2€0~ |z|—=1,2€0

whereQ denotes the group of all orthogonal transformationsiih
Now, Theorem 1.5 is proved immediately.

Proof of Theorem 1.5Let a, b be positive numbers such thad¢ < b and leth be a
harmonic function onB obtained in Lemma 5.2. By Lemma 5.1, we find a positive
distributional solution: of —Au = VuP in B satisfying (5.1). Then

3\ 3\ A
lim inf < — liminf A(z) = — =b
\z\g{l,lm%mu(x) -2 |m|gr11,géow () 2 ¢ < 2
and
. AL A
limsup wu(z) > = limsup h(x) = =b.
|z|—1,2€0~ 2 |z|—=1,2€0y 2
Thus Theorem 1.5 is proved. O
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