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Abstract

We discuss the possible removability of sets for continuous solutions of semi-
linear elliptic equations of the form−∆u = F (x, u). In particular, we show that
a setE in Rn is removable forα-Hölder continuous solutions of such equations if
and only ifn− 2 + α-dimensional Hausdorff measure ofE is zero.
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1 Introduction

Throughout this paper, letΩ be a bounded domain inRn (n ≥ 2) and letE be a
compact subset ofΩ. By Hβ(E) we denote theβ-dimensional Hausdorff measure of
E. It is well known that if the capacity ofE is zero, then every bounded harmonic
function onΩ \ E can be extended toΩ as a harmonic function. ThenE is said to be
removablefor bounded harmonic functions. In 1963, Carleson [6] have investigated
removable sets for Ḧolder continuous harmonic functions. Namely, he proved that if
Hn−2+α(E) = 0 with 0 < α ≤ 1, thenE is removable forα-Hölder continuous
harmonic functions. Moreover, ifHn−2+α(E) > 0 with 0 < α < 1, then there exists
anα-Hölder continuous function onΩ which is harmonic onΩ \ E, but does not have
a harmonic extension toΩ. Note that the last statement for the caseα = 1 fails to
hold in general. Indeed, Uy [18] constructed a compact setE with Hn−1(E) > 0 such
thatE is removable for Lipschitz continuous harmonic functions. After that, Ullrich
[17] considered the Zygmund class instead of the Lipschitz class to obtain a necessary
and sufficient result in the caseα = 1: E is removable for harmonic functions in
the Zygmund class if and only ifHn−1(E) = 0. Abidi [1] obtained a similar result
for the Zygmund class of orderα with 0 < α < 2. Also, removability theorems for
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subharmonic functions conditioned by the growth of mean oscillation were given by
Shapiro [16] and Kaufman and Wu [8].

Some of the above results were extended top-harmonic functions (i.e., continuous
solutions of thep-Laplace equation). In this case, the size of removable sets depends
on p as well. The result that compact sets withp-capacity zero are removable for
boundedp-harmonic functions was due to Serrin [14, 15]. Kilpeläinen and Zhong
[9] established the removability theorem corresponding to Carleson’s:E is removable
for α-Hölder continuousp-harmonic functions if and only ifHn−p+α(p−1)(E) = 0.
See also [5, 12] for extensions to metric spaces. Recently, Ono [13] obtained a similar
result for Ḧolder continuous solutions of quasilinear elliptic equations with lower order
terms. The model equation is∆pu = V |u|p−2u, where∆p is thep-Laplacian andV
is nonnegative and bounded.

Also, there are investigations concerning a removable isolated singularity for semi-
linear elliptic equations with nonlinear terms. Brezis and Veron [4] proved that if
p ≥ n/(n − 2), then any isolated point is removable for every solution of∆u =
|u|p−1u, where∆ is the Laplacian onRn. Lions [11] studied positive solutions of
−∆u = up and showed that the equation can be extended up to an isolated point
whenp ≥ n/(n − 2). For the case1 < p < n/(n − 2), it was also proved that
any isolated point is removable for bounded positive solutions of−∆u = up. Baras
and Pierre [3] characterized removable sets for such equations in terms of the Sobolev
W 2,p′-capacity, wherep′ = p/(p− 1). See also [10, 19]. However, the Carleson type
removability theorem for Ḧolder continuous solutions of semilinear elliptic equations
is not known. We will prove, for instance, the following theorem.

Theorem 1.1. Letp > 1 and0 < α < 1. ThenE is removable forα-Hölder continu-
ous solutions of−∆u = |u|p−1u if and only ifHn−2+α(E) = 0.

The size of removable sets in the above theorem is independent of nonlinear expo-
nentp. This means that results can be obtained for more general nonlinearity. Also, it
might be interesting to investigate the relation between a general modulus of continuity
and Hausdorff measure with respect to a general function. We will state general results
in the next section.

2 Notation and results

To state generalizations of Theorem 1.1, we prepare some notation. The symbolC
stands for an absolute positive constant whose value is unimportant and may change
from line to line. If necessary, we useC1, C2, . . . , to specify them. LetΨH be the
family of positive increasing functionsψ on (0,∞) such that

(A1) ψ(t) → 0 ast→ +0,

and that there exists a constantC1 with the following properties:

(A2) ψ(2t) ≤ C1ψ(t) for all t > 0,
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(A3) for all 0 < r < 5 diamΩ, ∫ r

0

ψ(t)

t
dt ≤ C1ψ(r),

(A4) for all r > 0, ∫ ∞

r

ψ(t)

t2
dt ≤ C1

ψ(r)

r
.

Also, ΨZ denotes the family of positive increasing functionsψ on (0,∞) with (A1)–
(A3) and

(A5) for all r > 0, ∫ ∞

r

ψ(t)

t3
dt ≤ C1

ψ(r)

r2
.

Forψ ∈ ΨH , we denote byC 0,ψ(Ω) the class of all continuous functionsu onΩ such
that for allx, y ∈ Ω,

|u(x)− u(y)| ≤ Cψ(∥x− y∥).

Forψ ∈ ΨZ , theψ-Zygmund classZ ψ(Ω) consists of all continuous functionsu onΩ
satisfying

|u(x− y)− 2u(x) + u(x+ y)| ≤ Cψ(∥y∥),

wheneverx, x ± y ∈ Ω. Observe that ifψ ∈ ΨH , then (A4) implies (A5), and so
ΨH ⊂ ΨZ andC 0,ψ(Ω) ⊂ Z ψ(Ω).

Recallϕ-Hausdorff measure. LetB(x, r) denote the open ball of centerx and
radiusr. For a positive increasing functionϕ on (0,∞) such thatϕ(t) → 0 (t → +0)
and0 < ρ ≤ ∞, we let

H(ρ)
ϕ (E) = inf

∑
j

ϕ(rj),

where the infimum is taken over all possible coverings ofE by a countable collection
of ballsB(xj , rj) such thatrj < ρ. SinceH(ρ)

ϕ (E) is decreasing as a function ofρ, we
define

Hϕ(E) = lim
ρ→+0

H(ρ)
ϕ (E).

This is called theϕ-Hausdorff measureof E. Whenϕ(t) = tβ , we writeHβ(E) for
Hϕ(E) as above. Also,Pϕ(Ω) stands for the class of all measurable functionsV on
Ω with ∥V ∥Pϕ(Ω) <∞, where

∥V ∥Pϕ(Ω) = sup
x∈Rn

0<r<2 diamΩ

1

ϕ(r)

∫
Ω∩B(x,r)

|V (y)| dy.

As nonlinearity, we consider a measurable functionF on Ω × R for which there are
nonnegative functionsV ∈ Pϕ(Ω) andf ∈ C (R) such that

|F (x, t)| ≤ V (x)f(t) for all x ∈ Ω andt ∈ R, (2.1)
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and discuss continuous solutions of semilinear elliptic equations of the form

−∆u = F (x, u), (2.2)

where∆ is the Laplacian and the equation is understood in the sense of distributions.
Our results are stated as follows.

Theorem 2.1. Let ϕ(t) = tn−2ψ(t), whereψ ∈ ΨZ , and letF be a measurable
function onΩ × R satisfying(2.1) for some nonnegative functionsV ∈ Pϕ(Ω) and
f ∈ C (R). Suppose thatu ∈ Z ψ(Ω) is a solution of(2.2) in Ω \ E. If Hϕ(E) = 0,
thenu satisfies(2.2) in the whole ofΩ.

Remark2.2. Observe thatϕ is a positive increasing function satisfying (A1) and (A2)
with ψ = ϕ. Also, it follows from (A5) that for all0 < r < 1,∫ ∞

1

ψ(t)

t3
dt ≤

∫ ∞

r

ψ(t)

t3
dt ≤ C1

ψ(r)

r2
.

Since the left hand side is positive, we havern ≤ Cϕ(r), and soHn(E) ≤ CHϕ(E).

A sharpness ofHϕ(E) = 0 is shown under additional weak conditions onF . Note
thatPϕ(Ω) ⊂ L 1(Ω). Denote byνn the volume of the unit ball ofRn.

Theorem 2.3. Let ϕ(t) = tn−2ψ(t), whereψ ∈ ΨZ , and letF be a measurable
function onΩ × R satisfying(2.1) for some nonnegative functionsV ∈ Pϕ(Ω) and
f ∈ C (R). In addition, we assume that

(i) for eachx ∈ Ω, F (x, ·) is nonnegative on(0,∞) andF (x, ·) ∈ C (0,∞),

(ii) there are numbersm0 > 0 andε > 0 such that for each0 < m ≤ m0, we find
M > m with

∥f∥L ∞[m,M ]QV ≤M − ε, (2.3)

where

QV =


C1ψ(1)∥V ∥Pϕ(Ω)

nνn
+

∥V ∥L 1(Ω)

n(n− 2)νn
(n ≥ 3),

C1ψ(5 diamΩ)

2π
∥V ∥Pϕ(Ω) (n = 2).

If Hϕ(E) > 0, then there existsu ∈ Z ψ(Ω) which satisfies(2.2) in Ω \ E, but not in
the whole ofΩ. Moreover, ifψ ∈ ΨH andHϕ(E) > 0, then there existsu ∈ C 0,ψ(Ω)
which satisfies(2.2) in Ω \ E, but not in the whole ofΩ.

Note that condition (2.3) is satisfied for many semilinear equations. Iff is increas-
ing, then∥f∥L ∞[m,M ] = f(M) for anym ≤M . Thus the following hold:

• The casef(t)/t→ 0 (t→ +0): We findm0 > 0 such that for0 < t ≤ 2m0,

f(t)

t
QV ≤ 1

2
. (2.4)

Let ε = m0 andM = 2m0. Then (2.3) is satisfied for everyV ∈ Pϕ(Ω).
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• Other case: Takem0 = 1, ε = 1 andM = 2 for instance. IfQV ≤ 1/f(2),
then (2.3) is satisfied.

If f is any function such thatf(t)/t → 0 (t → ∞), then we findm0 > 0 such
that (2.4) holds for allt ≥ m0. Let 0 < m ≤ m0. TakeM > max{2,m0} with
∥f∥L ∞[m,m0]QV ≤M − 1. Then∥f∥L ∞[m,M ]QV ≤ max{M − 1,M/2} =M − 1.
Hence (2.3) holds for anyV ∈ Pϕ(Ω) if we takeε = 1.

Thus Theorem 2.3 is applicable to semilinear equations−∆u = V |u|p−1u (0 <
p ̸= 1, V : any),−∆u = V1u + V2|u|p−1u (p > 0, V1, V2: small),−∆u = V eu

(V : small), etc. In particular, Theorem 1.1 follows from Theorems 2.1 and 2.3 because
V ≡ 1 ∈ Pϕ(Ω).

The plan of this paper is as follows. In Section 3, we prove Theorem 2.1 after
discussing removable sets for superharmonic functions in theψ-Zygmund class. In
Sections 4 and 5, the proof of Theorem 2.3 forψ ∈ ΨZ will be given separately in the
casesn ≥ 3 andn = 2. Section 6 provides the proof of Theorem 2.3 forψ ∈ ΨH .

3 Proof of Theorem 2.1

In this section, we letψ ∈ ΨZ andϕ(t) = tn−2ψ(t). For the proof of Theorem
2.1, we first discuss removable sets for superharmonic functions inZ ψ(Ω). The word
“measure” means “nonnegative Radon measure”. LetGΩ be theGreen functionfor Ω.
For a measureµ onΩ, we let

GΩµ(x) =

∫
Ω

GΩ(x, y) dµ(y).

Whendµ(y) = f(y)dy, we writeGΩ[f ] for GΩµ. We say thatGΩµ is aGreen poten-
tial of µ onΩ if it is finite at some point inΩ. ThenGΩµ is superharmonic onΩ and
harmonic outside the support ofµ. Moreover, ifΩ is regular for the Dirichlet problem
and the support ofµ is compact inΩ, thenGΩµ vanishes continuously on∂Ω. For
u ∈ L 1

loc(Ω), we write

A(u;x, r) =
1

νnrn

∫
B(x,r)

u(y) dy,

whereνn is the volume of the unit ball ofRn. The following lemma is elementary.

Lemma 3.1. Let r > 0 andx ∈ Rn. If g is a decreasing function on(0,∞), then∫
B(x,r)

g(∥y∥) dy ≤
∫
B(0,r)

g(∥y∥) dy.

Proof. LetQ1 = B(x, r)\B(0, r) andQ2 = B(0, r)\B(x, r). Consider the mapping
z = x − y, which mapsy ∈ Q1 onto z ∈ Q2. Since∥y∥ ≥ r > ∥z∥, we have
g(∥y∥) ≤ g(∥z∥). Therefore∫

Q1

g(∥y∥) dy ≤
∫
Q2

g(∥z∥) dz.

Thus the lemma follows.
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Lemma 3.2. If Hϕ(E) = 0, then there exists a Green potentialv on Ω, which is
harmonic onΩ \ E, such that for eachx ∈ E,

lim sup
r→+0

v(x)−A(v;x, r)

ψ(r)
= ∞. (3.1)

Proof. We provide a proof forn ≥ 3. For the casen = 2, we need to change only the
fundamental solution of the Laplace equation from∥ · ∥2−n to − log ∥ · ∥. Let j ∈ N.
By Hϕ(E) = 0 and (A2), we find finitely many pointsyjk in E and positive numbers
rjk, wherek = 1, · · · , Nj say, such thatE ⊂

∪
k B(yjk, rjk) and

∑
k ϕ(rjk) ≤ 4−j .

Define

u(x) =

∞∑
j=1

2j
Nj∑
k=1

ϕ(rjk)∥x− yjk∥2−n.

Observe thatu is superharmonic onRn and harmonic outsideE. Let x ∈ E and
j ∈ N be fixed. Then∥x − yjk∥ < rjk for somek = k(j, x). Takec > 0 with
n < 2cn−2 (whenn = 2, this is replaced bylog c > 1/2). The mean value inequality
for superharmonic functions implies that

u(x)−A(u;x, crjk) ≥ 2jϕ(rjk)
{
∥x− yjk∥2−n −A(∥ · −yjk∥2−n;x, crjk)

}
.

By Lemma 3.1,

A(∥ · −yjk∥2−n;x, crjk) ≤ A(∥ · −yjk∥2−n; yjk, crjk) =
n

2
(crjk)

2−n.

Therefore, by (A2),

u(x)−A(u;x, crjk) ≥ 2jϕ(rjk)
{
r2−njk − n

2
(crjk)

2−n
}
≥ 2jψ(crjk)

C
.

This shows that (3.1) holds forv = u. Observe that the Green potentialv appearing
in the Riesz decomposition ofu onΩ satisfies (3.1) and is harmonic onΩ \ E. This
completes the proof.

A functionη onRn is said to besymmetricwith respect tox0 ∈ Rn if η(x0 − y) =
η(x0 + y) for everyy ∈ Rn.

Lemma 3.3. Letη be bounded and symmetric with respect tox0 ∈ Ω and letB(x0, r) ⊂
Ω. If u ∈ Z ψ(Ω), then∣∣∣∣∫

B(x0,r)

η(y){u(y)− u(x0)} dy
∣∣∣∣ ≤ Crnψ(r)∥η∥L ∞(B(x0,r)). (3.2)

Proof. Making a change of variables and splittingB(0, r) into the upper half and the
lower half, we have∫

B(x0,r)

η(y){u(y)− u(x0)} dy

=
1

2

∫
B(0,r)

η(x0 + y){u(x0 − y)− 2u(x0) + u(x0 + y)} dy.

Sinceu ∈ Z ψ(Ω) andψ is increasing, this yields (3.2).
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Let u : Ω → (−∞,∞] be a function which is locally bounded below. Then the
réduiteof u onΩ is defined by

Ru(x) = inf v(x),

where the infimum is taken over all superharmonic functionsv onΩ satisfyingv ≥ u
onΩ. Let R̂u stand for the lower semicontinuous regularization ofRu, which is called
the balayageof u on Ω. Then R̂u is superharmonic onΩ (see [7, Theorem 8.1]).
Also, if u ∈ C (Ω), thenu ≤ R̂u onΩ andR̂u is continuous onΩ and harmonic on
{x ∈ Ω : R̂u(x) > u(x)}. See [7, Theorem 8.14].

Lemma 3.4. Let u ∈ Z ψ(Ω) be superharmonic onΩ \ E and let v be a Green
potential onΩ satisfying(3.1) for eachx ∈ E. Thenu− R̂u + v is superharmonic on
D = {x ∈ Ω : R̂u(x) > u(x)}.

Proof. Letw = u− R̂u + v. Thenw is superharmonic onD \ E and lower semicon-
tinuous onD. To show thatw is superharmonic onD, it suffices to prove that for each
x ∈ E ∩D,

lim sup
r→+0

w(x)−A(w;x, r)

r2
≥ 0. (3.3)

Let x ∈ E ∩ D and letr > 0 be such thatB(x, r) ⊂ D. Then, by Lemma 3.3 with
η ≡ 1,

|u(x)−A(u;x, r)| ≤ Cψ(r).

SinceR̂u is harmonic onD, we have

w(x)−A(w;x, r)

ψ(r)
=
u(x)−A(u;x, r)

ψ(r)
+
v(x)−A(v;x, r)

ψ(r)

≥ −C +
v(x)−A(v;x, r)

ψ(r)
.

Therefore (3.1) implies

lim sup
r→+0

w(x)−A(w;x, r)

ψ(r)
= ∞,

and so (3.3) holds. Hencew is superharmonic onD.

Lemma 3.5. Let u ∈ Z ψ(Ω) be superharmonic onΩ \ E. If Hϕ(E) = 0, thenu is
superharmonic onΩ.

Proof. Let u ∈ Z ψ(Ω) be superharmonic onΩ \ E. Without loss of generality, we
may assume thatΩ is regular for the Dirichlet problem and thatu ∈ C (Rn). Then, by
[7, Theorem 9.26],

R̂u = u on∂Ω. (3.4)

LetD = {x ∈ Ω : R̂u(x) > u(x)}. We claim thatD = ∅. If this is true, thenu = R̂u

onΩ, and sou is superharmonic onΩ. To prove the claim, we suppose to the contrary
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thatD ̸= ∅. Let v be a Green potential onΩ obtained in Lemma 3.2. Forδ > 0, we
define

uδ(x) = u(x)− R̂u(x) + δv(x).

Thenuδ is superharmonic onD by Lemma 3.4, anduδ ≥ 0 on ∂D in view of (3.4).
The minimum principle shows thatuδ ≥ 0 onD. Asδ → 0, we haveR̂u ≤ u onD\E
becausev is finite there. Henceu = R̂u onD \ E. SinceHn(E) = 0 by Remark 2.2,
the continuity implies thatu = R̂u onD. This is a contradiction. HenceD = ∅.

We are now ready to prove Theorem 2.1. For a signed measureν, we write|ν| for
the total variational measure ofν.

Proof of Theorem 2.1.Let u ∈ Z ψ(Ω) be a solution of (2.2) inΩ \ E. Thenf(u) ∈
C (Ω). Considering a bounded open setω with E ⊂ ω andω ⊂ Ω instead ofΩ, we
may assume that0 ≤ f(u) ≤ C2 onΩ. Then, by (2.1),

−C2V (x) ≤ inf
x∈Ω

F (x, u(x)).

We can find a solutionv ∈ Z ψ(Ω) of−∆v = C2V inΩ (distribution)∗. Letw = u+v.
Thenw ∈ Z ψ(Ω) and−∆w = F (x, u) + C2V in Ω \ E (distribution). Thusw is
superharmonic onΩ\E. Lemma 3.5 shows thatw is superharmonic onΩ, and so there
is a unique measureµ onΩ such that−∆w = µ in Ω (distribution). Let

dν(x) = dµ(x)− {F (x, u(x)) + C2V (x)} dx.

By the uniqueness ofµ, we have|ν|(Ω \ E) = 0. We need to show that|ν|(E) = 0.
For arbitrary fixedx0 ∈ E and0 < r < dist(E, ∂Ω)/2, we writeBr = B(x0, r).
Let η ∈ C∞

0 (B2r) be a radial function with respect tox0 such thatη = 1 onBr and
0 ≤ η ≤ 1 and |∆η| ≤ C/r2 on B2r. Note that∆η is symmetric with respect to
x0. Since−∆(w − w(x0)) = µ in Ω (distribution), it follows from (2.1), Lemma 3.3,
V ∈ Pϕ(Ω) and (A2) that

|ν|(Br) ≤ µ(Br) +

∫
Br

{|F (x, u)|+ C2V } dx

≤
∫
B2r

η dµ+

∫
Br

{f(u) + C2}V dx

≤
∫
B2r

(−∆η)(w − w(x0)) dx+ 2C2

∫
Br

V dx

≤ Crn−2ψ(2r) + 2C2∥V ∥Pϕ(Ω)ϕ(r)

≤ Cϕ(r).

Let ε > 0. By Hϕ(E) = 0 and (A2), we find sequences of pointsxj in E and positive
numbersrj such thatE ⊂

∪
j B(xj , rj) and

∑
j ϕ(rj) < ε. Then

|ν|(E) ≤
∑
j

|ν|(B(xj , rj)) ≤ C
∑
j

ϕ(rj) < Cε.

∗v is given by the Newtonian (or logarithmic) potential of the densityC2V . Thenv ∈ Z ψ(Ω) by
Lemma 4.5 (or Lemma 5.2).
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As ε → 0, we have|ν|(E) = 0. Hence|ν|(A) = 0 for any Borel measurable setA
in Ω, which concludes that−∆u = F (x, u) in Ω (distribution). This completes the
proof.

4 Proof of Theorem 2.3 in the caseψ ∈ ΨZ and n ≥ 3

Letψ ∈ ΨZ andϕ(t) = tn−2ψ(t). For a measureµ onΩ, we let

∥µ∥Pϕ(Ω) = sup
x∈Rn

0<r<2 diamΩ

µ(B(x, r) ∩ Ω)

ϕ(r)
.

Then the following lemma holds.

Lemma 4.1. Letµ be a measure onΩ with ∥µ∥Pϕ(Ω) <∞. Then

µ(Ω) ≤ ϕ(diamΩ)∥µ∥Pϕ(Ω) <∞.

Lemma 4.2. Let µ be a measure onΩ with ∥µ∥Pϕ(Ω) < ∞, and letµ∗ be a mea-
sure onRn defined byµ∗(A) = µ(A ∩ Ω) for Borel measurable setsA in Rn. Then
∥µ∗∥Pϕ(Rn) = ∥µ∥Pϕ(Ω).

Proof. By definition,µ(B(x, r) ∩ Ω) = µ∗(B(x, r)) for x ∈ Rn andr > 0. Dividing
the both sides byϕ(r) and taking the supremum, we have∥µ∥Pϕ(Ω) ≤ ∥µ∗∥Pϕ(Rn).
We need to check the converse inequality. Letx ∈ Rn andr > 0. If r < 2 diamΩ,
then

µ∗(B(x, r))

ϕ(r)
≤ ∥µ∥Pϕ(Ω).

If r ≥ 2 diamΩ, thenϕ(diamΩ) ≤ ϕ(r), and so

µ∗(B(x, r))

ϕ(r)
≤ µ(Ω ∩B(y, diamΩ))

ϕ(diamΩ)
≤ ∥µ∥Pϕ(Ω),

wherey is a point inΩ. These implies that∥µ∗∥Pϕ(Rn) ≤ ∥µ∥Pϕ(Ω).

In the rest of this section, we supposen ≥ 3. For simplicity, we write

Gµ(x) = GRnµ(x) =
1

an

∫
Rn

∥x− y∥2−n dµ(y),

wherean = νnn(n− 2). Also, let

C3 =
C1ψ(1)

nνn
,

whereC1 is the constant in (A3).

Lemma 4.3. If µ is a finite measure onRn with ∥µ∥Pϕ(Rn) <∞, then

∥Gµ∥L ∞(Rn) ≤ C3∥µ∥Pϕ(Rn) +
µ(Rn)
an

. (4.1)
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Proof. Let x ∈ Rn. Sinceµ(B(x, r)) ≤ ∥µ∥Pϕ(Rn)ϕ(r) for r > 0, we have

Gµ(x) =
1

an

∫
Rn

∥x− y∥2−ndµ(y) = 1

νnn

∫ ∞

0

r1−nµ(B(x, r)) dr

=
1

νnn

{∫ 1

0

r1−nµ(B(x, r)) dr +

∫ ∞

1

r1−nµ(B(x, r)) dr

}
≤ 1

νnn

{
∥µ∥Pϕ(Rn)

∫ 1

0

ϕ(r)

rn−1
dr + µ(Rn)

∫ ∞

1

r1−n dr

}
.

Sinceϕ(r) = rn−2ψ(r), we see from (A3) that the brackets in the last is estimated by

C1∥µ∥Pϕ(Rn)ψ(1) +
µ(Rn)
n− 2

.

Hence (4.1) follows.

Lemma 4.4. If µ is a finite measure onRn with ∥µ∥Pϕ(Rn) <∞, thenGµ ∈ C (Rn).

Proof. Let x0 ∈ Rn andρ > 0. WriteBρ = B(x0, ρ). Observe from (A3) that∫
Bρ

∥x0 − y∥2−n dµ(y) = (n− 2)

{∫ ρ

0

r1−nµ(Br) dr + µ(Bρ)

∫ ∞

ρ

r1−n dr

}
≤ C∥µ∥Pϕ(Rn)

{∫ ρ

0

ψ(r)

r
dr + ψ(ρ)

}
≤ C∥µ∥Pϕ(Rn)ψ(ρ).

Let x ∈ Bρ/2. SinceBρ ⊂ B(x, 2ρ), we have by (A2)

|Gµ(x)−Gµ(x0)|

≤ C∥µ∥Pϕ(Rn)ψ(ρ) +
1

an

∫
Rn\Bρ

∣∣∥x− y∥2−n − ∥x0 − y∥2−n
∣∣ dµ(y).

By the Lebesgue convergence theorem, the last integral tends to0 asx → x0. There-
fore (A1) concludes thatGµ is continuous atx0.

Lemma 4.5. If µ is a finite measure onRn with ∥µ∥Pϕ(Rn) <∞, thenGµ ∈ Z ψ(Ω).
Moreover, there exists a constantC > 0 depending only onC1 andn such that for all
x, y ∈ Ω,

|Gµ(x− y)− 2Gµ(x) +Gµ(x+ y)| ≤ C∥µ∥Pϕ(Rn)ψ(∥y∥). (4.2)

Proof. For arbitrary fixedx ∈ Ω, let µx(A) = µ({x − z : z ∈ A}) for Borel measur-
able setsA in Rn. Then∥µx∥Pϕ(Rn) = ∥µ∥Pϕ(Rn). Therefore we may prove (4.2) by
assumingx = 0 ∈ Ω. For simplicity, we writeB(r) = B(0, r). Let y ∈ Ω. By [1,
Lemme 1], we have forz ∈ Rn \B(4∥y∥),∣∣∣∣ 1

∥y − z∥n−2
− 2

∥z∥n−2
+

1

∥y + z∥n−2

∣∣∣∣ ≤ C
∥y∥2

∥z∥n
.
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Observe from (A2) and (A5) that∫
Rn\B(4∥y∥)

∣∣∣∣ 1

∥y − z∥n−2
− 2

∥z∥n−2
+

1

∥y + z∥n−2

∣∣∣∣ dµ(z)
≤ C

∫
Rn\B(4∥y∥)

∥y∥2

∥z∥n
dµ(z) ≤ C∥y∥2

∫ ∞

4∥y∥

µ(B(r))

rn+1
dr

≤ C∥µ∥Pϕ(Rn)∥y∥2
∫ ∞

4∥y∥

ψ(r)

r3
dr ≤ C∥µ∥Pϕ(Rn)ψ(∥y∥).

Also, since∫
B(5∥y∥)

1

∥z∥n−2
dµ(z)

= (n− 2)

{∫ 5∥y∥

0

r1−nµ(B(r)) dr + µ(B(5∥y∥))
∫ ∞

5∥y∥
r1−n dr

}
≤ C∥µ∥Pϕ(Rn)

{∫ 5∥y∥

0

ψ(r)

r
dr + ψ(5∥y∥)

}
≤ C∥µ∥Pϕ(Rn)ψ(∥y∥),

we observe that∫
B(4∥y∥)

∣∣∣∣ 1

∥y − z∥n−2
− 2

∥z∥n−2
+

1

∥y + z∥n−2

∣∣∣∣ dµ(z) ≤ C∥µ∥Pϕ(Rn)ψ(∥y∥).

Hence (4.2) follows.

Lemma 4.6. Let F be a measurable function onΩ × R, satisfying(2.1) for some
nonnegative functionsV ∈ Pϕ(Ω) andf ∈ C (R), such that for eachx ∈ Ω, F (x, ·)
is nonnegative on(0,∞) and F (x, ·) ∈ C (0,∞). Let µ be a measure onΩ with
0 < ∥µ∥Pϕ(Ω) < ∞. Putm = min∂ΩGµ. Assume that there is a constantM > m
such that

∥f∥L ∞[m,M ]

(
C3∥V ∥Pϕ(Ω)+

∥V ∥L 1(Ω)

an

)
+

(
C3∥µ∥Pϕ(Ω)+

µ(Ω)

an

)
≤M. (4.3)

Then there exists a positive solutionu ∈ Z ψ(Ω) of

−∆u = F (x, u) + µ in Ω (distribution). (4.4)

Proof. The proof is based on the Schauder fixed point theorem. Instead ofF , V andµ,
we considerF ∗ defined byF ∗ = F onΩ×R, F ∗ = 0 on(Rn \Ω)×R andV ∗ defined
by V ∗ = V onΩ, V ∗ = 0 onRn \ Ω andµ∗ defined byµ∗(A) = µ(A ∩ Ω) for Borel
measurable setsA in Rn. Note from Lemma 4.2 that∥V ∗∥Pϕ(Rn) = ∥V ∥Pϕ(Ω) and
∥µ∗∥Pϕ(Rn) = ∥µ∥Pϕ(Ω). In arguments below, we writeF , V andµ for F ∗, V ∗ and
µ∗, respectively. Letm = min∂ΩGµ and letM be a constant satisfying (4.3). Then
m > 0 because∥µ∥Pϕ(Ω) > 0. Let

W = {w ∈ C (Ω) : m ≤ w ≤M}.
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This is a nonempty bounded closed convex subset of the Banach spaceC (Ω). Consider
the operatorT onW : for x ∈ Rn,

T w(x) = G[F (·, w)](x) +Gµ(x).

Let T (W ) = {T w : w ∈ W }. Note that ifw ∈ W , then

∥F (·, w)∥Pϕ(Rn) ≤ ∥V f(w)∥Pϕ(Rn) ≤ ∥f∥L ∞[m,M ]∥V ∥Pϕ(Ω) <∞,

∥F (·, w)∥L 1(Rn) ≤ ∥V f(w)∥L 1(Rn) ≤ ∥f∥L ∞[m,M ]∥V ∥L 1(Ω) <∞.

From the proof of Lemma 4.4, we observe thatT (W ) is equicontinuous onΩ. Also,
Lemma 4.3 implies

T w(x) ≤ ∥f∥L ∞[m,M ]

(
C3∥V ∥Pϕ(Ω) +

∥V ∥L 1(Ω)

an

)
+

(
C3∥µ∥Pϕ(Ω) +

µ(Ω)

an

)
≤M.

By F (·, w) ≥ 0 and the minimum principle,T w ≥ Gµ ≥ m onΩ. HenceT (W ) ⊂
W . The Arzeĺa-Ascoli theorem implies thatT (W ) is relatively compact inC (Ω).

We show thatT is continuous onW . Takewj , w ∈ W such that∥wj−w∥L ∞(Ω) →
0 asj → ∞. Let x ∈ Rn. SinceF (x, ·) ∈ C (0,∞), it follows from the Lebesgue
convergence theorem that asj → ∞,

|T wj(x)− T w(x)| ≤ G[|F (·, wj)− F (·, w)|](x) → 0.

The relatively compactness ofT (W ) implies that∥T wj−T w∥L ∞(Ω) → 0 asj → ∞.
HenceT is continuous onW .

Applying the Schauder fixed point theorem, we findu ∈ W such thatT u = u on
Ω. Using the Fubini theorem, we observe thatu satisfies (4.4). Also, it follows from
Lemma 4.5 thatu ∈ Z ψ(Ω). This completes the proof.

Proof of Theorem 2.3.If Hϕ(E) > 0, then there exists a measureµ supported onE
such thatµ(E) > 0 and∥µ∥Pϕ(Ω) < ∞ (see [2, Theorem 5.1.12]). Multiplyingµ by
a small constant if necessary, we may assume thatm = min∂ΩGµ ≤ m0 and

C3∥µ∥Pϕ(Ω) +
µ(Ω)

an
≤ ε.

Let M be a constant satisfying (2.3). ThenV , f andµ fulfill (4.3). By Lemma 4.6,
there is a positive solutionu ∈ Z ψ(Ω) of (4.4). Observe thatu satisfies−∆u =
F (x, u) in Ω \ E (distribution), but does not satisfy it in the whole ofΩ.

5 Proof of Theorem 2.3 in the caseψ ∈ ΨZ and n = 2

In this section, we suppose thatn = 2, R = diamΩ, B0 is a disk of radiusR with
Ω ⊂ B0, andϕ = ψ ∈ ΨZ . The proof of Theorem 2.3 forn = 2 is similar to that
given in the previous section, but we need to consider

Gµ(x) =
1

2π

∫
B0

log
5R

∥x− y∥
dµ(y).

12



If µ is a finite measure onB0, thenGµ is superharmonic onR2 and positive onB0.

Lemma 5.1. If µ is a measure onB0 with ∥µ∥Pϕ(B0) <∞, then

∥Gµ∥L ∞(B0) ≤
C1ψ(5R)

2π
∥µ∥Pϕ(B0).

Proof. By Lemma 4.2, we may assume thatµ is a measure onR2 supported onB0

with ∥µ∥Pϕ(R2) = ∥µ∥Pϕ(B0) <∞. Letx ∈ B0. By the change of variabler = 5Rt
and (A3), we have

Gµ(x) ≤ 1

2π

∫ 1

0

1

t
µ(B(x, 5Rt)) dt

≤
∥µ∥Pϕ(B0)

2π

∫ 5R

0

ψ(r)

r
dr ≤ C1ψ(5R)

2π
∥µ∥Pϕ(B0).

Thus the lemma follows.

Lemma 5.2. If µ is a measure onB0 with ∥µ∥Pϕ(B0) < ∞, thenGµ ∈ Z ψ(B0).
Moreover, there exists a constantC > 0 depending only onC1 such that for allx, y ∈
B0 with x± y ∈ B0,

|Gµ(x− y)− 2Gµ(x) +Gµ(x+ y)| ≤ C∥µ∥Pϕ(B0)ψ(∥y∥). (5.1)

Proof. It suffices to prove (5.1) withx = 0. We writeB(r) for B(0, r) and identify

R2 with C. If z ∈ C \B(2|y|), then| log | z
2−y2
z2 || ≤ C|yz |

2, and so∫
C\B(2|y|)

∣∣∣∣log∣∣∣∣z2 − y2

z2

∣∣∣∣∣∣∣∣ dµ(z) ≤ C|y|2
∫ ∞

2|y|

µ(B(r))

r3
dr ≤ C∥µ∥Pϕ(B0)ψ(|y|).

If z ∈ B(|y|/2), then| log | z
2−y2
z2 || ≤ C + 2 log |yz | which gives∫

B(|y|/2)

∣∣∣∣log∣∣∣∣z2 − y2

z2

∣∣∣∣∣∣∣∣ dµ(z) ≤ Cµ(B(|y|)) + 2

∫ 1

0

µ(B(t|y|))
t

dt

≤ C∥µ∥Pϕ(B0)ψ(|y|).

If z ∈ B(y, |y|/2), then|y|/2 ≤ |z| ≤ 3|y|/2 and3|z| ≥ |z+y| ≥ 2|y|−|z−y| ≥ |z|.
Therefore1

2 ≤ |yz ||
z+y
z | ≤ 6, and so∣∣∣∣log∣∣∣∣z2 − y2

z2

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣log∣∣∣∣yz
∣∣∣∣∣∣∣∣z + y

z

∣∣∣∣∣∣∣∣+ log

∣∣∣∣ y

z − y

∣∣∣∣ ≤ C + log

∣∣∣∣ y

z − y

∣∣∣∣.
By the similar way to the above, we obtain∫

B(y,|y|/2)

∣∣∣∣log∣∣∣∣z2 − y2

z2

∣∣∣∣∣∣∣∣ dµ(z) ≤ C∥µ∥Pϕ(B0)ψ(|y|).
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Also, we observe that∫
B(−y,|y|/2)

∣∣∣∣log∣∣∣∣z2 − y2

z2

∣∣∣∣∣∣∣∣ dµ(z) ≤ C∥µ∥Pϕ(B0)ψ(|y|).

If y ∈ A := B(2|y|)\(B(|y|/2)∪B(y, |y|/2)∪B(−y, |y|/2)), then| log | z
2−y2
z2 || ≤ C,

and so ∫
A

∣∣∣∣log∣∣∣∣z2 − y2

z2

∣∣∣∣∣∣∣∣ dµ(z) ≤ C∥µ∥Pϕ(B0)ψ(|y|).

Combining these yields (5.1).

Lemma 5.3. For 0 < r < 1, we have

ψ(r) log
1

r
≤ 2C1ψ(

√
r).

Proof. Let 0 < r < 1. Sinceψ > 0 is increasing, it follows from (A3) that

C1ψ(
√
r) ≥

∫ √
r

r

ψ(t)

t
dt ≥ ψ(r) · 1

2
log

1

r
.

Lemma 5.4. If µ is a measure onB0 with ∥µ∥Pϕ(B0) <∞, thenGµ ∈ C (B0).

Proof. Let x0 ∈ B0 and letρ > 0 be small enough so thatBρ := B(x0, ρ) ⊂ B0.
Then∫

Bρ

log
5R

∥x0 − y∥
dµ(y) =

∫ 1

0

1

t
µ(Bρ ∩B5Rt) dt

≤ ∥µ∥Pϕ(B0)

{∫ ρ/5R

0

ψ(5Rt)

t
dt+ ψ(ρ)

∫ 1

ρ/5R

1

t
dt

}
≤ ∥µ∥Pϕ(B0)

{
C1ψ(ρ) + ψ(ρ) log

5R

ρ

}
.

Let x ∈ Bρ/2. ThenBρ ⊂ B(x, 2ρ). Therefore

|Gµ(x)−Gµ(x0)|

≤ 2∥µ∥Pϕ(B0)

{
C1ψ(2ρ) + ψ(2ρ) log

5R

2ρ

}
+

∫
B0\Bρ

∣∣∣∣log ∥x0 − y∥
∥x− y∥

∣∣∣∣ dµ(y).
Since the last integral tends to0 asx → x0, it follows from (A1) and Lemma 5.3 that
Gµ is continuous atx0.

Repeating arguments similar to Lemma 4.6, we obtain the following lemma.
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Lemma 5.5. Let F be a measurable function onΩ × R, satisfying(2.1) for some
nonnegative functionsV ∈ Pϕ(Ω) andf ∈ C (R), such that for eachx ∈ Ω, F (x, ·)
is nonnegative on(0,∞) and F (x, ·) ∈ C (0,∞). Let µ be a measure onΩ with
0 < ∥µ∥Pϕ(Ω) < ∞. Putm = min∂ΩGµ. Assume that there is a constantM > m
such that

C1

2π
ψ(5R)

(
∥f∥L ∞[m,M ]∥V ∥Pϕ(Ω) + ∥µ∥Pϕ(Ω)

)
≤M.

Then there exists a positive solutionu ∈ Z ψ(Ω) of

−∆u = F (x, u) + µ in Ω (distribution).

The rest of the proof of Theorem 2.3 forn = 2 is the same as that forn ≥ 3.

6 Proof of Theorem 2.3 in the caseψ ∈ ΨH

In this section, we letψ ∈ ΨH andϕ(t) = tn−2ψ(t).

Lemma 6.1. LetGµ denote a potential in Section 4 or 5. Ifµ is a measure onΩ with
∥µ∥Pϕ(Ω) <∞, thenGµ ∈ C 0,ψ(Ω).

Proof. Let us prove this lemma forn ≥ 3. The proof forn = 2 is similar. We may
assume∥µ∥Pϕ(Rn) <∞. Letx, x0 ∈ Ω and letr = ∥x− x0∥. Then

Gµ(x)−Gµ(x0) =
1

νnn
(I1 + I2),

where

I1 =

∫ 2r

0

t1−nµ(B(x, t)) dt−
∫ 2r

0

t1−nµ(B(x0, t)) dt,

I2 =

∫ ∞

2r

t1−nµ(B(x, t)) dt−
∫ ∞

2r

t1−nµ(B(x0, t)) dt.

Observe from (A2) and (A3) that

I1 ≤ 2∥µ∥Pϕ(Rn)

∫ 2r

0

t1−nϕ(t) dt ≤ C∥µ∥Pϕ(Rn)ψ(r).

As in [6, p.16], we have

I2 ≤
∫ ∞

r

{t1−n − (t+ r)1−n}µ(B(x, t)) dt.

Sincet1−n − (t+ r)1−n ≤ Cr/tn, this and (A4) give

I2 ≤ C∥µ∥Pϕ(Rn)r

∫ ∞

r

ϕ(t)

tn
dt ≤ C∥µ∥Pϕ(Rn)ψ(r).

Combining these yieldsGµ(x) − Gµ(x0) ≤ C∥µ∥Pϕ(Rn)ψ(r). Sincex andx0 can
be interchanged, it follows thatGµ ∈ C 0,ψ(Ω).

Proof of Theorem 2.3 in the caseψ ∈ ΨH . Observe from Lemma 6.1 that we can find
u ∈ C 0,ψ(Ω) in Lemma 4.6 and 5.5. Repeating the same arguments completes the
proof of Theorem 2.3.
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