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Preface

This doctoral dissertation consists of Part I and Part II. In Part I, we treat the Laplace-Beltrami

operator on the unit ball of then-dimensional complex space associated with the Bergman

metric; in Part II, we treat the Laplace operator on then-dimensional real space associated

with the Euclidean metric.

Part I includes two chapters, Chapters 1 and 2. In Chapter 1, we discuss the boundary

behavior of invariant harmonic functions on the unit ball. In 1969, Korányi introduced an

approach region to guarantee the existence of boundary limits of Poisson-Szegö integrals.

Our main purpose is to show the best possibility of the Korányi approach region. The result is

stronger than the earlier work by Hakim and Sibony. In Chapter 2, we give characterizations

of the invariant harmonicα-Bloch space and the invariant harmonic BMO space by using

the spherical integral of compositions with Möbius transformations. We also apply these

characterizations to show inclusion relationships among theα-Bloch space, the weighted

Dirichlet space and the BMO space.

Part II includes three chapters, Chapters 3, 4 and 5. Chapter 3 is a joint work with H.

Aikawa and T. Lundh about minimal Martin boundary points of a John domain. We show

that the number of minimal Martin boundary points at each Euclidean boundary point is

estimated by the John constant. For a class of John domains represented as the union of con-

vex sets, we give a sufficient condition for the Martin compactification to be homeomorphic

to the Euclidean closure. In Chapter 4, we study the boundary behavior of the quotient of

Martin kernels of given intersecting domains. The main tool is a new characterization of

the minimal thinness for a difference of two subdomains. As a consequence, we obtain the

boundary growth of the Martin kernel in a Lipschitz domain. In Chapter 5, we give com-

parison estimates for the Green function and the Martin kernel in a uniform domain. These

estimates enable us to show the equivalence of ordinary thinness and minimal thinness of a

set contained in a non-tangential cone.

Keywords : invariant harmonic function, boundary behavior, Korányi approach region,

α-Bloch space, BMO space, Green function, Martin kernel, minimal Martin boundary point,

John domain, minimal thinness, comparison estimate
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Part I

Invariant harmonic functions in the unit

ball of Cn
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Introduction

This introduction includes consistent notations and terminologies employed in Part I. LetCn

be then-dimensional complex space with inner product〈z, w〉 =
∑n

j=1 zjwj and norm|z| =√
〈z, z〉. In Chapters1 and2, we will discuss solutions of the Laplace-Beltrami equation in

the unit ballB of Cn associated with the Bergman metric.The Laplace-Beltrami operator on

B associated with the Bergman metricis defined by

∆̃ =
4

n + 1
(1− |z|2)

n∑

j,k=1

(δj,k − zjzk)
∂2

∂zk∂zj

,

whereδj,k = 0 (j 6= k) andδj,j = 1. The group of holomorphic automorphisms ofB, de-

noted byAut(B), plays an important role in the invariant harmonic function theory. Every

holomorphic automorphism ofB can be represented as the composition of a unitary transfor-

mation onCn and a M̈obius transformation ofB. A Möbius transformation ofB is defined

for a, z ∈ B by

ϕa(z) =
a− Paz −

√
1− |a|2(z − Paz)

1− 〈z, a〉 ,

wherePaz = 〈z, a〉a|a|−2 (a 6= 0) andP0z = 0. We note that the operator̃∆ is invariant

underAut(B): that is,∆̃(f ◦ ψ) = (∆̃f) ◦ ψ for eachf ∈ C2(B) andψ ∈ Aut(B). For this

reason, aC2-solution of the equation

∆̃f = 0 in B

is calledan invariant harmonic function(or anM-harmonic function) onB. We note in

the casen = 1 that invariant harmonic functions are just harmonic functions for the (usual)

Laplace operator.

The gradient operator onB associated with the Bergman metric is denoted by∇̃. It

satisfies that forf ∈ C1(B),

|∇̃f |2 =
2

n + 1
(1− |z|2)

n∑

j,k=1

(δj,k − zjzk)

(
∂f

∂zj

∂f

∂zk

+
∂f

∂zj

∂f

∂zk

)
,

and |∇̃(f ◦ ψ)| = |(∇̃f) ◦ ψ| for ψ ∈ Aut(B). The gradient∇̃f is calledthe invariant

gradientof f onB.
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Let ν denote the Lebesgue measure onCn normalized so thatν(B) = 1. The measureλ

on B defined bydλ(z) = (1 − |z|2)−(n+1)dν(z) is useful in our study because it is invariant

underAut(B): that is, for a measurable subsetU of B, an integrable functionf on B with

respect toλ andψ ∈ Aut(B), we have
∫

ψ(U)

f(z)dλ(z) =

∫

U

f(ψ(z))dλ(z).

We callλ the invariant measureonB.

In the invariant harmonic function theory, the Hardy space is fundamental and important.

For1 ≤ p < ∞, thep-th Hardy spaceHp is defined as the collection of all invariant harmonic

functionsf onB for which

‖f‖Hp := sup
0<r<1

(∫

S

|f(rζ)|pdσ(ζ)

)1/p

< ∞,

whereS is the unit sphere andσ is the surface measure onS normalized so thatσ(S) = 1.

We also denote byH∞ the collection of all bounded invariant harmonic functions onB. It is

easy to show, using Ḧolder’s inequality, thatHq ⊂ Hp if 1 ≤ p < q ≤ ∞. We should note

that each element inHp can be represented as a Poisson-Szegö integral: that is, iff ∈ Hp,

then there exists a complex measureµ onS such that

f(z) =

∫

S

P(z, ζ)dµ(ζ) for z ∈ B,

whereP(z, ζ) is the Poisson-Szegö kernel ofB defined by

P(z, ζ) =
(1− |z|2)n

|1− 〈z, ζ〉|2n
.

In particular, ifp > 1, thenµ is absolutely continuous with respect toσ and is represented as

dµ = f ∗dσ for somep-th integrable functionf ∗ on S. Then we writeP [f ∗] and call itthe

Poisson-Szeg̈o integral off ∗. Conversely, Jensen’s inequality shows that the Poisson-Szegö

integral of a complex measure (resp. ap-th integrable function) onS belongs toH1 (resp.

Hp).

In Chapter1, we will discuss the boundary behavior of invariant harmonic functions in

the Hardy space. In 1969, Korányi introduced an approach region to guarantee the existence

of boundary limits of invariant harmonic functions in the Hardy space. Our main purpose is

to show the best possibility of the Korányi approach region. The result is stronger than the

earlier work due to Hakim and Sibony (1983).

In Chapter2, we will discuss characterizations of certain spaces of invariant harmonic

functions. A motivation of the characterization is to clarify the inclusion among spaces. For

0 < p < ∞ andα ∈ R, the weighted Dirichlet spaceDp
α is defined as the collection of all

invariant harmonic functionsf onB for which

‖f‖Dp
α

:=

(∫

B

|∇̃f(z)|p(1− |z|2)αdλ(z)

)1/p

< ∞.
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In 1993, Stoll gave a characterization of the Hardy space and clarify the inclusion between

the Hardy space and the weighted Dirichlet space:

Dp
n ⊂ Hp for 1 ≤ p < 2;

Dp
n = Hp for p = 2;

Hp ⊂ Dp
n for 2 < p < ∞;

Dp
α ⊂ Hp for α < n and1 < p < ∞.

Our main purpose is to give characterizations of theα-Bloch space and the BMO space

(whose definitions will be described later), and to clarify inclusion relationships among the

α-Bloch space, the weighted Dirichlet space and the BMO space.

Throughout Part I, we use the symbolA to denote an absolute positive constant whose

value is unimportant and may change from line to line. If necessary, we writeA(a, b, · · · ) for

a constant depending ona, b, · · · .

5





Chapter 1

Boundary behavior of invariant harmonic

functions

This chapter is based on the paper [H1].

1.1 Historical survey

Many investigations of the boundary behavior of (invariant) harmonic functions on the unit

discD of C would be motivated by the following result due to Schwarz [19] in 1872.

Theorem (Schwarz).Letf be a continuous function on the unit circle∂D. Then its Poisson-

Szeg̈o integralP [f ] is extended continuously to∂D and has valuesf on∂D.

This result means that the Dirichlet problem with continuous boundary dataf ,





∆̃h = 0 in D,

lim
z→ξ,z∈D

h(z) = f(ξ) for all ξ ∈ ∂D,

has a unique solution. Moreover, the solution is given by the Poisson-Szegö integral of the

boundary data. However, if omitting continuity of boundary data, then the above problem

does not have a solution in general. So it is important to consider what approach region is

admissible for Poisson-Szegö integrals to have boundary limits.

In 1906, Fatou [4] considered a non-tangential approach region to guarantee the existence

of boundary limits of bounded harmonic functions onD. For ξ ∈ ∂D andα > 1, a non-

tangential approach regionat ξ is defined by{z ∈ D : |z − ξ| < α(1− |z|)}.

Theorem (Fatou). If h is a bounded harmonic function onD, thenh has a non-tangential

limit at almost every point of∂D.

The best possibility of the non-tangential approach region was first established in 1927

by Littlewood [13] in the following sense.
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Theorem (Littlewood). Letγ0 be a tangential curve inD which ends atz = 1, and letγθ be

the curveγ0 rotated about the origin through an angleθ, so thatγθ touches∂D internally at

eiθ. Then there exists a bounded harmonic function onD which admits no limits asz → eiθ

alongγθ for almost everyθ in [0, 2π).

In 1990, Aikawa [1] improved no convergence “almost everywhere” to “everywhere”.

Theorem (Aikawa). Under the same assumption as in Littlewood’s theorem, there exists a

bounded harmonic function onD which admits no limits asz → eiθ alongγθ for everyθ in

[0, 2π).

Remark1.1.1. Fatou’s theorem can be extended to the upper half space of then-dimensional

real space. See [20, Chapter VII]. The best possibility of the non-tangential approach region

in the upper half space was proved by Aikawa [2]. In 1984, Nagel and Stein [14] obtained

the marvelous result that Poisson integrals in the upper half space have boundary limits at

almost every point of the boundary within an approach region which is not contained in any

non-tangential approach regions.

The extension of Fatou’s theorem to the unit ballB of Cn was achieved by Koýanyi [11].

He considered the following approach region. Forξ ∈ S andα > 1, we let

Aα(ξ) =
{

z ∈ B : |1− 〈z, ξ〉| < α

2
(1− |z|2)

}
.

We note that this approach region is non-tangential in the special real direction and is tan-

gential in the complex tangential directions. In the sequel, we will sayAα(ξ) the Koŕanyi

approach regionat ξ. Korányi’s result is stated as follows.

Theorem (Korányi). If f is an integrable function onS, then its Poisson-Szegö integralP [f ]

has the boundary limitf(ξ) asz → ξ withinAα(ξ) at almost every pointξ of S.

1.2 Sharpness of the Koŕanyi approach region

The best possibility of the Korányi approach region for Poisson-Szegö integrals to have

boundary limits was proved in 1983 by Hakim and Sibony [8] in the following sense.

Theorem (Hakim - Sibony). Suppose thatn ≥ 2. Letα > 1 and letg : (0, 1] → [α,∞) be

a decreasing function such that

(1.1) lim
t→0+

g(t) = ∞.

For ξ ∈ S, we define

Dα,g(ξ) =

{
z ∈ B :

|1− 〈z, ξ〉| ≤ α(1− |〈z, ξ〉|),
|1− 〈z, ξ〉| ≤ g(|1− 〈z, ξ〉|)(1− |z|)

}
.

Then there exists a bounded holomorphic function onB which admits no limits asz → ξ

within Dα,g(ξ) at almost every pointξ of S.
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We now compareDα,g(ξ) with Aα(ξ). To this end, we may assume by unitary invariance

that ξ = e1 = (1, 0, · · · , 0) for simplicity. In view of (1.1), the set of points satisfying the

second inequality definingDα,g(e1) is quite wider than the Korányi approach regionAα(e1)

neare1 in all directions. On the other hand, the first inequality is|1 − z1| ≤ α(1 − |z1|)
and provides the restriction in thez1-plane only. From these, we see thatDα,g(ξ) is wider

than any Koŕanyi approach regions in the complex tangential directions, and is the same,

non-tangential, in the special real direction. See Figure1.1.

ξ

Dα,g(ξ)

Aα(ξ)

S

Figure 1.1:Difference betweenDα,g(ξ) andAα(ξ).

In 1986, Sueiro [23] proved a result similar to Nagel-Stein’s theorem. He actually studied

in more general domain, the so-called space of homogeneous type, than the unit ball.

Theorem (Sueiro). If f is an integrable function onS, then its Poisson-Szegö integralP [f ]

has the boundary limitf(ξ) at almost every pointξ of S within a certain approach region

which is not contained in any Korányi approach regions atξ.

The purpose of this chapter is to show the best possibility of the Korányi approach region

in the Littlewood sense. We consider a curveγ in B which ends ate1 and satisfies that

(1.2) lim
z→e1, z∈γ

|1− 〈z, e1〉|
1− |z|2 = ∞.

This means that for eachα > 1, points ofγ neare1 lie outside the Koŕanyi approach region

Aα(e1). LetU denote the group of unitary transformations ofCn and writeUγ for the image

of γ throughU ∈ U . Since unitary transformations preserve inner products, we see thatUγ

touchesS internally atUe1 and lies outside the Korányi approach regionAα(Ue1) nearUe1

for eachα > 1.

Our result is as follows.

Theorem 1.2.1.Letγ be a curve inB which ends ate1 and satisfies the property(1.2). Then

there exists a real valued bounded functionf on S of which Poisson-Szegö integralP [f ]

admits no limits as|z| → 1 alongUγ for everyU ∈ U , that is,

lim inf
|z|→1, z∈Uγ

P [f ](z) 6= lim sup
|z|→1, z∈Uγ

P [f ](z) for everyU ∈ U .
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Remark1.2.2. In addition, we can makef satisfy

lim inf
|z|→1, z∈Uγ

P [f ](z) = inf
ζ∈S

f(ζ) and lim sup
|z|→1, z∈Uγ

P [f ](z) = sup
ζ∈S

f(ζ)

for everyU ∈ U .

Remark1.2.3. In view of Sueiro’s theorem, the limit in (1.2) can not be replaced by the upper

limit.

Remark1.2.4. SinceU acts transitively onS, for eachξ ∈ S there isUξ ∈ U such that

ξ = Uξe1. Therefore Theorem1.2.1implies that there exists a real valued bounded invariant

harmonic function onB which admits no limits asz → ξ alongUξγ ateverypointξ of S. We

note that the Poisson-Szegö integral in Theorem1.2.1may not be pluriharmonic. However,

Theorem1.2.1is stronger than Hakim-Sibony’s theorem in the following points:

• It improves no convergence “almost everywhere” to “everywhere”.

• It establishes that a tangential approach in the special real direction can not be allowed

in Korányi’s theorem.

• The existence of a bounded invariant harmonic function which fails to have boundary

limits is ensured even if we replaceDα,g(e1) by much smaller curveγ satisfying the

property (1.2).

Our method is different from Hakim and Sibony’s. Their proof is based on a higher

dimensional Blaschke product. However, we will prove Theorem1.2.1 in Section1.4 by

constructing a bounded function onS and using lower and upper estimates of the Poisson-

Szeg̈o integral in Section1.3. In the proofs we adapt ideas from [1, 2]. Whereas the polar

(resp. the Euclidean) coordinate was used to construct a bounded function on the unit circle

(resp. Rn) in [1, 2], they are not applicable in our case. This is an important difference

between [1, 2] and our case.

1.3 Lower and upper estimates for Poisson-Szegö integrals

We begin with introducing a non-isotropic ball inS. We observe that the functiond(z, w) =

|1 − 〈z, w〉|1/2 satisfies the triangle inequality onB ∪ S, and defines a metric onS (cf. [22,

Lemma 7.3]). Forξ ∈ S andr > 0, we writeQ(ξ, r) = {ζ ∈ S : d(ζ, ξ) < r}, the non-

isotropic ball of centerξ and radiusr. Note that, to emphasize the metricd, we use the slightly

different definition from [22]. We observe from [22, p. 84] thatσ(Q(Uξ, r)) = σ(Q(ξ, r))

for any unitary transformationsU and that

(1.3) lim
r→0

σ(Q(ξ, r))

r2n
=

2n

4
√

π

Γ(n+1
2

)

Γ(n
2

+ 1)
.
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Moreover, there is a constantA0 > 1 depending only on the dimensionn such that

(1.4) A−1
0 r2n ≤ σ(Q(ξ, r)) ≤ A0r

2n

for ξ ∈ S and0 ≤ r ≤ diam S =
√

2. Herediam E = sup{d(η, ζ) : η, ζ ∈ E} for E ⊂ S.

Let T > 0 andξ ∈ S. For an integrable functiong onS, we define the truncated maximal

function atξ by

MT [g](ξ) = sup
r≥T

r−2n

∫

Q(ξ,r)

|g(ζ)|dσ(ζ).

Lemma 1.3.1.There exists a positive constantA1 depending only on the dimensionn such

that if g is an integrable function onS andC > 0, then

|P [g](tξ)| ≤ A1

(
(1− t)−n

∫

Q(ξ,C
√

1−t)

|g(ζ)|dσ(ζ) + C−2nMC
√

1−t[g](ξ)

)

for ξ ∈ S and0 < t < 1.

Proof. Let ξ ∈ S and0 < t < 1 be fixed, and put

V0 = Q(ξ, C
√

1− t),

Vj = Q(ξ, 2jC
√

1− t) \Q(ξ, 2j−1C
√

1− t) (j = 1, · · · , N),

whereN is the smallest integer such that2NC
√

1− t >
√

2. Then

|P [g](tξ)| ≤
N∑

j=0

∫

Vj

(1− t2)n

|1− 〈tξ, ζ〉|2n
|g(ζ)|dσ(ζ).

Since|1− 〈tξ, ζ〉| ≥ 1− t for ζ ∈ S, it follows that
∫

V0

(1− t2)n

|1− 〈tξ, ζ〉|2n
|g(ζ)|dσ(ζ) ≤ 2n

(1− t)n

∫

Q(ξ,C
√

1−t)

|g(ζ)|dσ(ζ).

Let j = 1, · · · , N . By the triangle inequality, we have forζ ∈ Vj,

2j−1C
√

1− t ≤ d(ξ, ζ) ≤ d(ξ, tξ) + d(tξ, ζ) ≤ 2d(tξ, ζ) = 2|1− 〈tξ, ζ〉|1/2.

Hence it follows that
∫

Vj

(1− t2)n

|1− 〈tξ, ζ〉|2n
|g(ζ)|dσ(ζ) ≤ 29n

24njC4n(1− t)n

∫

Q(ξ,2jC
√

1−t)

|g(ζ)|dσ(ζ)

≤ 29n

22njC2n
MC

√
1−t[g](ξ).

Since
∑N

j=1 2−2nj < 1, we obtain the lemma withA1 = 29n.

As a consequence of Lemma1.3.1, we obtain the following lower and upper estimates.

Lemma 1.3.2.The following statements hold.
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(i) If g is an integrable function onS, then

|P [g](tξ)| ≤ A2M√
1−t[g](ξ) for ξ ∈ S and0 < t < 1,

whereA2 is a positive constant depending only on the dimensionn.

(ii) Let ξ ∈ S, 0 < r < 1 andC > 0. If g is a measurable function onS such thatg = 1

onQ(ξ, C
√

1− r) and|g| ≤ 1 onS, then

P [g](tξ) ≥ 1− A3

C2n
for r ≤ t < 1,

whereA3 is a positive constant depending only on the dimensionn.

Proof. PuttingC = 1 in Lemma1.3.1, we obtain (i) with A2 = 2A1. Let us show (ii ). We

puth = (1− g)/2. Thenh = 0 onQ(ξ, C
√

1− r) and|h| ≤ 1 onS. Applying Lemma1.3.1

to h, we obtain from (1.4) that forr ≤ t < 1,

P [h](tξ) ≤ A1

C2n
MC

√
1−t[h](ξ) ≤ A1

C2n
sup

ρ≥C
√

1−t

σ(Q(ξ, ρ))

ρ2n
≤ A0A1

C2n
.

SinceP [g] = 1− 2P [h], we obtain (ii ) with A3 = 2A0A1.

1.4 Proof of Theorem1.2.1

Let π be the radial projection toS defined byπ(z) = z/|z| for z 6= 0. We note that (1.2)

implies

(1.5) lim
z→e1,z∈γ

d(z, e1)

d(z, π(z))
= ∞,

since1− |z|2 ≥ 1− |z| = d(z, π(z))2 for z ∈ B \ {0}.

Lemma 1.4.1.Letγ be the curve as in Theorem1.2.1. Then there exist sequences of positive

numbers{aj}∞j=1, {bj}∞j=1 and subcurves{γj}∞j=1 of γ with the following properties:

(i) 0 < aj < bj < aj+1 < bj+1 < 1 and lim
j→∞

aj = 1;

(ii) aj ≤ |z| ≤ bj for z ∈ γj;

(iii) diam π(γj) ≤
√

1− bj−1 if j ≥ 2;

(iv) lim
j→∞

diam π(γj)√
1− aj

= ∞.
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Proof. Let αj > 1 be such thatαj → ∞ asj → ∞. We shall choose{aj}, {bj} and{γj},
inductively. By (1.5), we finda1 with infz∈γ |z| < a1 < 1 and

d(z, e1) ≥ α1d(z, π(z)) for z ∈ γ ∩ {|z| ≥ a1}.
Let γ′ be the connected component ofγ ∩ {|z| ≥ a1} which ends ate1. Since there is

z0 ∈ γ′ ∩ {|z| = a1}, we have from the triangle inequality that

diam π(γ′) ≥ d(π(z0), e1)

≥ d(z0, e1)− d(z0, π(z0))

≥ (α1 − 1)d(z0, π(z0))

= (α1 − 1)
√

1− a1.

Let γ′′ be a subcurve ofγ′ connecting a point in{|z| = a1} and a point neare1 such that

diam π(γ′′) ≥ 1

2
diam π(γ′).

We takeb1 so thatsupz∈γ′′ |z| < b1 < 1, and letγ1 be the connected component ofγ ∩ {a1 ≤
|z| ≤ b1} containingγ′′. Then

diam π(γ1) ≥ diam π(γ′′) ≥ α1 − 1

2

√
1− a1.

We next choosea2, b2 andγ2 as follows. Leta2 be such thatb1 < a2 < 1 and

(1.6)
1

4

√
1− b1 ≥ d(z, e1) ≥ α2d(z, π(z)) for z ∈ γ ∩ {|z| ≥ a2}.

By repeating the above procedure, we can findb2 andγ2 with a2 < b2 < 1 anda2 ≤ |z| ≤ b2

for z ∈ γ2, and

diam π(γ2) ≥ α2 − 1

2

√
1− a2.

It also follows from (1.6) andα2 > 1 that

d(π(z), e1) ≤ d(z, e1) + d(z, π(z)) ≤ 1

2

√
1− b1 for z ∈ γ2,

and sodiam π(γ2) ≤
√

1− b1 by the triangle inequality.

Continuing this procedure, we obtain the required sequences.

In the rest of this section, we suppose that{aj}, {bj} and{γj} are as in Lemma1.4.1,

and put

`j =
diam π(γj)

4
, cj =

(
diam π(γj)√

1− aj

)1/2

and ρj = cj

√
1− aj

to simplify the notation. We note from Lemma1.4.1that

(1.7) lim
j→∞

`j = 0, lim
j→∞

ρj

`j

= 0 and lim
j→∞

cj = ∞.

Therefore, taking a subsequence if necessary, we may assume, in the argument below, that

ρj < `j for everyj ∈ N.

For eachj ∈ N, let us choose finitely many points{ην
j }ν in S such that

13



(P1) S =
⋃
ν

Q(ην
j , `j),

(P2) {Q(ην
j , `j/2)}ν are mutually disjoint.

This is possible. In fact, we first take an arbitraryη1
j ∈ S, and takeηµ

j ∈ S \⋃µ−1
ν=1 Q(ην

j , `j)

inductively as long asS \⋃µ−1
ν=1 Q(ην

j , `j) 6= ∅. SinceS is compact, we can get finitely many

points{ην
j }ν satisfying (P1). It also fulfills thatd(ην

j , η
µ
j ) ≥ `j if ν 6= µ. Hence (P2) follows

from the triangle inequality.

We put

Mj =
⋃
ν

{ζ ∈ S : d(ζ, ην
j ) = `j}.

Thenπ(Uγj)∩Mj 6= ∅ for any unitary transformationsU . Indeed, (P1) shows thatπ(Uγj)∩
Q(ην

j , `j) 6= ∅ for someν. Sincediam π(Uγj) = diam π(γj) = 4`j anddiam Q(ην
j , `j) ≤

2`j, we haveπ(Uγj) ∩ {ζ ∈ S : d(ζ, ην
j ) = `j} 6= ∅, and soπ(Uγj) ∩Mj 6= ∅.

Let Gj be the subset ofB given by

Gj = {z ∈ B : aj ≤ |z| ≤ bj andπ(z) ∈ Mj}.

SinceUγj ⊂ {aj ≤ |z| ≤ bj} by Lemma1.4.1(ii ), it follows thatUγj ∩Gj 6= ∅. We also put

Ej =
⋃
ν

Rν
j ,

whereRν
j = {ζ ∈ S : `j − ρj < d(ζ, ην

j ) < `j + ρj}, the non-isotropic ring. See Figure1.2.

Since the valueσ(Rν
j ) is independent ofην

j by unitary invariance, we writeκj for this value.

η1
j

η2
j

η3
j

Mj

Ej

Figure 1.2:Mj andEj.

We note that

(1.8) lim
j→∞

κj

`2n
j

= 0.

14



In fact, we obtain from (1.3) and (1.7) that forη ∈ S,

κj

`2n
j

=
σ(Q(η, `j + ρj))− σ(Q(η, `j − ρj))

`2n
j

=

(
`j + ρj

`j

)2n
σ(Q(η, `j + ρj))

(`j + ρj)2n
−

(
`j − ρj

`j

)2n
σ(Q(η, `j − ρj))

(`j − ρj)2n

→ 0 asj →∞.

Lemma 1.4.2. Let {Ej} be as above, and letχEj
denote the characteristic function ofEj.

The following properties hold.

(i) lim
j→∞

(
sup

|z|≤bj−1

P [χEj
](z)

)
= 0.

(ii) lim
j→∞

σ(Ej) = 0.

Proof. Let z ∈ B be such that|z| ≤ bj−1. By Lemma1.3.2(i), we have

P [χEj
](z) ≤ A2M√

1−|z|[χEj
](π(z))

≤ A2 sup
r≥
√

1−|z|
r−2n

∑
ν

σ(Rν
j ∩Q(π(z), r))

≤ A2 sup
r≥
√

1−|z|
r−2nNj(z, r)κj,

whereNj(z, r) is the number ofν such thatRν
j ∩ Q(π(z), r) 6= ∅. Since

√
1− |z| ≥

diam π(γj) by Lemma1.4.1(iii ), we observe fromρj < `j ≤ r/4 that ifRν
j ∩Q(π(z), r) 6= ∅,

thenQ(ην
j , `j/2) ⊂ Q(π(z), 2r). Therefore it follows from (1.4) and (P2) thatNj(z, r) ≤

A4(r/`j)
2n with a positive constantA4 depending only on the dimensionn. Hence we obtain

P [χEj
](z) ≤ A2A4

κj

`2n
j

,

so that (i) follows from (1.8).

Takingz = 0 in (i), we obtain

σ(Ej) = P [χEj
](0) → 0 asj →∞,

and thus (ii ) follows.

We now construct a bounded functionf onS satisfying the property in Theorem1.2.1.

Proof of Theorem1.2.1. In view of Lemma1.4.2, we may assume, taking a subsequence of

j if necessary, that

(1.9) P [χEj
](z) ≤ 2−j for |z| ≤ bj−1,
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andσ(Ej) ≤ 2−j. Thenσ(
⋂

k

⋃∞
j=k Ej) = 0. Let

fj(ζ) =





(−1)Ij(ζ) if ζ ∈ ⋃j
i=1 Ei,

0 if ζ 6∈ ⋃j
i=1 Ei,

whereIj(ζ) is the maximum integeri such thatζ ∈ Ei for ζ ∈ ⋃j
i=1 Ei. Then we observe

thatfj converges almost everywhere onS to

f(ζ) =





(−1)I(ζ) if ζ ∈ ⋃∞
j=1 Ej \

⋂
k

⋃∞
j=k Ej,

0 if ζ 6∈ ⋃∞
j=1 Ej or ζ ∈ ⋂

k

⋃∞
j=k Ej,

whereI(ζ) is the maximum integeri such thatζ ∈ Ei for ζ ∈ ⋃∞
j=1 Ej \

⋂
k

⋃∞
j=k Ej. We

also see that

(a) fj = (−1)j onEj, and|fj| ≤ 1 onS;

(b) |fj+1 − fj| ≤ 2χEj+1
;

(c) P [fj] converges toP [f ] onB.

Let U be a unitary transformation. SinceUγ intersectsGj for all j as stated in the paragraph

definingGj, we takezj ∈ Uγ∩Gj. Note thataj ≤ |zj| ≤ bj andQ(π(zj), cj

√
1− aj) ⊂ Ej.

If j is even, then it follows from Lemma1.3.2(ii ), Lemma1.4.1(i) and (1.9) that

P [f ](zj) = P [fj](zj) +
∞∑

k=j

P [fk+1 − fk](zj)

≥ P [fj](zj)− 2
∞∑

k=j

P [χEk+1
](zj)

≥ 1− A3

c2n
j

− 21−j.

Similarly, if j is odd, then

P [f ](zj) ≤ −1 +
A3

c2n
j

+ 21−j.

Hence we conclude from (1.7) that

lim inf
|z|→1, z∈Uγ

P [f ](z) = −1 < 1 = lim sup
|z|→1, z∈Uγ

P [f ](z).

Thus the proof of Theorem1.2.1is complete.
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Chapter 2

Characterizations of function spaces

This chapter is based on the paper [H2].

2.1 Background and Motivation

There are several characterizations of spaces of holomorphic functions on the unit ballB of

Cn. Choa and Choe [3] and Jevtíc [9, 10] gave characterizations of the BMOA in terms of

Carleson measures. In [21], Stoll characterized thep-th Hardy space by

(2.1)
∫

B

G(z, 0)|f(z)|p−2|∇̃f(z)|2dλ(z) < ∞,

whereG is the Green function for̃∆ (whose definition will be described in Section2.2).

Ouyang, Yang and Zhao [16] and Nowak [15] also characterized the weighted Bergman space

and the Bloch space in terms of several finite integrals similar to (2.1) involving Möbius

transformations. The hyperbolic Hardy space was characterized by Kwon [12].

The purpose of this chapter is to give characterizations of the invariant harmonicα-Bloch

space and the invariant harmonic BMO space. Our characterization of theα-Bloch space is

motivated by the classical Hardy-Littlewood theorem in one dimension and its extension to

higher dimensions due to Pavlović [17]: Let 0 < p < ∞ andα > 0. An invariant harmonic

functionf onB satisfies the property

(2.2)

(∫

S

|∇̃f(rζ)|pdσ(ζ)

)1/p

= O((1− r2)−α) asr → 1,

if and only if f satisfies the property

(2.3)

(∫

S

|f(rζ)|pdσ(ζ)

)1/p

= O((1− r2)−α) asr → 1.

Since theα-Bloch space consists of functions with a property stronger than (2.2), it may be

interesting to characterize the space using the spherical integral like to (2.3). To this end,

we shall consider compositions with M̈obius transformations. We shall also characterize
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the invariant harmonic BMO space in terms of boundedness of thep-th spherical integral of

compositions with M̈obius transformations and in terms of the BMO property with respect

to “the invariant measure” onB. As corollaries, we shall obtain characterizations similar to

(2.1) for the littleα-Bloch space and the BMO space.

Throughout this chapter, we consider real valued invariant harmonic functions onB.

2.2 Characterizations of theα-Bloch space

Let α ∈ R. The invariant harmonicα-Bloch space, writtenBα, is defined as the collection of

all (real valued) invariant harmonic functionsf onB for which

‖f‖Bα := sup
z∈B

(1− |z|2)α|∇̃f(z)| < ∞.

We recall thatϕa(z) is the Möbius transformation ofB. Let E(a, r) = {z ∈ B : |ϕa(z)| <

r}.
Our characterizations for the invariant harmonicα-Bloch space are as follows.

Theorem 2.2.1.The following statements hold.

(i) If α < −1, thenBα consists only of constant functions.

(ii) Let1 ≤ p < ∞ and set

ρα,p(a, r) =





(1− |a|2)α if −n < αp < 0,

(1− |a|2)α(1− r)−α−n/p if αp < −n,

(1− |a|2)α

(
log

1

1− r

)−1

if αp = −n or α = 0,

(1− |a|2)α(1− r)α if α > 0.

The following properties for an invariant harmonic functionf onB are equivalent:

(a) f ∈ Bα;

(b) Hα,p(f) := sup
0<r<1
a∈B

ρα,p(a, r)

(∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

)1/p

< ∞;

(c) Iα,p(f) := sup
0<r<1
a∈B

ρα,p(a, r)

(
1

λ(E(a, r))

∫

E(a,r)

|f(z)− f(a)|pdλ(z)

)1/p

< ∞;

(d) there exists0 < r0 < 1 such that

Jα,p(f) := sup
a∈B

(1− |a|2)α

(∫

E(a,r0)

|f(z)− f(a)|pdλ(z)

)1/p

< ∞.

Moreover, the quantities‖f‖Bα , Hα,p(f), Iα,p(f) andJα,p(f) are comparable to each

other with a constant depending only onp, α, r0 and the dimensionn.
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Corollary 2.2.2. Let 1 ≤ p < ∞ and letf be an invariant harmonic function onB. If there

exist0 < r0 < 1 andp < β < ∞ such that
∫

E(a,r0)

|f(z)− f(a)|pdλ(z) = O((1− |a|2)β) as |a| → 1,

thenf is constant.

For z ∈ B and0 < r < 1, let

g(r, z) =
n + 1

2n

∫ r

|z|

(1− t2)n−1

t2n−1
dt,

and letg(z) = g(1, z) for simplicity. The Green function for̃∆ is defined by

G(z, w) = g(ϕw(z)) for z, w ∈ B.

As another consequence of Theorem2.2.1, we obtain a characterization similar to (2.1)

for the littleα-Bloch space.

Corollary 2.2.3. Let −1 ≤ α < 0, 1 < p < −n/α and letf be an invariant harmonic

function onB. The following properties are equivalent:

(i) f ∈ Bα;

(ii) sup
a∈B

(1− |a|2)αp

∫

B

G(z, a)|∇̃f(z)|2|f(z)− f(a)|p−2dλ(z) < ∞.

The proofs of Theorem2.2.1and Corollary2.2.2will be given in Section2.4. We shall

prove Corollary2.2.3in Section2.6.

2.3 Characterizations of the BMO space

For 0 < p < ∞, the invariant harmonic BMO space, written BMOHp, is defined as the

collection of every invariant harmonic functionf on B which is represented as the Poisson-

Szeg̈o integral of a function of bounded mean oscillation onS. That is, each elementf in

BMOHp is of the form

f(z) =

∫

S

P(z, ζ)f ∗(ζ)dσ(ζ)

with a corresponding functionf ∗ integrable onS for which

‖f ∗‖BMOp(σ) := sup
0<r≤√2

ξ∈S

(
1

σ(Q(ξ, r))

∫

Q(ξ,r)

|f ∗(ζ)− f ∗ξ,r|pdσ(ζ)

)1/p

< ∞,

wheref ∗ξ,r = σ(Q(ξ, r))−1
∫

Q(ξ,r)
f ∗dσ, the average off ∗ overQ(ξ, r). HereQ(ξ, r) = {ζ ∈

S : |1− 〈ζ, ξ〉|1/2 < r}, the non-isotropic ball of centerξ and radiusr.

Our characterizations for the invariant harmonic BMO space are as follows.
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Theorem 2.3.1.Let 1 < p < ∞ and letf be an invariant harmonic function onB. The

following properties are equivalent:

(i) f ∈ BMOHp;

(ii) ‖f‖Sp := sup
0<r<1
a∈B

(∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

)1/p

< ∞;

(iii) ‖f‖BMOp(λ) := sup
0<r<1
a∈B

(
1

λ(E(a, r))

∫

E(a,r)

|f(z)− f(a)|pdλ(z)

)1/p

< ∞.

Moreover, the quantities‖f ∗‖BMOp(σ), ‖f‖Sp and‖f‖BMOp(λ) are comparable to each other

with a constant depending only onp and the dimensionn.

The interesting points of the above characterization ofBMOHp are that a solution of the

Dirichlet problem for∆̃ with boundary data of bounded mean oscillation also has bounded

mean oscillation with respect to the invariant measureλ onB, and that conversely an invariant

harmonic function onB of bounded mean oscillation with respect toλ can be represented as

the Poisson-Szegö integral of a function of bounded mean oscillation onS.

Remark2.3.2. If f is the Poisson-Szegö integral of an integrable function onS, then Theorem

2.3.1holds for1 ≤ p < ∞. Furthermore, iff is the Poisson-Szegö integral and holomorphic

on B, then Theorem2.3.1holds for0 < p < ∞. We note, in this case, that the equivalence

of (i) and (ii ) was proved by Ouyang, Yang and Zhao [16].

As a consequence of Theorem2.3.1, we obtain a characterization similar to (2.1) for the

BMO space.

Corollary 2.3.3. Let 1 < p < ∞ and letf be an invariant harmonic function onB. The

following properties are equivalent:

(i) f ∈ BMOHp;

(ii) sup
a∈B

∫

B

G(z, a)|∇̃f(z)|2|f(z)− f(a)|p−2dλ(z) < ∞.

The proofs of Theorem2.3.1and Corollary2.3.3will be given in Section2.5and Section

2.6, respectively.

2.4 Proof of Theorem2.2.1

For a real valuedC1 functionf onB andj = 1, · · · , n, we let

Xjf(z) =
∂f

∂zj

(z)− zj

n∑

k=1

zk
∂f

∂zk

(z).
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Then we observe from [22, Lemma 10.5] that forz ∈ B,

(2.4) |∇̃f(z)|2 ≤ 4

n + 1

n∑
j=1

|Xjf(z)|2 ≤ (1 + |z|2)2

(1− |z|2)2
|∇̃f(z)|2,

and from [22, Proposition 10.4] that iff is invariant harmonic onB, thenXjf is so.

Proof of Theorem2.2.1(i). Let α < −1 andf ∈ Bα. Then, for eachj = 1, · · · , n, it follows

from (2.4) that

|Xjf(z)| ≤ A
|∇̃f(z)|
1− |z|2 ≤ A‖f‖Bα(1− |z|2)−α−1.

Since the right hand side tends to zero as|z| → 1−, the maximum principle yields that

Xjf ≡ 0 for everyj = 1, · · · , n, and so|∇̃f | ≡ 0 by (2.4). Hencef is constant.

In the proof of Theorem2.2.1(ii ), we use the following known lemmas.

Lemma 2.4.1 ([22, Lemma 10.8]). Letf be a real valuedC1 function onB anda ∈ B. Then

for eachζ ∈ S and0 < r < 1, we have

|f ◦ ϕa(rζ)− f(a)| ≤ √
n + 1

∫ r

0

|∇̃f(ϕa(tζ))|
1− t2

dt.

Lemma 2.4.2 ([22, Proposition 8.18]). Let β ∈ R. Then there exists a positive constantA

depending only on the dimensionn such that forz ∈ B,

∫

S

1

|1− 〈z, ζ〉|n+β
dσ(ζ) ≤





A(1− |z|2)−β if β > 0,

A log
1

1− |z|2 if β = 0,

A if β < 0.

Lemma 2.4.3 ([22, Proposition 10.1 and 10.2]). Let 0 < p < ∞ and letf be an invariant

harmonic function onB. Then fora ∈ B and0 < r < 1, we have

|f(a)|p ≤ A(n, p, r)

∫

E(a,r)

|f(z)|pdλ(z),

and

|∇̃f(a)|p ≤ A(n, p, r)

∫

E(a,r)

|f(z)|pdλ(z).

Let us prove Theorem2.2.1(ii ).

Proof of Theorem2.2.1(ii ). We first show that (a) implies (b). Supposef ∈ Bα, and let

a ∈ B, ζ ∈ S and0 < r < 1. Since

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− 〈z, a〉|2 ,
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we have by Lemma2.4.1

|f ◦ ϕa(rζ)− f(a)| ≤ A

∫ r

0

|∇̃f(ϕa(tζ))|
1− t2

dt ≤ A‖f‖Bα

∫ r

0

(1− |ϕa(tζ)|2)−α

1− t2
dt

= A‖f‖Bα(1− |a|2)−α

∫ r

0

|1− 〈ta, ζ〉|2α

(1− t2)α+1
dt.

Hence it follows from Minkowski’s integral inequality that

(∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

)1/p

≤ A‖f‖Bα(1− |a|2)−α

(∫

S

(∫ r

0

|1− 〈ta, ζ〉|2α

(1− t2)α+1
dt

)p

dσ(ζ)

)1/p

≤ A‖f‖Bα(1− |a|2)−α

∫ r

0

(1− t2)−α−1

(∫

S

|1− 〈ta, ζ〉|2αpdσ(ζ)

)1/p

dt.

(2.5)

Using Lemma2.4.2, we now calculate the integral

F (a, r) :=

∫ r

0

(1− t2)−α−1

(∫

S

|1− 〈ta, ζ〉|2αpdσ(ζ)

)1/p

dt.

If −n < αp < −n/2, then

F (a, r) ≤ A

∫ 1

0

(1− t2)−α−1(1− t2)(n+2αp)/pdt = A

∫ 1

0

(1− t2)α−1+n/pdt < ∞.

If αp = −n/2, then

F (a, r) ≤ A

∫ 1

0

(1− t2)−α−1

(
log

1

1− t2

)1/p

dt < ∞.

If −n/2 < αp, then

F (a, r) ≤ A

∫ r

0

(1− t2)−α−1dt ≤





A if −n/2 < αp < 0,

A log
1

1− r
if α = 0,

A(1− r)−α if α > 0.

Hence it follows from (2.5) that fora ∈ B and0 < r < 1,

(∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

)1/p

≤





A‖f‖Bα(1− |a|2)−α if −n < αp < 0,

A‖f‖Bα(1− |a|2)−α log
1

1− r
if α = 0,

A‖f‖Bα(1− |a|2)−α(1− r)−α if α > 0.

If αp = −n, then

F (a, r) ≤ A

∫ r

0

(1− t2)−1dt ≤ A log
1

1− r
,
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so that fora ∈ B and0 < r < 1,
(∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

)1/p

≤ A‖f‖Bα(1− |a|2)−α log
1

1− r
.

If αp < −n, then

F (a, r) ≤ A

∫ r

0

(1− t2)α−1+n/pdt ≤ A(1− r)α+n/p,

so that fora ∈ B and0 < r < 1,
(∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

)1/p

≤ A‖f‖Bα(1− |a|2)−α(1− r)α+n/p.

Hence, taking the supremum over0 < r < 1 anda ∈ B, we obtain (b).

We next show that (b) implies (c). Leta ∈ B and0 < r < 1. Sinceρα,p(a, r) is positive

and non-increasing function ofr, we have by integration in polar coordinates
∫

E(a,r)

|f(z)− f(a)|pdλ(z) = 2n

∫ r

0

t2n−1

(1− t2)n+1

∫

S

|f ◦ ϕa(tζ)− f(a)|pdσ(ζ)dt

≤ Hα,p(f)pρα,p(a, r)−pλ(E(a, r)),

and (c) follows.

We easily show that (c) implies (d). In fact, for anya ∈ B and0 < r0 < 1, we have

(1− |a|2)α

(∫

E(a,r0)

|f(z)− f(a)|pdλ(z)

)1/p

≤ A(n, p, α, r0)Iα,p(f).

We finally show that (d) implies (a). Leta ∈ B. Then it follows from Lemma2.4.3with

r := r0 andf := f − f(a) that

|∇̃f(a)|p ≤ A(n, p, r0)

∫

E(a,r0)

|f(z)− f(a)|pdλ(z) ≤ AJα,p(f)p(1− |a|2)−αp,

and sof ∈ Bα. Thus the proof of Theorem2.2.1is complete.

2.5 Proof of Theorem2.3.1

We recall the Poisson-Szegö kernel ofB:

P(z, ζ) =
(1− |z|2)n

|1− 〈z, ζ〉|2n
.

The following change of variables formula is found in [18, Remark in page 44]:

(2.6)
∫

S

P(z, ζ)f(ζ)dσ(ζ) =

∫

S

f(ϕz(ζ))dσ(ζ).

To prove Theorem2.3.1, we need the following characterization in terms of the Garsia

norm.
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Lemma 2.5.1. Let 1 ≤ p < ∞ and letf be the Poisson-Szegö integral of an integrable

functionf ∗ onS. The following properties are equivalent:

(i) f ∈ BMOHp;

(ii) ‖f‖Gp := sup
a∈B

(∫

S

P(a, ζ)|f ∗(ζ)− f(a)|pdσ(ζ)

)1/p

< ∞.

Moreover, the quantities‖f ∗‖BMOp(σ) and‖f‖Gp are comparable with a constant depending

only onp and the dimensionn.

Proof. The lemma will be proved in the same way as in [5, pp. 224–225]. For completeness

we give a proof. Let us show first that (i) implies (ii ). Let a ∈ B be fixed, and putξ = a/|a|
andρ = (1− |a|)1/2. As in the proof of Lemma1.3.1, we splitS into

V0 := Q(ξ, ρ) and Vj := Q(ξ, 2jρ) \Q(ξ, 2j−1ρ) (j = 1, · · · , N),

whereN is the smallest integer such that2Nρ ≥ √
2. Then we have

|1− 〈a, ζ〉| ≥ 1− |a| = ρ2 for ζ ∈ S,

|1− 〈a, ζ〉|1/2 ≥ 2j−2ρ for ζ ∈ Vj with j ≥ 1,

and thusP(a, ζ) ≤ A2−4njρ−2n for ζ ∈ Vj with j ≥ 0. Therefore we have by (1.4) that

∫

S

P(a, ζ)|f ∗(ζ)− f ∗ξ,ρ|pdσ(ζ) =
N∑

j=0

∫

Vj

P(a, ζ)|f ∗(ζ)− f ∗ξ,ρ|pdσ(ζ)

≤ A

ρ2n

N∑
j=0

2−4nj

∫

Q(ξ,2jρ)

|f ∗(ζ)− f ∗ξ,ρ|pdσ(ζ)

≤ AA0‖f ∗‖p
BMOp(σ) + 2pAA0

N∑
j=1

2−2nj
(
‖f ∗‖p

BMOp(σ) + |f ∗ξ,2jρ − f ∗ξ,ρ|p
)

.

(2.7)

Since

|f ∗ξ,2kρ − f ∗ξ,2k−1ρ|p ≤
1

σ(Q(ξ, 2k−1ρ))

∫

Q(ξ,2k−1ρ)

|f ∗(ζ)− f ∗ξ,2kρ|pdσ(ζ)

≤ 22nA2
0

σ(Q(ξ, 2kρ))

∫

Q(ξ,2kρ)

|f ∗(ζ)− f ∗ξ,2kρ|pdσ(ζ) ≤ 22nA2
0‖f ∗‖p

BMOp(σ)

by Jensen’s inequality and (1.4), it follows that

|f ∗ξ,2jρ − f ∗ξ,ρ|p ≤ jp

j∑

k=1

|f ∗ξ,2kρ − f ∗ξ,2k−1ρ|p ≤ 22nA2
0j

p+1‖f ∗‖p
BMOp(σ).

Hence we obtain from (2.7) that
∫

S

P(a, ζ)|f ∗(ζ)− f(a)|pdσ(ζ) ≤ 2p+1

∫

S

P(a, ζ)|f ∗(ζ)− f ∗ξ,ρ|pdσ(ζ)

≤ A(p, n)‖f ∗‖p
BMOp(σ),
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and thus (ii ) follows.

We next show that (ii ) implies (i). Letξ ∈ S and0 < r ≤ √
2, and putzξ,r = (1−5−1r2)ξ.

Since1− |zξ,r|2 > 5−1r2 and

|1− 〈zξ,r, ζ〉|1/2 ≤ |1− 〈zξ,r, ξ〉|1/2 + |1− 〈ξ, ζ〉|1/2 < 2r for ζ ∈ Q(ξ, r),

we haveP(zξ,r, ζ) ≥ 2−7nr−2n for ζ ∈ Q(ξ, r). Therefore it follows from (1.4) and (2.6) that

1

σ(Q(ξ, r))

∫

Q(ξ,r)

|f ∗(ζ)− f(zξ,r)|pdσ(ζ) ≤ A0

r2n

∫

Q(ξ,r)

|f ∗(ζ)− f(zξ,r)|pdσ(ζ)

≤ 27nA0

∫

S

P(zξ,r, ζ)|f ∗(ζ)− f(zξ,r)|pdσ(ζ)

≤ 27nA0‖f‖p
Gp

.

Hence we obtain‖f ∗‖BMOp(σ) ≤ A(n, p)‖f‖Gp, and so (i) follows.

Let us prove Theorem2.3.1.

Proof of Theorem2.3.1. We first show that (ii ) implies (i). We observe, takinga = 0, that

f ∈ Hp, thep-th Hardy space, so thatf can be represented as the Poisson-Szegö integral of a

p-th integrable functionf ∗ onS. Thus it suffices to show that‖f ∗‖BMOp(σ) < ∞. Let a ∈ B

be fixed. By (2.6) we have
∫

S

P(a, ζ)|f ∗(ζ)− f(a)|pdσ(ζ) =

∫

S

|f ∗ ◦ ϕa(ζ)− f(a)|pdσ(ζ).

We observe that for almost every pointζ of S,

lim
r→1−

f ◦ ϕa(rζ)− f(a) = f ∗ ◦ ϕa(ζ)− f(a).

Indeed, this follows from Koŕanyi’s theorem in Section1.1, since the inequality

|1− 〈ϕa(rζ), ϕa(ζ)〉| = (1− |a|2)(1− r)

|1− 〈rζ, a〉||1− 〈a, ζ〉| ≤
1

1− |a|(1− |ϕa(rζ)|2)

implies that{ϕa(rζ) : 0 < r < 1} is contained in the Korányi approach region atϕa(ζ).

Since the function
∫

S
|f ◦ ϕa(rζ)− f(a)|pdσ(ζ) is non-decreasing for0 < r < 1, we obtain

‖f‖Gp ≤ ‖f‖Sp. Hencef ∈ BMOHp by Lemma2.5.1.

We next show that (iii ) implies (ii ). Let a ∈ B be fixed. By the monotonicity of the

spherical integral, it is enough to show that
∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ) ≤ A‖f‖p
BMOp(λ) for 1

2
< r < 1,

whereA is a constant independent ofa andr. Since

λ(E(a, 1+r
2

)) =
(1 + r)2n

(3 + r)n(1− r)n
,
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it follows from integration in polar coordinates that for1/2 < r < 1,

∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ) ≤ 2

1− r

∫ 1+r
2

r

∫

S

|f ◦ ϕa(tζ)− f(a)|pdσ(ζ)dt

≤ 2

1− r

(1− r2)n+1

r2n−1

∫ 1+r
2

r

t2n−1

(1− t2)n+1

∫

S

|f ◦ ϕa(tζ)− f(a)|pdσ(ζ)dt

≤ 1

n

1

1− r

(1− r2)n+1

r2n−1

∫

B(0, 1+r
2

)

|f ◦ ϕa(z)− f(a)|pdλ(z)

=
1

n

(1 + r)3n+1

r2n−1(3 + r)n

1

λ(E(a, 1+r
2

))

∫

E(a, 1+r
2

)

|f(z)− f(a)|pdλ(z)

≤ 24n

n
‖f‖p

BMOp(λ).

Hence we obtain‖f‖Sp ≤ 24nn−1‖f‖BMOp(λ), and thus (ii ) follows.

We finally show that (i) implies (iii ). We assume that

f(z) =

∫

S

P(z, ζ)f ∗(ζ)dσ(ζ)

with ‖f ∗‖BMOp(σ) < ∞. Let a ∈ B and 0 < r < 1 be fixed. We putξ = a/|a| and

ρ = 1 − |a|. SinceP(z, ·)dσ is a probability measure onS, we have by Jensen’s inequality,

Fubini’s theorem and the mean value property
∫

E(a,r)

|f(z)− f(a)|pdλ(z) =

∫

E(a,r)

∣∣∣∣
∫

S

P(z, ζ)[f ∗(ζ)− f(a)]dσ(ζ)

∣∣∣∣
p

dλ(z)

≤
∫

E(a,r)

∫

S

P(z, ζ)|f ∗(ζ)− f(a)|pdσ(ζ)dλ(z)

=

∫

S

(∫

E(a,r)

P(z, ζ)dλ(z)

)
|f ∗(ζ)− f(a)|pdσ(ζ)

= λ(E(a, r))

∫

S

P(a, ζ)|f ∗(ζ)− f(a)|pdσ(ζ).

Hence it follows from Lemma2.5.1that‖f‖BMOp(λ) ≤ A(n, p)‖f ∗‖BMOp(σ), and so (i) fol-

lows. Thus Theorem2.3.1is proved.

2.6 Proofs of Corollaries2.2.2, 2.2.3and 2.3.3

Proof of Corollary2.2.2. It follows form Lemma2.4.3that

|∇̃f(a)|p ≤ A

∫

E(a,r0)

|f(z)− f(a)|pdλ(z) ≤ A(1− |a|2)β,

whereA is a constant depending only onp, r0 and the dimensionn. Hence we havef ∈
B−β/p, and sof is constant by Theorem2.2.1(i).

Corollaries2.2.3and2.3.3follow from the following lemma by Kwon [12, Lemma 3.5].
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Lemma 2.6.1. If 1 < p < ∞ andf is an invariant harmonic function onB, then we have

for 0 < r < 1,

(2.8)
∫

S

|f(rζ)|pdσ(ζ)− |f(0)|p = p(p− 1)

∫

rB

g(r, z)|∇̃f(z)|2|f(z)|p−2dλ(z).

Letting r → 1− in (2.8), it follows from the monotone convergence that

(2.9) lim
r→1−

∫

S

|f(rζ)|pdσ(ζ)− |f(0)|p = p(p− 1)

∫

B

g(z)|∇̃f(z)|2|f(z)|p−2dλ(z).

Proof of Corollary2.2.3. Multiplying the both sides of (2.9) with f := f ◦ ϕa − f(a) by

(1− |a|2)αp and taking the supremum overa ∈ B, we obtain Corollary2.2.3from Theorem

2.2.1and the invariance ofλ underAut(B).

Proof of Corollary2.3.3. Let a ∈ B and apply (2.9) to f := f ◦ ϕa − f(a). Then, by the

change of variable, we have

sup
0<r<1

∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

= p(p− 1)

∫

B

G(z, a)|∇̃f(z)|2|f(z)− f(a)|p−2dλ(z).

Hence, taking the supremum overa ∈ B, we obtain Corollary2.3.3.

2.7 Inclusion relationships

Theorem 2.7.1.Let2n < p < ∞. The following statements hold.

(i) If α > 0, thenDp
α ⊂ Bα/p.

(ii) If α = 0, thenDp
0 ⊂ BMOHp. Moreover, this inclusion is strict.

Proof. Let f ∈ Dp
α, whereα ≥ 0. Fixing a ∈ B and0 < r < 1, we have by Lemma2.4.1

and Ḧolder’s inequality

|f ◦ ϕa(rζ)− f(a)| ≤ A

∫ r

0

|∇̃f(ϕa(tζ))|
1− t2

dt

≤ AA5

(∫ r

0

t2n−1(1− t2)α−n−1|∇̃f(ϕa(tζ))|pdt

)1/p

,

where

A5 =

(∫ r

0

t−
2n−1
p−1 (1− t2)−1+n−α

p−1 dt

)(p−1)/p

< ∞.

Since

1− |ϕa(tζ)|2 =
(1− |a|2)(1− t2)

|1− 〈tζ, a〉|2 ≥ 1− |a|
2

(1− t2),
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it follows from the invariance of̃∇ andλ underAut(B) that
∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

≤ A(1− |a|)−α

∫

S

∫ r

0

t2n−1(1− t2)−n−1(1− |ϕa(tζ)|2)α|∇̃f(ϕa(tζ))|pdtdσ(ζ)

≤ A(1− |a|)−α

∫

B

(1− |z|2)α|∇̃f(z)|pdλ(z).

Therefore we obtain

sup
0<r<1
a∈B

(1− |a|)α/p

(∫

S

|f ◦ ϕa(rζ)− f(a)|pdσ(ζ)

)1/p

≤ A‖f‖Dp
α
.

Hence we conclude from Theorem2.2.1thatDp
α ⊂ Bα/p if α > 0, and from Theorem2.3.1

thatDp
0 ⊂ BMOHp.

The strictness of the inclusion betweenDp
0 and BMOHp follows from results for the

boundary behavior. Indeed, we see from [7] that invariant harmonic functions inDp
0 have

tangential limits at almost every point ofS. However, we know from Theorem1.2.1 that

there exists a bounded invariant harmonic function onB which fails to have tangential limits

at every point ofS. Thus the inclusion is strict.
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Part II

Martin kernels of general domains inRn
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Introduction

This introduction includes consistent notations and terminologies employed in Part II. In

Chapters3, 4 and5, we will discuss potential theory on domains inRn with n ≥ 2. More

precisely, we will study minimal Martin boundary points of a John domain, the boundary

behavior of quotients of Martin kernels, comparison estimates for the Green function and the

Martin kernel.

We consider the (usual)Laplace operatoronRn:

∆ :=
n∑

j=1

∂2

∂x2
j

.

Let Ω be a domain inRn. A real valued functionh onΩ is said to beharmonicif h ∈ C2(Ω)

and

∆h = 0 in Ω.

We say that a functionf : Ω → [−∞, +∞) is subharmonicif f is upper semicontinuous on

Ω, not identically−∞, and satisfies that for every open ballB(x, r) contained inΩ,

f(x) ≤ 1

|B(x, r)|
∫

B(x,r)

f(y)dy,

where |E| denotes the Lebesgue measure of a measurable setE. A function f : Ω →
(−∞, +∞] is calledsuperharmonicif −f is subharmonic onΩ. It is known that if a super-

harmonic functionf on Ω has a subharmonic minorant onΩ, then the greatest subharmonic

minorant off onΩ exists and is harmonic.

To define the Green function, we recall the fundamental function: forx, y ∈ Rn,

Uy(x) =





− log |x− y| (x 6= y, n = 2)

|x− y|2−n (x 6= y, n ≥ 3)

+∞ (x = y).

It is easy to check that ify is fixed, thenUy is superharmonic onRn and harmonic onRn\{y}.
A domainΩ inRn is said to be Greenian if, for eachy ∈ Ω, the functionUy has a subharmonic

minorant onΩ. We note that ifΩ is a Greenian domain, then for eachy ∈ Ω, the functionUy

has the greatest harmonic minoranthy on Ω. The functionGΩ : Ω × Ω → [0, +∞], defined

by

GΩ(x, y) = Uy(x)− hy(x),
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is calledthe Green functionof Ω (for the Laplace operator). For example, the Green function

of B(z, r) is explicitly given as follows: ifn = 2, then

GB(z,r)(x, y) =





log

( |y − z|
r

|x− y∗|
|x− y|

)
(x, y ∈ B(z, r), y 6= {x, z})

log

(
r

|x− y|
)

(x ∈ B(z, r) \ {z}, y = z)

+∞ (x = y);

if n ≥ 3, then

GB(z,r)(x, y) =





|x− y|2−n −
( |y − z||x− y∗|

r

)2−n

(x, y ∈ B(z, r), y 6= {x, z})

|x− y|2−n − r2−n (x ∈ B(z, r) \ {z}, y = z)

+∞ (x = y),

wherey∗ denotes the inverse of a pointy 6= z with respect to the sphereS(z, r): that is,

y∗ =

(
r

|y − z|
)2

(y − z) + z.

We now define the Martin kernel of a Greenian domainΩ, and then define the Martin

boundary ofΩ. Let x0 ∈ Ω be fixed. The functionKΩ, defined on(Ω× Ω) \ {(x0, x0)} by

KΩ(x, y) =
GΩ(x, y)

GΩ(x0, y)
,

is called the Martin kernelof Ω (relative tox0). If y = x0, then the above quotient is

interpreted as0. We definethe Martin metriconΩ× Ω by

d(y, z) =

∫

Ω

min{1, |KΩ(x, y)−KΩ(x, z)|}g(x)dx,

whereg : Ω → (0, 1] is an integrable function. We can regardΩ as{KΩ(·, y) : y ∈ Ω}
since the mappingy 7→ KΩ(·, y) is a homeomorphism between them. We then note that the

Martin topology onΩ deduced from the metricd coincides with the Euclidean topology on

Ω. Let {yj} be a sequence inΩ with no limit point in Ω. Then{KΩ(·, yj)}j≥j0, with j0

being sufficiently large, is a uniformly bounded sequence of positive harmonic functions on

a relatively compact open subset ofΩ. Hence the Harnack principle shows that there exists a

subsequence{KΩ(·, yjk
)} converging to a positive harmonic functionh onΩ, which implies

that{KΩ(·, yjk
)} converges toh with respect to the Martin topology. We define∆(Ω) to be

the collection of all harmonic functions onΩ that can be obtained as the limit of{KΩ(·, yj)}
for some sequence{yj} in Ω with no limit point inΩ. We can now extend the Martin metric

d to Ω ∪ ∆(Ω), and then see thatΩ ∪ ∆(Ω) is compact with respect to this metric, and that

Ω is open and dense inΩ ∪∆(Ω). Therefore the setΩ ∪∆(Ω) is a metric compactification

of Ω, and∆(Ω) is the boundary ofΩ in this compactification. We callΩ ∪∆(Ω) the Martin
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compactificationof Ω, and∆(Ω) the Martin boundaryof Ω. See [8, Chapter 8] for details.

To unify the notation, we writeKΩ(·, ξ) for ξ ∈ ∆(Ω) when we regardξ as a function.

We are interested in minimal Martin boundary points. We say thatξ ∈ ∆(Ω) is minimalif

every positive harmonic function onΩ less than or equal to the corresponding Martin kernel

KΩ(·, ξ) coincides with a constant multiple ofKΩ(·, ξ). We denote by∆1(Ω) the collection

of all minimal Martin boundary points in∆(Ω). Let ξ ∈ ∆1(Ω). If KΩ(·, ξ) is given as the

limit of {KΩ(·, yj)} for some sequence{yj} in Ω “converging toy ∈ ∂Ω”, then KΩ(·, ξ)
andξ are calledthe minimal Martin kernel aty andthe minimal Martin boundary point aty,

respectively.

The notion of minimal thinness was introduced by Naı̈m [31], using a regularized reduced

function. Letu be a positive superharmonic function onΩ and letE be a subset ofΩ. A

reduced function ofu relative toE onΩ is defined by

ΩRE
u (x) = inf{v(x)},

where the infimum is taken over all positive superharmonic functionsv onΩ such thatv ≥ u

on E. By ΩR̂E
u , we denote the lower semicontinuous regularization ofΩRE

u . Observe that
ΩR̂E

u ≤ u in general. Letξ ∈ ∆1(∆). A setE is said to beminimally thinat ξ with respect to

Ω if
ΩR̂E

KΩ(·,ξ)(z) < KΩ(z, ξ) for somez ∈ Ω.

In Chapter3, we will discuss minimal Martin boundary points of a John domain. In

particular, we will show that the number of minimal Martin boundary points at each Euclidean

boundary point is estimated in terms of the John constant. For a class of John domains

represented as the union of open convex sets, we will give a sufficient condition for the

Martin boundary to be homeomorphic to the Euclidean boundary.

In Chapter4, we investigate the boundary behavior of Martin kernels. Given two inter-

secting domains, we show the boundary behavior of the quotient of Martin kernels of each

domain. To this end, we characterize the minimal thinness for a difference of two subdo-

mains in terms of Martin kernels of each domain. As a consequence, we obtain the boundary

growth of the Martin kernel on a Lipschitz domain, which corresponds to earlier results for

the boundary decay of the Green function on a Lipschitz domain investigated by Burdzy,

Carroll and Gardiner.

In Chapter5, we will give comparison estimates for the product of the Green function

and the Martin kernel in a uniform domain. These comparison estimates will be applied

to show the equivalence of ordinary thinness and minimal thinness of a set contained in a

non-tangential cone.

Throughout Part II, we use the symbolA to denote an absolute positive constant whose

value is unimportant and may change from line to line. If necessary, we writeA(a, b, · · · ) for

a constant depending ona, b, · · · . For positive functionsf1 andf2, we writef1 ≈ f2 if there

is a constantA > 1 such thatA−1f1 ≤ f2 ≤ Af1.
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Chapter 3

Minimal Martin boundary points of a

John domain

This chapter consists of results obtained in a joint work with Hiroaki Aikawa and Torbjörn

Lundh [AHL].

3.1 Historical survey and statements of results

In 1941, R. S. Martin [30] introduced an ideal boundary∆(Ω) of a Greenian domainΩ in Rn

to guarantee the integral representation of positive harmonic functionsh onΩ:

h(x) =

∫

∆(Ω)

KΩ(x, ζ)dµ(ζ) for x ∈ Ω,

whereµ is a measure on∆(Ω) such thatµ(∆(Ω) \ ∆1(Ω)) = 0. Moreover, the measureµ

is uniquely determined byh. From this viewpoint, it is important to show that the Martin

boundary is homeomorphic to the Euclidean boundary and all Martin boundary points are

minimal. For several domains, this has been proved by many authors: Hunt and Wheeden

[25] for Lipschitz domains, Jerison and Kenig [26] for NTA domains (these domains have an

exterior condition, which admits the doubling property for harmonic measures), Aikawa [3]

for uniform domains (this domain does not have an exterior condition). Ancona [5] studied

a bounded domain represented as the union of a family of open balls with the same radius.

He gave a sufficient (interior) condition for each Euclidean boundary point to have a unique

Martin boundary point.

It is also interesting to estimate the number of minimal Martin boundary points at a Eu-

clidean boundary point where the boundary disperses. Benedicks [10] investigated the num-

ber of minimal Martin boundary points at a Euclidean boundary point of a Denjoy domain, a

domain whose boundary lies in the hyperplane. See Figure3.1. He gave an integral criterion

involving harmonic measures for a Euclidean boundary point to have one or two minimal

Martin boundary points. Ancona [6, 7] and Chevallier [16] also studied a Lipschitz Denjoy
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Rn−1

0

0

Figure 3.1:Denjoy domain and sectorial domain.

domain, a domain whose boundary lies in a Lipschitz surface. In two dimensions, Cranston

and Salisbury [18] considered a sectorial domain, a domain whose boundary lies in the union

of m rays emanating from the origin (see Figure3.1), and gave an integral criterion for deter-

mining whether or not there arem minimal Martin boundary points at the origin. A higher

dimensional sectorial domain is called a quasi-sectorial domain, for which Lömker [29] gave

an integral criterion for the origin to havem minimal Martin boundary points.

As described in [30], there is a domain such that a Euclidean boundary point has infinitely

many minimal Martin boundary points. One of the aim in this chapter is to show that every

John domain has finitely many minimal Martin boundary points at each Euclidean boundary

point. LetΩ be a proper subdomain ofRn, and writeδΩ(x) for the distance fromx to the

(Euclidean) boundary∂Ω of Ω. Suppose thatK0 is a compact subset ofΩ. We say thatΩ is a

general John domain with John constantcJ , 0 < cJ ≤ 1, and John centerK0 if eachx ∈ Ω

can be connected to some point inK0 by a rectifiable curveγ in Ω such that

(3.1) δΩ(z) ≥ cJ`(γ(x, z)) for all z ∈ γ,

whereγ(x, z) is the subarc ofγ from x to z and`(γ(x, z)) is the length ofγ(x, z). We note

thatK0 is taken as one point{x0} in the usual definition of a John domain. We can easily

show that a general John domain is a usual John domain, but the John constants between

them may differ. See the proof of Proposition3.10.7. We also see that every John domain

is bounded since|x − x0| ≤ c−1
J δΩ(x0) for all x ∈ Ω. We can also check that all domains

(Denjoy domain, Lipschitz-Denjoy domain, sectorial domain, quasi-sectorial domain) stated

above are John domains if we restrict them toB(0, 1).

Our main result is as follows.

Theorem 3.1.1.LetΩ be a general John domain inRn with John constantcJ . The following

statements hold.

(i) The number of minimal Martin boundary points at every Euclidean boundary point is

bounded by a constant depending only oncJ and the dimensionn.

(ii) If cJ >
√

3/2, then there are at most two minimal Martin boundary points at every

Euclidean boundary point.

38



Remark3.1.2. In two dimensions, we considerΩ = B(0, 1) \ E, whereE is the closed

set of three equally distributed rays, with length1/2, leaving from the origin. See Figure

3.2. ThenΩ is a general John domain with John constantsin(π/3) =
√

3/2 and John center

K0 = S(0, 2/3). There are three different minimal Martin boundary points at the origin. This

simple example shows that the boundcJ >
√

3/2 in Theorem3.1.1(ii ) is sharp. An example

in higher dimensions may be obtained by the similar matter.

0

Figure 3.2:Sharpness of the boundcJ >
√

3/2.

Remark3.1.3. Theorem3.1.1generalizes some parts of [6, 7], [10], [16], [18] and [29]. One

of the main interests of these papers was to give a criterion for the number of minimal Martin

boundary points at a fixed Euclidean boundary point (via Kelvin transform for [10]). Such

a criterion seems to be very difficult for a general John domain, since the boundary may

disperse at every point.

As a generalization of Ancona’s result for the Martin boundary of the union of open

balls with the same size, we will consider in Section3.10a bounded domain represented as

the union of a family of open convex sets, and give a sufficient condition for a Euclidean

boundary point to have exactly one Martin boundary point.

In order to prove Theorem3.1.1, we will introduce a new notion, a system of local refer-

ence points of orderN . This notion enables us to obtain a Carleson type estimate in a John

domain (Section3.5) using observations in Sections3.3and3.4. The proof of Theorem3.1.1

(i) will be given in Section3.6. The proof of Theorem3.1.1(ii) will be given in Section3.8

using a weak boundary Harnack principle in a John domain proved in Section3.7.

3.2 System of local reference points

Let Ω be a proper subdomain ofRn. For a rectifiable curveγ : [0, `(γ)] → Ω and a non-

negative Borel functionf onΩ, the line integral off overγ is denoted by

∫

γ

f(z)ds(z) =

∫ `(γ)

0

f(γ(t))dt.
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The quasi-hyperbolic metric onΩ is defined by

kΩ(x, y) = inf
γ

∫

γ

ds(z)

δΩ(z)
,

where the infimum is taken over all rectifiable curveγ in Ω connectingx to y. It is easy to

show that ifΩ is a John domain, then there exists a positive constantA such that

(3.2) kΩ(x, x0) ≤ A log
δΩ(x0)

δΩ(x)
+ A for x ∈ Ω,

which is called a quasi-hyperbolic boundary condition. We need more precise information

on the shape of the boundary. We introduce the following notion.

Definition 3.2.1. LetN be a positive integer and0 < η < 1. We say thatξ ∈ ∂Ω has a system

of local reference points of orderN with factorη if there existrξ > 0 andAξ > 1 with the

following property: for each positiver < rξ there areN pointsy1 = y1(r), · · · , yN = yN(r)

in Ω ∩ S(ξ, r) such thatδΩ(yj) ≥ A−1
ξ r for j = 1, · · · , N and

min
j=1,··· ,N

{kΩr(x, yj)} ≤ Aξ log
r

δΩ(x)
+ Aξ for x ∈ Ω ∩B(ξ, ηr),

whereΩr = Ω∩B(ξ, η−3r). If η is not so important, we simply say thatξ ∈ ∂Ω has a system

of local reference points of orderN .

y1

y2

y3

ξ ηr

r η−3r
∂Ω

Figure 3.3:System of local reference points of order3.

Proposition 3.2.2. Let Ω be a general John domain with John constantcJ and John cen-

ter K0. Then everyξ ∈ ∂Ω has a system of local reference points of orderN with N ≤
N(cJ , n) < ∞. Moreover, if the John constantcJ is greater than

√
3/2, then we can let

N ≤ 2 by choosing a suitable factor0 < η < 1.

For the proof of the second assertion, we prepare an elementary geometrical observation.
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Lemma 3.2.3.Letw1, w2 andw3 be points on the unit sphereS(0, 1). Then

max min
j 6=k

|wj − wk| =
√

3,

where the maximum is taken over all positions ofw1, w2 andw3.

Proof. This is a well-known fact (cf. [21]). For completeness we give a proof. We can easily

prove the lemma forn = 2. Let n ≥ 3. We observe from the compactness ofS(0, 1) that the

maximumd is taken byw1, w2 andw3 on S(0, 1). There is a unique2-dimensional planeΠ

containingw1, w2 andw3, since three distinct points onS(0, 1) can not be collinear. Observe

thatS(0, 1) ∩Π is circle with radius at most1. Sincew1, w2 andw3 are points on this circle,

it follows from the casen = 2 thatd ≤ √
3. Thus the lemma follows.

Proof of Proposition3.2.2. We prove the proposition withrξ = dist(K0, ∂Ω). Let ξ ∈ ∂Ω

and0 < r < dist(K0, ∂Ω). We prove the first assertion withη = 2−1. Letx ∈ Ω∩B(ξ, 2−1r).

By definition, there is a rectifiable curveγ in Ω connectingx to some point inK0 such that

(3.1) holds. Then the first hity(x) of S(ξ, r) alongγ satisfies that2−1cJr ≤ δΩ(y(x)) ≤ r

and

kΩr(x, y(x)) ≤ A log
r

δΩ(x)
+ A.

We associatey(x) with x, although it may not be unique.

Consider, in general, the family of ballsB(y, 4−1cJr) with y ∈ S(ξ, r). These balls are

included inB(ξ, (4−1cJ + 1)r), so that at mostN(cJ , n) balls among them can be mutually

disjoint. Hence we can findN pointsx1, · · · , xN ∈ Ω ∩ B(ξ, 2−1r) with N ≤ N(cJ , n)

such that{B(y1, 4
−1cJr), · · · , B(yN , 4−1cJr)} is maximal, whereyj = y(xj) ∈ Ω ∩ S(ξ, r)

is the point associated withxj as above. This means that ifx ∈ Ω ∩ B(ξ, 2−1r), then

B(y(x), 4−1cJr) intersects some ofB(y1, 4
−1cJr), · · · , B(yN , 4−1cJr), sayB(yj, 4

−1cJr).

SinceB(y(x), 4−1cJr) ∩ B(yj, 4
−1cJr) 6= ∅ andB(y(x), 2−1cJr) ∪ B(yj, 2

−1cJr) ⊂ Ωr, it

follows thatkΩr(y(x), yj) ≤ A. Hence we have

kΩr(x, yj) ≤ kΩr(x, y(x)) + kΩr(y(x), yj) ≤ A log
r

δΩ(x)
+ A.

Repeating some points, sayy1 = y(x1), if necessary, we may assume that this property holds

with some ofN pointsy1, · · · , yN , whereN is independent ofr andN ≤ N(cJ , n). Thus

the first assertion follows.

For the proof of the second assertion, let
√

3/2 < b′ < b < cJ andη = 1 − b/cJ > 0.

Let us prove thatξ has a system of local reference points of order at most2 with factorη. Let

0 < r < dist(K0, ∂Ω) and letx ∈ Ω ∩ B(ξ, ηr). In the same way as in the proof of the first

assertion, we can findy(x) ∈ Ω ∩ S(ξ, r) such that

kΩr(x, y(x)) ≤ A log
r

δΩ(x)
+ A,

and

δΩ(y(x)) ≥ cJ(1− η)r = br > b′r >

√
3

2
r.
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Lemma3.2.3says that at most two disjoint balls of radiusb′r can be placed so that their

centers lie on the sphereS(ξ, r). Hence we can choosex1, x2 ∈ Ω ∩ B(ξ, ηr) such that

B(y(x), b′r) intersectsB(yj, b
′r) for somej = 1, 2, whereyj = y(xj). SinceB(y(x), b′r) ∩

B(yj, b
′r) 6= ∅ andB(y(x), br) ∪ B(yj, br) ⊂ Ωr, we havekΩr(y(x), yj) ≤ A. Hence the

second assertion follows. Thus Proposition3.2.2is proved.

Remark3.2.4. In casecJ ≤
√

3/2, we may have an estimate ofN better than the above proof,

by considering a lemma similar to Lemma3.2.3.

3.3 Growth estimate for subharmonic functions

In this section, we refine Domar’s theorem [19, Theorem 2] for the boundedness of a sub-

harmonic function majorized by a positive function. Actually, we give a growth estimate for

subharmonic functions satisfying a Nevanlinna type integral condition.

Theorem 3.3.1.LetΩ be a bounded domain inRn and letf be a non-negative subharmonic

function onΩ. If there is a positive constantε such that

I :=

∫

Ω

(log+ f(x))n−1+εdx < ∞,

then there exists a positive constantA depending only onε and the dimensionn such that

(3.3) f(x) ≤ exp

(
2 + A

(
I

δΩ(x)n

)1/ε)
for x ∈ Ω.

For the proof, we prepare the following lemma.

Lemma 3.3.2.Let f be a non-negative subharmonic function onB(x, r) and denoteLn =

(e2/|B(0, 1)|)1/n. If f(x) ≥ t > 0 and

(3.4) r ≥ Ln|{y ∈ B(x, r) : e−1t < f(y) ≤ et}|1/n,

then there exists a pointy ∈ B(x, r) such thatf(y) > et.

Proof. Suppose to the contrary thatf ≤ et onB(x, r). Since (3.4) is equivalent to

|{y ∈ B(x, r) : e−1t < f(y) ≤ et}|
|B(x, r)| ≤ 1

e2
,

we have by the mean value property of a subharmonic function that

t ≤ u(x) ≤ 1

|B(x, r)|
∫

B(x,r)

f(y)dy

=
1

|B(x, r)|
(∫

B(x,r)∩{f≤e−1t}
f(y)dy +

∫

B(x,r)∩{e−1t<f(y)≤et}
f(y)dy

)

≤ t

e
+

et

e2
< t.

This is a contradiction, and hence the lemma follows.
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Let us prove Theorem3.3.1.

Proof of Theorem3.3.1. Since the right hand side of (3.3) is not less thane2, it suffices to

show that

(3.5) δΩ(x) ≤ AI1/n(log f(x))−ε/n, wheneverf(x) > e2.

We fix x1 ∈ Ω with f(x1) > e2, and let

rj = Ln|{y ∈ Ω : ej−2f(x1) < f(y) ≤ ejf(x1)}|1/n.

Let us show (3.5) for x = x1. We choose a finite or infinite sequence{xj} in Ω as follows:

If δΩ(x1) < r1, then we stop. IfδΩ(x1) ≥ r1, thenB(x1, r1) ⊂ Ω, so that there exists

x2 ∈ B(x1, r1) such thatf(x2) > ef(x1) by Lemma3.3.2with t = f(x1). Next we consider

δΩ(x2). If δΩ(x2) < r2, then we stop. IfδΩ(x2) ≥ r2, thenB(x2, r2) ⊂ Ω, so that there exists

x3 ∈ B(x2, r2) such thatf(x3) > e2f(x1) by Lemma3.3.2with t = ef(x1). Repeating this

procedure, we obtain a finite or infinite sequence{xj}. We claim that

(3.6) δΩ(x1) ≤ 2
∞∑

j=1

rj.

Suppose first that{xj}J
j=1 is finite. If J = 1, thenδΩ(x1) < r1, so that (3.6) holds trivially.

If J ≥ 2, thenxj+1 ∈ B(xj, rj) for j = 1, · · · , J − 1 andδΩ(xJ) < rJ by our choice, and

hence

δΩ(x1) ≤ |x1 − x2|+ · · ·+ |xJ−1 − xJ |+ δΩ(xJ) <

J∑
j=1

rj.

Suppose next that{xj} is infinite. Sincef(xj) > ej−1f(x1) → ∞, it follows from the

local boundedness of a subharmonic function thatxj goes to the boundary. Hence there is an

integerJ ≥ 2 such thatδΩ(xJ) ≤ δΩ(x1)/2, and then we have

δΩ(x1) ≤ |x1 − x2|+ · · ·+ |xJ−1 − xJ |+ δΩ(xJ) ≤
J−1∑
j=1

rj +
1

2
δΩ(x1).

Thus (3.6) holds.

To obtain (3.5) with x = x1, it is enough to show that

(3.7)
∞∑

j=1

rj ≤ AI1/n(log f(x1))
−ε/n.

Let j1 be the integer such thatej1 < f(x1) ≤ ej1+1. Thenj1 ≥ 2 and

rj ≤ Ln|{y ∈ Ω : ej1+j−2 < f(y) ≤ ej1+j+1}|1/n.
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Since the family of intervals{(ej1+j−2, ej1+j+1)}j overlaps at most 3 times, it follows from

Hölder’s inequality that

∞∑
j=1

rj ≤ 3Ln

∞∑
j=j1

|{y ∈ Ω : ej−1 < f(y) ≤ ej}|1/n

≤ 3Ln

( ∞∑
j=j1

1

j(n−1+ε)/(n−1)

)(n−1)/n( ∞∑
j=j1

jn−1+ε|{y ∈ Ω : ej−1 < f(y) ≤ ej}|
)1/n

≤ Aj
−ε/n
1

(∫

Ω

(log+ f(y))n−1+εdy

)1/n

≤ A(log f(x1))
−ε/nI1/n,

whereA is a constant depending only onε and n. Thus (3.7) follows, and the proof is

complete.

3.4 Integrability of negative power of the distance function

In [2], the global integrability of negative power of the distance function have been proved in

a John domainΩ: there is a positive constantτ such that
∫

Ω

δΩ(x)−τdx < ∞.

The purpose of this section is to show the local version.

Theorem 3.4.1.LetΩ be a general John domain inRn with John constantcJ and John center

K0. Then there exist positive constantsτ andA depending only oncJ and the dimensionn

such that ∫

Ω∩B(ξ,r)

(
r

δΩ(x)

)τ

dx ≤ Ar

for eachξ ∈ ∂Ω and0 < r < dist(K0, ∂Ω)/2.

Proof. For eachj ∈ N ∪ {0}, we let

Vj =
{
x ∈ Ω ∩B(ξ, r + (1 + c−1

J )21−jr) : 2−j−1r ≤ δΩ(x) < 2−jr
}

.

For a moment, we fixx ∈ ⋃∞
i=j+1 Vi. Then there is a rectifiable curveγ in Ω connectingx

to some point inK0 with the property (3.1). Let y ∈ γ be such thatδΩ(y) = 2−jr. Then

|x− y| ≤ c−1
J 2−jr; in other words,x ∈ B(y, c−1

J 2−jr). We observe that

(3.8) |B(y, 5c−1
J 2−jr)| ≤ A1|Vj ∩B(y, c−1

J 2−jr)|,

whereA1 is a constant depending only oncJ andn. In fact, takingy′ ∈ B(y, 2−j−1r) so that

δΩ(y′) = 2−1(2−j + 2−j−1)r, we haveB(y′, 2−j−2r) ⊂ Vj ∩B(y, 2−jr). Thus (3.8) holds.
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By the covering lemma, we can find a sequence{yk} such that
∞⋃

i=j+1

Vi ⊂
⋃

k

B(yk, 5c
−1
J 2−jr)

and{B(yk, c
−1
J 2−jr)}k are mutually disjoint. Then we have from (3.8) that

∞∑
i=j+1

|Vi| =
∣∣∣∣∣
∞⋃

i=j+1

Vi

∣∣∣∣∣ ≤
∑

k

|B(yk, 5c
−1
J 2−jr)| ≤ A1

∑

k

|Vj ∩B(yk, c
−1
J 2−jr)| ≤ A1|Vj|.

Hence, writingt = 1 + 2−1A−1
1 , we have

A1

N∑
j=0

tj+1|Vj| ≥
N∑

j=0

N+1∑
i=j+1

tj+1|Vi| =
N+1∑
i=1

i−1∑
j=0

tj+1|Vi| ≥
N∑

i=1

i−1∑
j=0

tj+1|Vi|

=
N∑

i=1

ti+1 − t

t− 1
|Vi| = 1

t− 1

N∑
i=0

ti+1|Vi| − t

t− 1

N∑
i=0

|Vi|,

and so
N∑

j=0

tj+1|Vj| ≤ t

1− (t− 1)A1

N∑
j=0

|Vj| = A

N∑
j=0

|Vj|.

LettingN →∞, we have
∞∑

j=0

tj+1|Vj| ≤ A

∞∑
j=0

|Vj| ≤ A|B(ξ, r + (1 + c−1
J )2r)| ≤ Arn.

Sincetj < (r/δΩ(x))τ ≤ tj+1 for x ∈ Vj with τ = log t/ log 2 > 0, it follows that
∫

Ω∩B(ξ,r)

(
r

δΩ(x)

)τ

dx ≤
∞∑

j=0

tj+1|Vj| ≤ Arn.

Thus the theorem is established.

3.5 Weak Carleson estimate in a John domain

The purpose of this section is to show a Carleson type estimate in a John domain. The

original form obtained by Carleson [13] was stated as follows: Givenξ ∈ ∂Ω, there exists

yr ∈ Ω ∩ S(ξ, r), apart from the boundary enough, such that ifh is a positive harmonic

function onΩ ∩B(ξ, 2r) vanishing (continuously) on∂Ω \B(ξ, 2−1r), then

h(x) ≤ Ah(yr) for x ∈ Ω ∩ S(ξ, r),

whereA is a constant independent ofx, r andh. This estimate may be obtained in a uniform

domain. However, it is impossible in a John domain. So we refine this estimate suitably using

local reference points introduced in Section3.2.

Throughout this section, we suppose thatΩ is a general John domain. We note from

Proposition3.2.2that each boundary point has a system of local reference points of orderN .
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Theorem 3.5.1.Let ξ ∈ ∂Ω have a system of local reference pointsy1, · · · , yN ∈ Ω ∩
S(ξ, r) of order N with factor η for 0 < r < rξ. If h is a positive harmonic function on

Ω ∩ B(ξ, η−3r) which vanishes quasi-everywhere on∂Ω ∩ B(ξ, η−3r) and is bounded on

Ω ∩B(ξ, ηr) \B(ξ, η3r), then

(3.9) h(x) ≤ A

N∑
j=1

h(yj) for x ∈ Ω ∩ S(ξ, η2r),

whereA is a constant independent ofx, r andh.

In the proof we use the following material: LetΩ be a domain inRn and letD be an open

subset ofΩ. If h is a positive harmonic function onD which vanishes quasi-everywhere on

∂D ∩ Ω and is bounded near points of∂D ∩ Ω, then we see from [8, Theorem 5.2.1] that

h has a subharmonic extensionh∗ to Ω which is valued0 quasi-everywhere on∂D ∩ Ω and

everywhere onΩ \D.

Proof of Theorem3.5.1. By Definition3.2.1and Corollary6.1.2, there are positive constants

A2 andλ such that

(3.10) h(x) ≤ A2

(
r

δΩ(x)

)λ N∑
j=1

h(yj) for x ∈ Ω ∩B(ξ, ηr).

Let h∗ be a subharmonic extension ofh to B(ξ, ηr) \B(ξ, η3r) as above, and apply Theorem

3.3.1to ε = 1 andf = h∗/(A2

∑N
j=1 h(yj)) on B(ξ, ηr) \ B(ξ, η3r). Let τ > 0 be as in

Theorem3.4.1. Applying the elementary inequality,

(log t)n ≤
(n

τ

)n

tτ for t ≥ 1,

to t = r/δΩ(x) ≥ 1 for x ∈ Ω, we have
[
log

(
r

δΩ(x)

)]n

≤ A

(
r

δΩ(x)

)τ

.

This, together with (3.10) and Theorem3.4.1, yields that

I =

∫

Ω

(log+ u)ndx ≤ A

∫

Ω∩B(ξ,r)

(
r

δΩ(x)

)τ

dx ≤ Arn.

Hence we conclude from Theorem3.3.1thatu ≤ exp(2 + AIr−n) ≤ A onS(ξ, η2r), which

shows (3.9). Thus the proof is complete.

Corollary 3.5.2. Letξ ∈ ∂Ω have a system of local reference pointsy1, · · · , yN ∈ Ω∩S(ξ, r)

of orderN with factor η for 0 < r < rξ. If h is a bounded positive harmonic function on

Ω ∩B(ξ, η−3r) vanishing quasi-everywhere on∂Ω ∩B(ξ, η−3r), then

h(x) ≤ A

N∑
j=1

h(yj) for x ∈ Ω ∩B(ξ, η2r),

whereA is a constant independent ofx, r andh.
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Proof. Sinceh satisfies the assumption in Theorem3.5.1, we have (3.9). The conclusion

follows from the maximum principle.

Theorem3.5.1 also yields the growth estimate for kernel functions. Forξ ∈ ∂Ω, we

denote byHξ the collection of all kernel functions atξ normalized atx0 (John center in a

usual sense), that is, the set of all positive harmonic functionsh on Ω such thath(x0) = 1,

h vanishes quasi-everywhere on∂Ω and is bounded onΩ \ B(ξ, r) for eachr > 0. We note

from (3.2) and Corollary6.1.2that there exist positive constantsA andλ depending only on

cJ and the dimensionn such that

(3.11)
h(x)

h(x0)
≤ A

(
δΩ(x0)

δΩ(x)

)λ

for x ∈ Ω.

Corollary 3.5.3. Letξ ∈ ∂Ω have a system of local reference pointsy1, · · · , yN ∈ Ω∩S(ξ, r)

of orderN with factorη for 0 < r < rξ. If h ∈ Hξ, then

h(x) ≤ A|x− ξ|−λ for x ∈ Ω,

whereλ > 0 is as in(3.11) andA is a constant independent ofx, r andh.

Proof. Sinceh ∈ Hξ satisfies the assumption in Theorem3.5.1, we have (3.9). We also have

h(yj) ≤ Ar−λ by applying (3.11) to eachyj. Sinceh vanishes quasi-everywhere on∂Ω and

is bounded near the boundary apart from a neighborhood ofξ, it follows from the maximum

principle that

h(x) ≤ A

N∑
j=1

h(yj) ≤ Ar−λ for x ∈ Ω \B(ξ, η2r).

SinceΩ is bounded, we obtainh(x) ≤ A|x− ξ|−λ for x ∈ Ω.

3.6 Proof of Theorem3.1.1(i)

Before giving the proof of Theorem3.1.1(i), we show that all Martin kernels atξ belong to

Hξ. The following theorem can be found in [9].

Theorem (Bass and Burdzy).LetΩ be a John domain inRn. Suppose thatV is an open set

and thatK is a compact subset ofV . Then there exists a constantA ≥ 1 depending onV , K

andΩ such that ifu andv are positive harmonic functions onΩ that vanish quasi-everywhere

on∂Ω ∩ V and are bounded near∂Ω ∩ V , then

u(x)

v(x)
≤ A

u(y)

v(y)
for x, y ∈ K ∩ Ω.

Let ξ ∈ ∂Ω and let{yj} be a sequence inΩ converging toξ. Applying Bass and Burdzy’s

result, we have that forx ∈ Ω \B(ξ, r) andj sufficiently large,

KΩ(x, yj) =
GΩ(x, yj)

GΩ(x0, yj)
≤ A

GΩ(x, y0)

GΩ(x0, y0)
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wherey0 is a fixed point inΩ∩B(ξ, 2−1r). Lettingj →∞, we see that all Martin kernels at

ξ are bounded onΩ \ B(ξ, r) for eachr > 0 and vanish quasi-everywhere on∂Ω. Thus they

belong toHξ. In particular,Hξ is non-empty.

From this observation, it is enough to show the following proposition in order to prove

Theorem3.1.1(i).

Proposition 3.6.1. Let Ω be a general John domain inRn with John constantcJ , and let

ξ ∈ ∂Ω. Then the number of minimal functions inHξ is bounded by a constant depending

only oncJ and the dimensionn.

For the proof, we prepare the following lemma.

Lemma 3.6.2. Let Ω be a Greenian domain inRn and ξ ∈ ∂Ω. Suppose that there exist a

positive integerM and a positive constantA with the following property: Ifh0, · · · , hM ∈
Hξ, then there isk ∈ {0, · · · ,M} such that

hk ≤ A
∑

j 6=k

hj onD.

ThenHξ has at mostM minimal harmonic functions.

Proof. Suppose that there areM + 1 different minimal harmonic functionsh0, · · ·hM ∈ Hξ.

If necessary relabeling, we may assume by assumption that

h0 ≤ A

M∑
j=1

hj onD.

We may also assume thatA ≥ 1. Then(A
∑M

j=1 hj − h0)/(AM − 1) ∈ Hξ. Writing h for

this function, we have
1

AM
h0 + (1− 1

AM
)h =

1

M

M∑
j=1

hj.

Compare the Martin representation measures for the both sides. The measure for the left

hand side has at least1/AM mass ath0, whereas the measure for the right hand side has 0

mass ath0. This contradicts the uniqueness of the Martin representation. Hence the lemma

follows.

Proof of Proposition3.6.1. Let h1, · · · , hM ∈ Hξ, and leth∗j be a subharmonic extension of

hj toRn \ {ξ} as mentioned in the previous section. LetHj be the Kelvin transformation of

h∗j with respect toS(ξ, 1): that is,

Hj(x) = |x− ξ|2−nh∗j(ξ + |x− ξ|−2(x− ξ)).

We then observe thatHj is a non-negative subharmonic function onRn which is positive

and harmonic on the Kelvin imageΩ∗ of Ω and is equal to0 quasi-everywhere outsideΩ∗.

Moreover, Corollary3.5.3shows

Hj(x) ≤ A|x− ξ|2−n+λ.
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ThusHj is of order at most2− n + λ. We let

w = max
j=0,··· ,M

{Hj −
∑

k 6=j

Hk},

and letw+ be the upper semicontinuous regularization ofmax{w, 0}. Thenw+ is a non-

negative subharmonic function onRn of order 2 − n + λ. If none of {x : Hj(x) >∑
k 6=j Hk(x)} is empty, thenw+ hasM + 1 tracts. Hence [22, Theorem 3] yields that

2− n + λ ≥ 1

2
log

(
M + 1

4

)
+

3

2
if M ≥ 3.

Hence, ifM > 4 exp(1 − 2n + 2λ) − 1, then{x : Hj(x) >
∑

k 6=j Hk(x)} = ∅ for some

j = 0, · · · ,M . This means thatHj ≤
∑

k 6=j Hk onΩ∗, so that

hj ≤
∑

k 6=j

hk onΩ.

Hence Lemma3.6.2implies thatHξ has at mostM minimal harmonic functions, or equiva-

lently there areM minimal Martin boundary points atξ. Thus the number of minimal Martin

boundary points atξ is bounded by4 exp(1− 2n + 2λ).

3.7 Weak boundary Harnack principle in a John domain

In order to prove Theorem3.1.1(ii), we need more concrete discussion. First of all, we note

that there is a difference of the behavior of the Green function betweenn = 2 andn ≥ 3:

that is, ifn ≥ 3, then

GΩ(x, y) ≈ r2−n for x ∈ S(y, 2−1δΩ(y)) with δΩ(y) ≈ r;

if n = 2, then this estimate does not necessarily hold. To avoid this difficulty, we consider the

Green functionGr of the intersectioñΩr := Ω∩B(ξ, A3r) with sufficiently largeA3 > η−3.

Then we have for anyn ≥ 2,

(3.12) Gr(x, y) ≈ r2−n for x ∈ S(y, 2−1δΩ(y)) with δΩ(y) ≈ r,

where the constant of comparison depends only onΩ andA3.

Let U be an open set and letE be a Borel subset of∂U . By ω(x,E, U) we denote the

harmonic measure ofE for U evaluated atx. That is , the Perron-Wiener-Brelot solution of

the Dirichlet problem inU with boundary data1 onE and0 on∂U \E. We letU(r) = {x ∈
Ω : δΩ(x) < r}.

Lemma 3.7.1.LetΩ be a general John domain inRn with John centerK0. Then there exists

constants0 < ε0 < 1 andA7 ≥ 1 such that if0 < r < 2−1 dist(K0, ∂Ω), then

ω(x, U(r) ∩ S(x,A7r), U(r) ∩B(x,A7r)) ≤ ε0 for x ∈ U(r).
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Proof. Let x ∈ U(r). By the definition, there is a rectifiable curveγ in Ω connectingx

to some point inK0 with the property (3.1). Then we can find a pointz ∈ γ such that

δΩ(z) = 2r. Since|x − z| ≤ `(γ(x, z)) ≤ 2c−1
J r, we haveB(z, r) ⊂ B(x, 3c−1

J r) \ U(r).

Therefore there is a constant0 < ε0 < 1 depending only oncJ and the dimensionn such that

|U(r) ∩B(x, 3c−1
J r)|

|B(x, 3c−1
J r)| ≤ ε0.

Let A7 = 3c−1
J . We note thatω(·, U(r) ∩ S(x,A7r), U(r) ∩ B(x,A7r)) has a subharmonic

extensionω to B(x,A7r) with zero values quasi-everywhere on∂U(r) ∩ B(x,A7r) and

everywhere onB(x,A7r) \ U(r). Then the mean value property of a subharmonic function

yields that

ω(x) ≤ 1

|B(x,A7r)|
∫

B(x,A7r)

ω(y)dy ≤ ε0.

Thus the lemma follows.

Lemma 3.7.2.LetΩ be a general John domain inRn and letA7 be a constant as in Lemma

3.7.1. Then there exists a positive constantA8 ≤ 1 such that ifr > 0 andρ > 0, then

(3.13) ω(x, U(ρ) ∩ S(x, r), U(ρ) ∩B(x, r)) ≤ exp

(
A7 − A8

r

ρ

)
for x ∈ U(ρ).

Proof. We note that ifr ≤ A7ρ, then (3.13) holds clearly since the right hand side of (3.13) is

not less than1. So we assume thatr > A7ρ. Letk ∈ N be such thatkA7ρ < r ≤ (k +1)A7ρ.

We claim that forj = 0, · · · , k,

(3.14) sup
U(ρ)∩B(x,r−jA7ρ)

ω(·, U(ρ) ∩ S(x, r), U(ρ) ∩B(x, r)) ≤ εj
0,

whereε0 is a constant in Lemma3.7.1. We show this by induction. Ifj = 0, then (3.14)

holds clearly. Assuming that (3.14) holds forj − 1, we show (3.14) for j. Let y ∈ U(ρ) ∩
S(x, r − jA7ρ). SinceS(y, A7ρ) ⊂ B(x, r − (j − 1)A7ρ), it follows from the assumption,

the maximum principle and Lemma3.7.1that

ω(y, U(ρ) ∩ S(x, r), U(ρ) ∩B(x, r)) ≤ εj−1
0 ω(y, U(ρ) ∩ S(y,A7ρ), U(ρ) ∩B(y,A7ρ))

≤ εj
0.

Sincey is an arbitrary point inU(ρ) ∩ S(x, r − jA7ρ), the maximum principle yields (3.14)

for j. Finally, noting that(A7ρ)−1r ≤ 2k, we obtain from (3.14) with j = k that

ω(x, U(ρ) ∩ S(x, r), U(ρ) ∩B(x, r)) ≤ exp((ε0 − 1)k) ≤ exp

(
ε0 − 1

2A7

r

ρ

)
.

Thus the lemma is proved.

In the rest of this section, we suppose thatΩ is a general John domain inRn.
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Lemma 3.7.3.Let ξ ∈ ∂Ω have a system of local reference pointsy1, · · · , yN ∈ Ω ∩ S(ξ, r)

of orderN with factorη for 0 < r < rξ. If x ∈ Ω ∩B(ξ, η3r), then

(3.15) ω(x, Ω ∩ S(ξ, η2r), Ω ∩B(ξ, η2r)) ≤ Arn−2

N∑
j=1

Gr(x, yj),

whereA is a constant depends only oncJ , Aξ and the dimensionn.

Proof. Let 0 < r < rξ. For eachx ∈ Ω ∩ B(ξ, ηr), there is a local reference pointy(x) ∈
{y1, · · · , yN} such that

kΩr(x, y(x)) ≤ Aξ log
r

δΩ(x)
+ Aξ.

Let y′(x) ∈ S(y(x), 2−1δΩ(y(x))). Then we have by Lemma6.1.3

kΩr\{y(x)}(x, y′(x)) ≤ Aξ log
r

δΩ(x)
+ Aξ.

Lettingf(x) = rn−2
∑N

j=1 Gr(x, yj), we obtain from (3.12) and Corollary6.1.2that

f(x) ≥ A

(
δΩ(x)

r

)λ

for x ∈ Ω ∩B(ξ, ηr),

whereA andλ are positive constants depending only oncJ , Aξ and the dimensionn. Let

Ωj = {x ∈ Ω̃r : exp(−2j+1) ≤ f(x) < exp(−2j)},
Uj = {x ∈ Ω̃r : f(x) < exp(−2j)}.

Then we see that

Uj ∩B(ξ, ηr) ⊂ Vj :=

{
x ∈ Ω : δΩ(x) < Ar exp

(
−2j

λ

)}
.

We now define a decreasing sequence{rj} by r0 = η2r and

rj =

(
η2 − 6(η2 − η3)

π2

j∑

k=1

1

k2

)
r for j ≥ 1.

We note thatrj → η3r. Let ω0 = ω(·, Ω ∩ S(ξ, η2r), Ω ∩B(ξ, η2r)) and put

dj =





sup
x∈Ωj∩B(ξ,rj)

ω0(x)

f(x)
if Ωj ∩B(ξ, rj) 6= ∅,

0 if Ωj ∩B(ξ, rj) = ∅.

It is sufficient to show thatdj is bounded by a constant independent ofr andj, sincerj > η3r

for all j ≥ 0. Let j > 0 and letx ∈ Ωj ∩B(ξ, rj). Then the maximum principle yields that

(3.16) ω0(x) ≤ ω(x, Uj ∩ S(ξ, rj−1), Uj ∩B(ξ, rj−1)) + dj−1f(x).
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ξ η3r
rj

rj−1

η2r

Ωj

Ωj−1

Uj Ωj ∩B(ξ, rj)

Figure 3.4:Maximum principle onΩj ∩B(ξ, rj−1).

SinceB(x, rj−1 − rj) ⊂ B(ξ, rj−1), the first term of the right hand side of (3.16) is not

greater than

ω(x, Vj ∩ S(x, rj−1 − rj), Vj ∩B(x, rj−1 − rj)) ≤ exp

(
A7 − A8

rj−1 − rj

Ar exp(−2jλ−1)

)

by Lemma3.7.2. Let us divide the both sides of (3.16) by u(x) and take the supremum over

Ωj ∩B(ξ, rj). Then we have

dj ≤ exp

(
2j+1 + A7 − A8

6(η2 − η3)

π2

exp(2jλ−1)

Aj2

)
+ dj−1.

Sinced0 ≤ e2, we obtain

dj ≤
∞∑

j=1

exp

(
2j+1 + A7 − A8

6(η2 − η3)

π2

exp(2jλ−1)

Aj2

)
+ d0 < ∞.

Thus the lemma is established.

Lemma 3.7.4.Let ξ ∈ ∂Ω have a system of local reference pointsy1, · · · , yN ∈ Ω ∩ S(ξ, r)

of orderN with factorη for 0 < r < rξ. If x ∈ Ω ∩B(ξ, η3r) andy ∈ Ω ∩ S(ξ, η−3r), then

(3.17) Gr(x, y) ≤ Arn−2

N∑
j=1

Gr(x, yj)
N∑

k=1

Gr(yk, y),

whereA is a constant depends only oncJ , Aξ and the dimensionn.

Proof. Let us apply Corollary3.5.2to h(x) = Gr(x, y) with y ∈ Ω ∩ S(ξ, η−3r). Then

Gr(x, y) ≤ A

N∑
j=1

Gr(yj, y) for x ∈ Ω ∩ S(ξ, η2r).

Hence Lemma3.7.3and the maximum principle yields that

Gr(x, y) ≤ Arn−2

N∑
j=1

Gr(x, yj)
N∑

k=1

Gr(yk, y) for x ∈ Ω ∩B(ξ, η3r),

and thus the lemma follows.
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For further arguments, we need the following improvement of (3.15): If x ∈ Ω∩S(ξ, η9r)

andy ∈ Ω ∩ S(ξ, η−3r), then

(3.18) Gr(x, y) ≤ Arn−2

N∑
j=1

Gr(x, yj)Gr(yj, y),

whereA is a constant depending only oncJ , Aξ and the dimensionn. We should note that

the cross termsGr(x, yj)Gr(yk, y) (j 6= k) disappear from the right hand side of (3.15).

If N = 1, then (3.18) is nothing but (3.15). If N ≤ 2, then Ancona’s ingenious trick

[6, Théor̀eme 7.3] gives (3.18) from (3.15). However, the proof is rather complicated and

we postpone the proof to Section3.9. The remaining arguments are rather easy and hold

for arbitraryN ≥ 1, provided that (3.18) holds. Let us show the weak boundary Harnack

principle defined by Ancona [6, Définition 2.3].

Lemma 3.7.5 (Weak boundary Harnack principle). Let ξ ∈ ∂Ω have a system of local

reference pointsy1, · · · , yN ∈ Ω∩S(ξ, r) of orderN with factorη for 0 < r < rξ. Moreover,

suppose that(3.18) holds. Leth0, · · · , hN ∈ Hξ. Then

(3.19) h0(x) ≤ A

N∑
j=1

h0(yj)

hj(yj)
hj(x) for x ∈ Ω \B(ξ, η9r),

whereA is a constant depending only oncJ , η, Aξ and the dimensionn.

Proof. In (3.18), we replace the roles ofx andy and writez for y. By dilation and changing

A3, we obtain from the symmetry of the Green function that ifx ∈ Ω ∩ S(ξ, η9r) andz ∈
Ω ∩ S(ξ, η21r), then

Gr(x, z) ≤ Arn−2

N∑
j=1

Gr(x, zj)Gr(zj, z),

wherez1, · · · , zN ∈ Ω ∩ S(ξ, η12r) are local reference points. Moreover, for eachzj, we can

find a local reference pointyk(j) ∈ Ω ∩ S(ξ, r) such that

keΩr\{x,z}(zj, yk(j)) ≤ AkeΩr
(zj, yk(j)) + A ≤ A.

By Corollary6.1.2, we haveGr(x, zj) ≈ Gr(x, yk(j)) andGr(zj, z) ≈ Gr(yk(j), z), whenever

x ∈ Ω ∩ S(ξ, η9r) andz ∈ Ω ∩ S(ξ, η21r), where the constants of comparison are depend

only onη andn. Hence we obtain that ifx ∈ Ω ∩ S(ξ, η9r) andz ∈ Ω ∩ S(ξ, η21r), then

(3.20) Gr(x, z) ≤ Arn−2

N∑
j=1

Gr(x, yj)Gr(yj, z).

Let δ = η−3r andρ = η21r. We see that the regularized reduced functioneΩrR̂
Ω∩(S(ξ,δ)∪S(ξ,ρ))
h0

in Ω̃r is a Green potential of measuresµ concentrated onΩ ∩ S(ξ, δ) andν on Ω ∩ S(ξ, ρ)
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such thateΩrR̂
Ω∩(S(ξ,δ)∪S(ξ,ρ))
h0

= h0 onΩ∩B(ξ, δ) \B(ξ, ρ). It follows from (3.18) and (3.20)

that forx ∈ Ω ∩ S(ξ, η9r),

h0(x) =

∫

Ω∩S(ξ,δ)

Gr(x, y)dµ(y) +

∫

Ω∩S(ξ,ρ)

Gr(x, z)dν(z)

≤ Arn−2

N∑
j=1

(∫

Ω∩S(ξ,δ)

Gr(x, yj)Gr(yj, y)dµ(y) +

∫

Ω∩S(ξ,ρ)

Gr(x, yj)Gr(yj, z)dν(z)

)

= Arn−2

N∑
j=1

Gr(x, yj)h0(yj).

Letε = 1−η9. We observe from (3.12) and the Harnack inequality thathj(yj)r
n−2Gr(x, yj) ≈

hj(x) for x ∈ S(yj, εδΩ(yj)), and sohj(yj)r
n−2Gr(x, yj) ≤ Ahj(x) for x ∈ Ω∩S(ξ, η9r) ⊂

Ω̃r \ B(yj, εδΩ(yj)) by the maximum principle. Hence (3.19) follows for x ∈ Ω \ B(ξ, η9r)

by the maximum principle.

3.8 Proof of Theorem3.1.1(ii)

In order to prove Theorem3.1.1(ii), it is sufficient to show the following proposition.

Proposition 3.8.1. Let Ω be a general John domain inRn and letξ ∈ ∂Ω have a system

of local reference points of orderN . Suppose thatN ≤ 2. Then the number of minimal

functions inHξ is at most2. Furthermore, ifN = 1, thenHξ consists of exactly one minimal

function.

For the proof, we prepare the following lemma.

Lemma 3.8.2.Let Ω be a bounded domain inRn andξ ∈ ∂Ω. If h ∈ Hξ, then the measure

associated withh in the Martin representation is concentrated on minimal Martin boundary

points atξ.

Proof. By the Martin representation, there is a unique measureµ on∆(Ω) such thatµ(∆(Ω)\
∆1(Ω)) = 0 and

h(x) =

∫

∆(Ω)

KΩ(x, ζ) dµ(ζ) for x ∈ Ω.

We now write∆(ξ; Ω) for the set of all Martin boundary points atξ. Let E be a compact

subset of∆(Ω) \∆(ξ; Ω) and let{Ej} be a decreasing sequence of compact neighborhoods

of E in the Martin topology such that(E1∩Ω)∩B(ξ, r1) = ∅ for somer1 > 0 and
⋂

j Ej = E.

Then we have by [8, Corollary 9.1.4]

ΩR̂
Ej∩Ω
h (x) =

∫

∆1(Ω)

ΩR̂
Ej∩Ω

KΩ(·,ζ)(x)dµ(ζ) for x ∈ Ω.
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Noting that lim
j→∞

ΩR̂
Ej∩Ω
h is bounded and harmonic onΩ and vanishes quasi-everywhere on

∂Ω sinceh is the kernel function atξ, we have by the monotone convergence

(3.21) 0 = lim
j→∞

ΩR̂
Ej∩Ω
h (x0) =

∫

∆1(Ω)

lim
j→∞

ΩR̂
Ej∩Ω

KΩ(·,ζ)(x0)dµ(ζ).

Let ζ ∈ E ∩∆1(Ω). ThenEj ∩Ω is not minimally thin atζ with respect toΩ for eachj (see

[8, Lemma 9.1.5]), and solim
j→∞

ΩR̂
Ej∩Ω

KΩ(·,ζ)(x0) = KΩ(x0, ζ) = 1. Henceµ(E) = 0 by (3.21).

Thus the lemma follows.

Proof of Proposition3.8.1for N = 1. As stated in the first paragraph of Section3.6, Hξ is

non-empty. Leth0, h1 ∈ Hξ. Let {rj} be a sequence such thatrj → 0 and take a local

reference pointyj
1 ∈ Ω∩S(ξ, rj). Then one of the inequalitiesh0(y

j
1) ≤ h1(y

j
1) andh1(y

j
1) ≤

h0(y
j
1) holds for infinitely manyj. Hence Lemma3.7.5with N = 1 yields that eitherh0 ≤

Ah1 or h1 ≤ Ah0 holds onΩ. Moreover we suppose thath0 andh1 are minimal. Then

h0 ≡ h1 in any case. This implies thatHξ is singleton. Moreover, the Martin representation

theorem and Lemma3.8.2show that the element inHξ is minimal.

Proof of Proposition3.8.1for N = 2. As we shall show in the next section that (3.18) holds

for N = 2, and hence Lemma3.7.5 holds forN = 2. We follow the proof of Ancona

[6, Théorem̀e 2.5]. We slightly generalize the proof of Proposition3.8.1 for N = 1. Let

h0, h1, h2 ∈ Hξ, and take a decreasing sequence{rj} such thatrj → 0. For eachrj suffi-

ciently small, we find reference pointsyj
i ∈ D ∩ S(ξ, rj) with i = 1, 2. For a moment, we

fix j and considermax0≤k≤2 hk(y
j
1). Then we findk(j) such thathk(j) = max0≤k≤2 hk(y

j
1).

This holds for infinitely manyj, so that there isk1 ∈ {0, 1, 2} such that

(3.22) hk1(y
j
1) = max

0≤k≤2
hk(y

j
1)

for infinitely manyj. We also findk2 ∈ {0, 1, 2} such that

hk2(y
j
2) = max

0≤k≤2
hk(y

j
2)

for infinitely manyj satisfying (3.22). Thus

hk(y
j
i ) ≤ hki

(yj
i ) for all k ∈ {0, 1, 2} andi ∈ {1, 2}

holds for infinitely manyj. If necessary relabelingh0, h1, h2, we may assume thatk1 6= 0

andk2 6= 0. Then Lemma3.7.5yields that

h0(x) ≤ A

2∑
i=1

h0(y
j
i )

hki
(yj

i )
hki

(x) ≤ A

2∑

k=1

hk(x) for x ∈ Ω \B(ξ, η−3rj).

This holds for infinitely manyj. Lettingj →∞, we obtain

h0 ≤ A

2∑

k=1

hk onΩ.

This, together with Lemma3.6.2, completes the proof.
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3.9 Proof of (3.18) and open problem

Lemma 3.9.1. Let ξ ∈ ∂Ω have a system of local reference pointsy1, y2 ∈ Ω ∩ S(ξ, r) of

order2 with factorη for 0 < r < rξ. If x ∈ Ω ∩ S(ξ, η9r) andy ∈ Ω ∩ S(ξ, η−3r), then

Gr(x, y) ≤ Arn−2

2∑
j=1

Gr(x, yj)Gr(yj, y),

whereA is a constant depending only oncJ , η, Aξ and the dimensionn.

Proof. Besides the local reference pointsy1, y2 ∈ Ω∩ S(ξ, r), we take local reference points

y∗1, y
∗
2 ∈ Ω ∩ S(ξ, η6r) such thatδΩ(y∗j ) ≥ Aξη

6r for j = 1, 2 and

min
j=1,2

{kΩ∩B(ξ,η3r)(x, y∗j )} ≤ Aξ log
η6r

δΩ(x)
+ Aξ for x ∈ Ω ∩B(ξ, η7r).

See figure3.5.

ξ

y2

y1

y∗1

y∗2

η6r r∂Ω

Figure 3.5:Position ofy∗1, y
∗
2.

Then, forj = 1, 2, we have

min
k=1,2

{kΩr(y
∗
j , yk)} ≤ Aξ log

r

δΩ(y∗j )
+ Aξ ≤ A.

So, we may assume either

(3.23) kΩr(y
∗
1, y1) ≤ A and kΩr(y

∗
2, y1) ≤ A,

or

(3.24) kΩr(y
∗
1, y1) ≤ A and kΩr(y

∗
2, y2) ≤ A,

by replacing the roles ofy1 andy2, if necessary.

We first consider the case when (3.23) holds. Letx ∈ Ω ∩ B(ξ, η9r). Then Lemma3.7.4

for y∗1, y
∗
2 and Corollary6.1.2(together with Lemma6.1.3) yield that fory ∈ Ω ∩ S(ξ, η3r),

Gr(x, y) ≤ Arn−2
∑

j,k

Gr(x, y∗j )Gr(y
∗
k, y) ≤ Arn−2Gr(x, y1)Gr(y1, y).
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By the maximum principle, we have this inequality fory ∈ Ω∩S(ξ, η−3r). Hence the lemma

follows in this case.

We next consider the case when (3.24) holds. LetΦ = {z ∈ Ω̃r : Gr(z, y1) ≥ Gr(z, y2)}.
If either x, y ∈ Φ or x, y ∈ Ω̃r \ Φ, then the lemma follows from (3.17). Let us consider

the remaining cases. Exchanging the roles ofy1 andy2 if necessary, we may assume that

x ∈ Φ ∩ S(ξ, η9r) andy ∈ (Ω̃r \ Φ) ∩ S(ξ, η−3r). Let E = Φ \ B(ξ, η3r) and consider

the regularized reduced functioneΩrR̂E
Gr(·,y) in Ω̃r. This function is represented as the Green

potential of a measureµ supported in∂E. For a moment, we letz ∈ E. Then we have from

(3.17) for y∗1, y
∗
2 and the maximum principle that

(3.25) Gr(x, z) ≤ Arn−2
∑

j,k

Gr(x, y∗j )Gr(y
∗
k, z).

By (3.24) and Corollary6.1.2(together with Lemma6.1.3), we haveGr(x, y∗j ) ≤ AGr(x, yj)

for j = 1, 2. We also haveGr(y
∗
k, z) ≤ AGr(yk, z) for k = 1, 2. In fact, if z ∈ B(yk, 2

−1(1−
η6)δΩ(yk)), then

Gr(yk, z) ≈ |yk − z|2−n ≥ Ar2−n ≥ AGr(y
∗
k, z);

if z ∈ Ω̃r \B(yk, 2
−1(1− η6)δΩ(yk)), then (3.24) and Corollary6.1.2(together with Lemma

6.1.3) yield Gr(y
∗
k, z) ≈ Gr(yk, z). Hence (3.25) becomes

Gr(x, z) ≤ Arn−2
∑

j,k

Gr(x, yj)Gr(yk, z) ≤ Arn−2Gr(x, y1)Gr(y1, z)

by the definition ofΦ. Therefore

eΩrR̂E(x) ≤ Arn−2Gr(x, y1)

∫

E

Gr(y1, z)dµ(z)

= Arn−2Gr(x, y1)
eΩrR̂E

Gr(·,y)(y1) ≤ Arn−2Gr(x, y1)Gr(y1, y).

(3.26)

Let vy = Gr(·, y)− eΩrR̂E
Gr(·,y). Then

(3.27) vy = 0 quasi-everywhere onE = Φ \B(ξ, η3r).

By (3.17) we have

(3.28) vy(x) ≤ Gr(z, y) ≤ Arn−2Gr(z, y2)Gr(y2, y) for z ∈ Ω ∩ ∂Φ ∩B(ξ, η3r).

Observe thatΩ∩ ∂(Φ∩B(ξ, η3r)) ⊂ (Φ \B(ξ, η3r))∪ (Ω∩ ∂Φ∩B(ξ, η3r)). Hence (3.27),

(3.28) and the maximum principle yield that

vy ≤ Arn−2Gr(·, y2)Gr(y2, y) onΦ ∩B(ξ, η3r).

This, together with (3.26), implies that

Gr(x, y) ≤ Arn−2(Gr(x, y1)Gr(y1, y) + Gr(x, y2)Gr(y2, y)).

Thus the proof of Lemma3.9.1is complete.
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WhenN ≥ 3, we could not prove Lemma3.9.1.

Open problem. Let Ω be a John domain inRn and let ξ ∈ ∂Ω have a system of local

reference points of orderN with factor 0 < η < 1 for 0 < r < rξ. Does(3.18) hold for

N ≥ 3 ?

If we can prove this, then the similar argument with the proof of Proposition3.8.1 for

N = 2 yields that there are at mostN minimal Martin boundary points atξ.

3.10 Domains represented as union of convex sets

In this section, we consider a class of John domains represented as the union of a family of

open convex sets. Especially, we give a sufficient condition for the Martin boundary and the

Euclidean boundary to be homeomorphic.

In [5], Ancona considered a bounded domain represented as the union of a family of

open balls with the same radius and gave a sufficient condition for the Martin boundary and

the Euclidean boundary to be homeomorphic. Let[x, y] stand for the (open) line segment

with endpointsx and y. For 0 < θ < π, we denote byΓθ(x, y) the open circular cone

{z ∈ Rn : ∠zxy < θ} with vertexx, axis[x, y] and apertureθ. Ancona says that a bounded

domainΩ in Rn is admissibleif

(A1) Ω is the union of a family of open balls with the same radius.

(A2) Let ξ ∈ ∂Ω. If two balls, sayB1 andB2, tangent to each other atξ, thenΩ includes a

truncated circular coneΓθ(ξ, y)∩B(ξ, r) for someθ > 0, r > 0 andy in the hyperplane

tangent toBj at ξ. See Figure3.6.

Γθ(ξ, y) ∩B(ξ, r)

B1 B2ξ

Figure 3.6:Condition (A2).

He proved the following.

Theorem (Ancona). Let Ω be a bounded admissible domain inRn. Then every Euclidean

boundary point ofΩ has exactly one Martin boundary point and it is minimal. Moreover, the

Martin boundary ofΩ is homeomorphic to the Euclidean boundary.
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We now generalize (A1) and (A2). Letκ ≥ 1 andρ0 > 0. We consider a bounded domain

Ω in Rn such that

(I) Ω is the union of a family of open convex sets{Cλ}λ∈Λ such that

(3.29) B(zλ, ρ0) ⊂ Cλ ⊂ B(zλ, κρ0) for somezλ ∈ Cλ.

Instead of (A2), we consider the following condition atξ ∈ ∂Ω.

(II) There exist positive constantsθ1 ≤ sin−1(1/κ) andρ1 ≤ ρ0 cos θ1 such that the union

C(ξ) of truncated conesΓθ1(ξ, y) ∩B(ξ, 2ρ1) included inΩ is connected, that is,

C(ξ) =
⋃
y∈Ω

Γθ1
(ξ,y)∩B(ξ,2ρ1)⊂Ω

Γθ1(ξ, y) ∩B(ξ, 2ρ1) is connected.

See Figure3.7.

θ1

ξ

Ω

Figure 3.7:Condition (II).

We note that ifΩ is a bounded domain represented as the union of a family of open balls

with the same radius, then our condition (II) is equivalent to Ancona’s condition (A2).

Our result is as follows.

Theorem 3.10.1.Let Ω be a bounded domain inRn satisfying (I). Ifξ ∈ ∂Ω satisfies the

condition (II), then there exists exactly one Martin boundary point atξ and it is minimal.

Corollary 3.10.2. Let Ω be a bounded domain inRn satisfying (I). If everyξ ∈ ∂Ω satisfies

the condition (II), then the Martin boundary ofΩ and the minimal Martin boundary ofΩ are

homeomorphic to the Euclidean boundary.

Remark3.10.3. The boundsθ1 ≤ sin−1(1/κ) andρ1 ≤ ρ0 cos θ1 are sharp. See Examples

3.10.4and 3.10.5below. Under these assumptions, there exists a truncated circular cone

Γθ1(ξ, y) ∩B(ξ, 2ρ1) included inΩ.

We now give examples for sharpness of the boundsθ1 ≤ sin−1(1/κ) andρ1 ≤ ρ0 cos θ1

for whenn = 2 andρ0 = 1. WriteR2
+ = {(x, y) ∈ R2 : y > 0} andR2

− = {(x, y) ∈ R2 :

y < 0}, and denote the interior of the convex hull of a setE by co(E).
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Example 3.10.4 (The caseθ1 > sin−1(1/κ)). Let w0 = (0, κ) and consider

D =
(
B(0, κ + 1) \ (B(0, κ− 1) ∩ R2

+)
)
∪ co({0} ∪B(w0, 1)).

See Figure3.8. Thenco({0} ∪ B(w0, 1)) does not containΓθ1(0, y) ∩ B(0, 2ρ1) for any

y ∈ R2 andρ1 > 0. ThereforeC(0) = B(0, 2ρ1) ∩ R2
−. However there are two Martin

boundary points at0.

Example 3.10.5 (The case0 < θ1 ≤ sin−1(1/κ) and ρ1 > ρ0 cos θ1). The example is given

in each case ofκ ≥ 2 and1 < κ < 2.

• The caseκ ≥ 2. Let w1 = (0, 1), w2 = (1, 1) andw3 = (1, 1− κ). Consider

D =
(
B(0, 5) \ (B(0, 3) ∩ R2

+)
)
∪B(w1, 1) ∪ co({w2} ∪B(w3, 1)).

See Figure3.9. Thenco({w2} ∪ B(w3, 1)) ∩ R2
+ ⊂ B(0,

√
3). Sinceρ1 > cos θ1 ≥

cos(π/6) =
√

3/2, eachΓθ1(0, y)∩B(0, 2ρ1) intersecting withco({w2}∪B(w3, 1))∩
R2

+ is not contained inD. Clearly, eachΓθ1(0, y) ∩ B(0, 2ρ1) is not included in

B(w1, 1). ThereforeC(0) = B(0, 2ρ1) ∩ R2
−. However there are two Martin boundary

points at0.

• The case1 < κ < 2. Put ε = 2−1(κ + 1)−1κ cos(sin−1(1/κ)). Let w′
1 = (0, 1),

w′
2 = (cos(sin−1(1/κ)) − ε, 1 − κ−1) andw′

3 = (cos(sin−1(1/κ)) − ε, 1 − κ−1 − κ).

Consider

D =
(
B(0, 5) \ (B(0, 3) ∩ R2

+)
)
∪B(w′

1, 1) ∪ co({w′
2} ∪B(w′

3, 1)).

See Figure3.10. Thenco({w′
2} ∪ B(w′

3, 1)) ∩ R2
+ ⊂ B(0, 2 cos(sin−1(1/κ))). Since

ρ1 > cos θ1 ≥ cos(sin−1(1/κ)), anyΓθ1(0, y)∩B(0, 2ρ1) are not included in(co({w′
2}∪

B(w′
3, 1)) ∩ R2

+) ∪ B(w′
1, 1). ThereforeC(0) = B(0, 2ρ1) ∩ R2

−. However there are

two Martin boundary points at0.

Before proving Theorem3.10.1, we show that a bounded domain satisfying (I) is a John

domain. To this end, we prepare the following elementary lemma.

Lemma 3.10.6.LetC be an open convex set. Then the following statements hold.

(i) δC is a concave function onC.

(ii) Letx ∈ C. If C satisfies thatB(z, ρ0) ⊂ C ⊂ B(z, κρ0) for somez ∈ C, then

|x− w| ≤ κδC(w) for all w ∈ [x, z].

Proof. We first show (i). Let x, y ∈ C, w ∈ B(0, 1), and0 ≤ t ≤ 1. Then the points

x+δC(x)w andy+δC(y)w lie in C. Hence the point(1−t)x+ty+{(1−t)δC(x)+tδC(y)}w
lies inC by convexity. Sincew is an arbitrary point inB(0, 1), it follows that

δC((1− t)x + ty) ≥ (1− t)δC(x) + tδC(y).
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0

w0

Figure 3.8:Example3.10.4

0

w1

w3

w2

Figure 3.9:Example3.10.5for κ ≥ 2

0

w′
1

w′
2

w′
3

Figure 3.10:Example3.10.5for 1 < κ < 2

We next show (ii ). Let x ∈ C andw ∈ [x, z]. Writing w = (1 − t)x + tz with some

0 ≤ t ≤ 1, we have|x− w| ≤ t|x− z| ≤ tκρ0. Hence it follows from (i) that

δC(w) ≥ (1− t)δC(x) + tδC(z) ≥ tδC(z) ≥ tρ0 ≥ κ−1|x− w|.

Thus the lemma is proved.

Proposition 3.10.7.Every bounded domain inRn satisfying (I) is a John domain.

Proof. Let Ω be a bounded domain represented as the union of a family{Cλ}λ∈Λ of open

convex sets satisfying (3.29). We putK0 = {zλ : λ ∈ Λ}, and letx0 ∈ K0. We first show

that eachzλ0 ∈ K0 can be connected tox0 by a rectifiable curve inΩ satisfying (3.1). Since

Ω is connected andδΩ is continuous onΩ, there is a positiver1 ≤ ρ0 such that the closed set

E := {x ∈ Ω : δΩ(x) ≥ r1} is connected.

ThenK0 ⊂ E by (3.29). By compactness ofE, there is a positive integerM1 such that

E ⊂ ⋃M1

j=1 B(yj, 2
−1r1), whereyj ∈ E. Letγ1 be a curve inE connectingzλ0 to x0. We may
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assume, by relabeling if necessary, that

γ1 ⊂
M2⋃
j=1

B(yj, 2
−1r1) for someM2 ≤ M1,

B(yj, 2
−1r1) ∩B(yj+1, 2

−1r1) ∩ E 6= ∅ for j = 1, · · · ,M2 − 1,

zλ0 ∈ B(y1, 2
−1r1) ∩ E and K0 ∈ B(yM2 , 2

−1r1) ∩ E.

Hence we can take a curveγ2 in
⋃M2

j=1 B(yj, 2
−1r1) connectingzλ0 to x0 so that

(3.30) `(γ2) ≤ M2r1 ≤ M1r1.

We see that
⋃M2

j=1 B(yj, 2
−1r1) ⊂ {x ∈ Ω : δΩ(x) ≥ 2−1r1}, so thatδΩ(z) ≥ 2−1r1 for all

z ∈ γ2. Hence we have

(3.31) `(γ2(zλ0 , z)) ≤ `(γ2) ≤ 2M2δΩ(z) ≤ 2M1δΩ(z) for all z ∈ γ2.

We next show (3.1) for a general pointx ∈ Ω. Let x ∈ Cλx. Applying Lemma3.10.6to

C = Cλx andz = zλx , we have|x−w| ≤ κδΩ(w) for all w ∈ [x, zλx ]. Let γ3 be a curve inΩ

connectingzλx to x0 and satisfying (3.30) and (3.31). We define the curveγ in Ω connecting

x to x0 by

γ = [x, zλx ] ∪ γ3.

Then`(γ) ≤ κρ0 + M1r1. It suffices to show thatγ satisfies (3.1) for z ∈ γ3.

Case 1: z ∈ γ3 ∩B(zλx , ρ0/2). In this case, we have

δΩ(z) ≥ ρ0

2
≥ ρ0

2(κρ0 + M1r1)
`(γ(x, z)).

Case 2: z ∈ γ3 \B(zλx , ρ0/2). By the property ofγ3, we have

δΩ(z) ≥ 1

2M1

`(γ(zλx , z) ≥ ρ0

4M1

≥ ρ0

4M1(κρ0 + M1r1)
`(γ(x, z)).

Thus the proposition is established.

In order to prove Theorem3.10.1, it is enough to show, by Propositions3.8.1and3.10.7,

that if ξ ∈ ∂Ω satisfies the condition (II), thenξ has a system of local reference points of

order1.

Proposition 3.10.8.Let Ω be a bounded domain inRn satisfying (I). Ifξ ∈ ∂Ω satisfies the

condition (II), thenξ has a system of local reference points of order 1.

To this end, we prepare some lemmas. We may assume, by translation and dilation, that

ξ = 0 andρ1 = 1. The apertureθ1 ≤ sin−1(1/κ) is fixed and we writeΓ(x, y) for Γθ1(x, y)

to simplify the notation. Note that1 = ρ1 ≤ ρ0 cos θ1, so that0 < θ1 < π/2 andρ0 ≥ sec θ1.

Let Cλ be a convex set such thatB(zλ, ρ0) ⊂ Cλ ⊂ B(zλ, κρ0). If x ∈ Cλ \B(zλ, ρ0), then

(3.32) Γ(x, zλ) ∩B(x, 2) ⊂ co({x} ∪B(zλ, ρ0)) ⊂ Cλ,
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whereco({x} ∪B(zλ, ρ0)) is the convex hull of{x} ∪B(zλ, ρ0). Let

Y = {y ∈ S(0, 1) : Γ(0, y) ∩B(0, 2) ⊂ Ω}.

We first show thatY is non-empty and that the point0 can be accessible along a ray

issuing from the origin toward a point inY.

Lemma 3.10.9.There is a positive constantr0 < 1 such that ifCλ ∩ B(0, r0) 6= ∅, then

Cλ ∩ Y 6= ∅. In particular,Y 6= ∅.

Proof. Suppose to the contrary that there is a sequence{Cλj
} with dist(0, Cλj

) → 0 and

Cλj
∩ Y 6= ∅. Let zλj

be such thatB(zλj
, ρ0) ⊂ Cλj

⊂ B(zλj
, κρ0). Taking a subsequence if

necessary, we may assume thatzj converges, say toz0. We claim that

(3.33) Γ(0, z0) ∩B(0, 2) ⊂
⋃
j

Cλj
.

Letx ∈ Γ(0, z0)∩B(0, 2). Then∠x0z0 < θ1 and|x| < 2 by definition. From our assumption,

we can findxλj
∈ ∂Cλj

with xλj
→ 0 asj → ∞. Therefore we have by continuity that

∠xxλj
zλj

< θ1 and|x− xλj
| < 2 for j sufficiently large. Then it follows from (3.32) that

x ∈ Γ(xλj
, zλj

) ∩B(xλj
, 2) ⊂ co({xλj

} ∪ B(zλj
, ρ0)) ⊂ Cλj

.

Thus (3.33) follows. Now we lety0 = z0/|z0|. Then we have by definition and (3.33) that

y0 ∈ Y ∩ ⋃
j Cλj

. However, this contradictsCλj
∩ Y = ∅ for all j. Hence the lemma

follows.

Let C be a convex set. As shown in Lemma3.10.6, the functionδC is concave. Therefore

we have

(3.34) δC(z) ≥ |z − y|
|x− y|δC(x) +

|x− z|
|x− y|δC(y) for z ∈ [x, y],

wheneverx 6= y ∈ C.

Lemma 3.10.10.Let0 < r0 < 1 be as in Lemma3.10.9, and let0 < r < min{r0, 3
−1 sin θ1}.

If Cλ ∩ B(0, r) 6= ∅ and y ∈ Cλ ∩ Y, then there exists a pointw ∈ Cλ ∩ Γ(0, y) ∩
B(0, 3r/ sin θ1) such that

δCλ∩Γ(0,y)(w) ≥ sin θ1

4
r.

Proof. Let x ∈ Cλ ∩ B(0, r). Then [x, y] ⊂ Cλ. We observe that there is a pointw1 ∈
[x, y] ∩ Γ(0, y) with |w1| ≤ r/ sin θ1. In fact, if x ∈ Γ(0, y), then we may takew1 = x.

Otherwise, lettingw1 be the intersection of[x, y] and∂Γ(0, y), we have

r > dist(x, [0, y]) ≥ dist(w1, [0, y]) = |w1| sin θ1,
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so that|w1| ≤ r/ sin θ1. Since|w1 − y| ≥ 1 − r/ sin θ1 and3r/ sin θ1 < 1, we can find a

point w2 ∈ [w1, y] ⊂ Cλ ∩ Γ(0, y) with |w1 − w2| = r/ sin θ1. By (3.34) with C = Γ(0, y),

we obtain

δΓ(0,y)(w2) ≥ |w1 − w2|
|w1 − y| δΓ(0,y)(y) ≥ r/ sin θ1

r/ sin θ1 + 1
sin θ1 >

r

2
.

Moreover, we have|w2| ≤ 2r/ sin θ1. Since|w2 − zλ| ≥ ρ0 − 2r/ sin θ1 > r by 3r/ sin θ1 <

1 ≤ ρ0, we can take a pointw ∈ [w2, zλ] ⊂ Cλ such that|w − w2| = r/4. Then it follows

from (3.34) with C = Cλ that

δCλ
(w) ≥ |w − w2|

|zλ − w2|δCλ
(zλ) ≥ r/4

κρ
ρ0 ≥ sin θ1

4
r.

Hence we conclude that

δΓ(0,y)∩Cλ
(w) ≥ min

{
r

2
− r

4
,
sin θ1

4
r

}
=

sin θ1

4
r,

and

|w| ≤ |w − w2|+ |w2 − w1|+ |w1| ≤ r

4
+

r

sin θ1

+
r

sin θ1

<
3r

sin θ1

.

Thus the lemma is proved.

We fix a pointy1 ∈ Y, and letyr = ry1 for 0 < r < 1. Thenyr ∈ Ω ∩ S(0, r) and

δΩ(yr) ≥ r sin θ1. Let 0 < η3 < 6−1 sin θ1 and writeΩr = Ω ∩B(0, η−3r).

Lemma 3.10.11.Let0 < r0 < 1 be as in Lemma3.10.9. Then there is a positive constantA

such that if0 < r < r0, then

kΩr(ry, yr) ≤ A for y ∈ Y .

Proof. Note thatC(0) ∩ S(0, 1) is connected since the coneC(0) is connected. We observe

that there is a closed connected subsetE of C(0) ∩ S(0, 1) and0 < r1 ≤ sin θ1 such that

Y ⊂ E anddist(E, ∂C(0)) ≥ r1. Theny, y1 ∈ E. In view of the compactness ofE, we can

take a curveγ in C(0) ∩ S(0, 1) joining y andy1 such thatδC(0)(z) ≥ 2−1r1 for all z ∈ γ and

`(γ) ≤ Ar1, whereA is a constant depending only on a covering constant ofE. Letγr be the

image ofγ in S(0, r) under dilation. Then we have

kΩr(ry, yr) ≤
∫

γr

ds

δΩ(z)
≤ Ar1r

2−1r1r
= 2A.

Thus the lemma follows.

Let us prove Proposition3.10.8.

Proof of Proposition3.10.8. By translation and dilation, we may assume thatξ = 0 and

ρ1 = 1. Let 0 < r0 < 1 be as in Lemma3.10.9and suppose that0 < η3 < 6−1 sin θ1 and

yr = ry1 are as above. Let0 < r < min{r0, 3
−1 sin θ1}, It is sufficient to show that

(3.35) kΩr(x, yr) ≤ A log
r

δΩ(x)
+ A for x ∈ Ω ∩B(0, ηr),
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whereA is a constant independent ofx andr. Let x ∈ Ω ∩ B(0, ηr). Then there is a convex

setCλ containingx and there isy ∈ Cλ ∩ Y by Lemma3.10.9. By Lemma3.10.10, we find

a pointw ∈ Cλ ∩ Γ(0, y) ∩B(0, 3r/ sin θ1) such thatδCλ∩Γ(0,y)(w) ≥ 4−1r sin θ1. Since

δΩr(z) ≥ δCλ
(z) ≥ |x− z|

|x− w|δCλ
(w) ≥ sin2 θ1

16
|x− z| for z ∈ [x,w]

by [x,w] ⊂ B(0, 2−1η−3r) and (3.34), it follows that

kΩr(x,w) ≤
∫

[x,w]

ds(z)

δΩr(z)
≤ A log

r

δΩ(x)
+ A.

Since

δΩr(z) ≥ δΓ(0,y)(z) ≥ |w − z|
|w − ry|δΓ(0,y)(ry) ≥ sin2 θ

4
|x− z| for z ∈ [w, ry],

it also follows that

kΩr(w, ry) ≤
∫

[w,ry]

ds(z)

δΩr(z)
≤ A log

r

δΩ(x)
+ A.

Hence we obtain from the triangle inequality and Lemma3.10.11that

kΩr(x, yr) ≤ kΩr(x,w) + kΩr(w, ry) + kΩr(ry, yr) ≤ A log
r

δΩ(x)
+ A,

and thus Proposition3.10.8is established.
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Chapter 4

Boundary behavior of Martin kernels

This chapter is based on the manuscript [H3].

4.1 Motivation and results

One of the purposes of this chapter is to show the boundary growth of the Martin kernel on a

Lipschitz domain. This is motivated by earlier works due to Burdzy [11, 12], Carroll [14, 15]

and Gardiner [23]. We write0 for the origin ofRn (n ≥ 2) to distinct from0 ∈ R, and denote

x = (x′, xn) ∈ Rn−1 × R ande = (0′, 1). Suppose thatφ : Rn−1 → R satisfiesφ(0′) = 0

and the Lipschitz property:

|φ(x′)− φ(y′)| ≤ L|x′ − y′| (x′, y′ ∈ Rn−1)

for some positive constantL. We putΩφ = {(x′, xn) : xn > φ(x′)} and set

I+ =

∫

{|x′|<1}

max{φ(x′), 0}
|x′|n dx′,(4.1)

I− =

∫

{|x′|<1}

max{−φ(x′), 0}
|x′|n dx′.(4.2)

In [11], Burdzy obtained a result on the angular derivative problem of analytic functions in a

Lipschitz domain. The following theorem was an important step in his work.

Theorem A. Suppose thatI+ andI− are as in(4.1) and(4.2). If I+ < ∞ andI− = ∞, then

lim
t→0+

GΩφ
(te, e)

t
= ∞.

Burdzy’s approach was based on probabilistic methods and the minimal fine topology. An

analytic proof was given by Carroll [14]. Gardiner [23] also gave a simple proof of Theorem

A. In [15], Carroll investigated the boundary behavior ofGΩφ
(te, e)/t in other cases.

Theorem B. Suppose thatI+ and I− are as in(4.1) and (4.2). The following statements

hold.
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(i) If I+ = ∞ andI− < ∞, then

lim
t→0+

GΩφ
(te, e)

t
= 0.

(ii) If I+ < ∞ andI− < ∞, then the limit ofGΩφ
(te, e)/t, ast → 0+, exists and

0 < lim
t→0+

GΩφ
(te, e)

t
< ∞.

TheoremsA andB show the relationship between the convergence of the integralsI+, I−

and the boundary decay of the Green function ofΩφ. We are now interested in a relationship

between the convergence of the integralsI+, I− and the boundary growth of the Martin kernel

KΩφ
(·,0) of Ωφ with pole at the origin.

Theorem 4.1.1.Suppose thatI+ andI− are as in(4.1) and(4.2). The following statements

hold.

(i) If I+ < ∞ andI− = ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = 0.

(ii) If I+ = ∞ andI− < ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = ∞.

(iii) If I+ < ∞ andI− < ∞, then the limit oftn−1KΩφ
(te,0), ast → 0+, exists and

0 < lim
t→0+

tn−1KΩφ
(te,0) < ∞.

WhenI+ = ∞ andI− = ∞, the limit of tn−1KΩφ
(te,0) may take any values0, positive

and finite, or∞, as the following simple example shows.

Example 4.1.2.To simplify the notation, we writeRn−1
1+ = {x′ ∈ Rn−1 : x1 ≥ 0} and

Rn−1
1− = {x′ ∈ Rn−1 : x1 ≤ 0} in this example.

(i) If φ(x′) is equal tox1/2 onRn−1
1+ andx1 onRn−1

1− , then

lim
t→0+

tn−1KΩφ
(te,0) = 0.

(ii) If φ(x′) is equal tox1 onRn−1
1+ andx1 onRn−1

1− , then the limit oftn−1KΩφ
(te,0), as

t → 0+, exists and

0 < lim
t→0+

tn−1KΩφ
(te,0) < ∞.
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(iii) If φ(x′) is equal tox1 onRn−1
1+ andx1/2 onRn−1

1− , then

lim
t→0+

tn−1KΩφ
(te,0) = ∞.

It is easy to check thatI+ = ∞ andI− = ∞. The value of the limit in each case follows

from [27, Theorems 1 and 2].

Let Rn
+ = {(x′, xn) : xn > 0}. As we will state in Section4.5, the convergence of

the integralsI+ and I− is connected with the minimal thinness of the setsRn
+ \ Ωφ and

Ωφ \ Rn
+. See Section4.2 for the definition of minimal thinness. SinceKRn

+
(te,0) = t1−n,

Theorem4.1.1may be interpreted as the relationship between the minimal thinness of the

setsRn
+ \Ωφ, Ωφ \Rn

+ and the boundary behavior of the quotient of Martin kernels ofΩφ and

Rn
+. So, given two intersecting domainsΦ andΨ, it is valuable to investigate a relationship

between the minimal thinness of the setsΦ \ Ψ, Ψ \ Φ and the boundary behavior of the

quotient of Martin kernels ofΦ andΨ.

4.2 Statements for general domains

To state our results for general domains, we need a definition of minimal fine limit. Recall

that a subsetE onΩ is said to be minimally thin atξ ∈ ∆1(Ω) with respect toΩ if

ΩR̂E
KΩ(·,ξ)(z) < KΩ(z, ξ) for somez ∈ Ω.

Minimal thinness enables us to equip the minimal fine topology in the Martin compactifica-

tion of Ω. Roughly speaking, the minimal fine topology is the collection of subsetsW of

the Martin compactification such thatΩ \W is minimally thin at every point ofW ∩∆1(Ω).

See [8, Definition 9.2.3] for the precise definition. LetU be a minimal fine neighborhood of

ξ ∈ ∆1(Ω). We say that a functionf on U hasminimal fine limitl at ξ with respect toΩ if

there is a subsetE onΩ, minimally thin atξ with respect toΩ, such thatf(x) → l asx → ξ

alongU \ E, and then we write

mf
Ω

- lim
x→ξ

f(x) = l.

We note from the definition that a function is not necessarily defined in whole of a domain

when we consider minimal fine limit.

Theorem 4.2.1.Suppose thatΦ and Ψ are Greenian domains inRn such thatΦ ∩ Ψ is

a non-empty domain. Letξ ∈ ∆1(Φ), whereξ is in the closure ofΦ ∩ Ψ in the Martin

compactification ofΦ. Let ζ ∈ ∆1(Ψ), whereζ is in the closure ofΦ ∩ Ψ in the Martin

compactification ofΨ. If Φ\Ψ is minimally thin atξ with respect toΦ, thenKΨ(·, ζ)/KΦ(·, ξ)
has a finite minimal fine limit atξ with respect toΦ. Furthermore, the following statements

hold.
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(i) If Ψ \ Φ is not minimally thin atζ with respect toΨ, then

mf
Φ

- lim
x→ξ

KΨ(x, ζ)

KΦ(x, ξ)
= 0.

(ii) If Ψ \ Φ is minimally thin atζ with respect toΨ, whereζ is a point such that

(4.3) KΨ(·, ζ)− ΨR
Ψ\Φ
KΨ(·,ζ) = α

(
KΦ(·, ξ)− ΦR

Φ\Ψ
KΦ(·,ξ)

)
onΦ ∩Ψ

for some positive constantα, then

0 < mf
Φ

- lim
x→ξ

KΨ(x, ζ)

KΦ(x, ξ)
< ∞.

(iii) If Ψ \ Φ is minimally thin atζ with respect toΨ, whereζ is a point such that(4.3) is

not satisfied, then

mf
Φ

- lim
x→ξ

KΨ(x, ζ)

KΦ(x, ξ)
= 0.

For Lipschitz domains, Theorem4.2.1can be restated as follows. We note from [25] that

each Euclidean boundary point of a Lipschitz domain has a unique Martin boundary point

and it is minimal. So we identify a Martin boundary point with a Euclidean boundary point.

Corollary 4.2.2. Suppose thatΦ andΨ are Lipschitz domains inRn such thatΦ ∩Ψ is also

a Lipschitz domain. Lety ∈ ∂Φ ∩ ∂Ψ, and suppose thatΦ \ Ψ is minimally thin aty with

respect toΦ. The following statements hold.

(i) If Ψ \ Φ is not minimally thin aty with respect toΨ, then

mf
Φ

- lim
x→y

KΨ(x, y)

KΦ(x, y)
= 0.

(ii) If Ψ \ Φ is minimally thin aty with respect toΨ, then

0 < mf
Φ

- lim
x→y

KΨ(x, y)

KΦ(x, y)
< ∞.

Remark4.2.3. If Φ \ Ψ is “not” minimally thin at y with respect toΦ andΨ \ Φ is “not”

minimally thin at y with respect toΨ, then the limit ofKΨ(·, y)/KΦ(·, y) may take any

values0, positive and finite, or∞. See Example4.1.2.

4.3 Characterization of minimal thinness for a difference of

two subdomains

Näım [31, Théor̀eme 11] gave a characterization of the minimal thinness for a difference

of two subdomains in terms of Green functions of each domain, which played an important

role in the proof of TheoremsA and B. In order to prove Theorem4.2.1, we give a new

characterization of the minimal thinness for a difference.
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Lemma 4.3.1. Suppose thatΩ is a Greenian domain inRn and thatD is a subdomain of

Ω. Let ξ ∈ ∆1(Ω), whereξ is in the closure ofD in the Martin compactification ofΩ. The

following statements are equivalent.

(i) Ω \D is minimally thin atξ with respect toΩ;

(ii) there existsη ∈ ∆1(D) such that

(4.4) mf
D

- lim
x→η

KΩ(x, ξ)

KD(x, η)
> 0.

Furthermore, the pointη ∈ ∆1(D) in (ii ) is uniquely determined and the corresponding

Martin kernel is represented as

KD(·, η) = α
(
KΩ(·, ξ)− ΩR

Ω\D
KΩ(·,ξ)

)
onD

for some positive constantα.

Remark4.3.2. We note in Lemma4.3.1that the minimal fine limit in (4.4) exists and satisfies

that

(4.5) mf
D

- lim
x→η

KΩ(x, ξ)

KD(x, η)
= µD

KΩ(·,ξ)({η}) = inf
x∈D

KΩ(x, ξ)

KD(x, η)
= lim inf

x→η

KΩ(x, ξ)

KD(x, η)
< ∞,

whereµD
KΩ(·,ξ) is the measure on∆(D) associated withKΩ(·, ξ) in the Martin representa-

tion. See [8, Theorems 9.2.6 and 9.3.3]. Thus the minimal thinness ofΩ \ D can be also

characterized in terms of any of quantities in (4.5) instead of the minimal fine limit.

For the proof of Lemma4.3.1, we need the following lemmas. Lemma4.3.3 can be

deduced from [8, Theorems 9.2.6 and 9.3.3]. Lemma4.3.4is due to Näım [31, Théor̀eme 15]

(cf. [8, Theorem 9.5.5]).

Lemma 4.3.3. Let E be a subset of a Greenian domainΩ in Rn and letξ ∈ ∆1(Ω). The

following statements are equivalent.

(i) E is minimally thin atξ with respect toΩ;

(ii) there exists a positive superharmonic functionu onΩ such that

inf
x∈Ω

u(x)

KΩ(x, ξ)
< inf

x∈E

u(x)

KΩ(x, ξ)
.

Lemma 4.3.4.Suppose thatΩ is a Greenian domain inRn and thatD is a subdomain ofΩ.

Let ξ ∈ ∆1(Ω), whereξ is in the closure ofD in the Martin compactification ofΩ. Assume

thatΩ \D is minimally thin atξ with respect toΩ, and letη ∈ ∆1(D) be a point such that

KD(·, η) = α
(
KΩ(·, ξ)− ΩR

Ω\D
KΩ(·,ξ)

)
onD

for some positive constantα. The following statements for a subsetE of D are equivalent.
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(i) E is minimally thin atη with respect toD;

(ii) E is minimally thin atξ with respect toΩ.

We say that a property holds quasi-everywhere if it holds apart from a polar set. The

following lemma is elementary. For the convenience sake of the reader, we give a proof.

Lemma 4.3.5. Let D be a Greenian domain inRn and let ζ ∈ ∆1(D). ThenKD(·, ζ)

vanishes quasi-everywhere on∂D.

Proof. LetV be a Martin topology (closed) neighborhood ofζ with respect toD. ThenV ∩D

is not minimally thin atζ with respect toD. Therefore we have from [8, Theorem 6.9.1] that

KD(x, ζ) = DRV ∩D
KD(·,ζ)(x) = H

D\V
KD(·,ζ)X∂V ∩D

(x) for x ∈ D \ V ,

whereH
D\V
KD(·,ζ)X∂V ∩D

denotes the Perron-Wiener-Brelot solution of the Dirichlet problem in

D \ V with boundary functionKD(·, ζ) on∂(V ∩D)∩D and0 on∂D. SinceV is arbitrary,

we obtain the lemma.

Let Ω be a domain inRn and letD be a subdomain ofΩ. If h is a positive harmonic

function onD which vanishes quasi-everywhere on∂D ∩ Ω and is bounded near each point

of ∂D ∩ Ω, then we see from [8, Theorem 5.2.1] thath has a subharmonic extensionh∗ to Ω

which is valued0 quasi-everywhere on∂D ∩ Ω and everywhere onΩ \ D. In what follows

we use the mark∗, like ash∗, to denote such a subharmonic extension.

Let us prove Lemma4.3.1.

Proof of Lemma4.3.1. By [31, Théor̀eme 12] (cf. [8, Theorem 9.5.5]), we can easily show

that (i) implies (ii ). In fact,f := KΩ(·, ξ) − ΩR
Ω\D
KΩ(·,ξ) is a minimal harmonic function onD,

and so there existsη ∈ ∆1(D) such thatKD(·, η) = f/f(x0) onD. Hence we obtain

inf
x∈D

KΩ(x, ξ)

KD(x, η)
≥ f(x0) > 0,

and thus (4.4) follows from (4.5).

We next show that (ii ) implies (i). We may assume thatΩ\D is non-polar. Letη ∈ ∆1(D)

be a point such that

α := mf
D

- lim
x→η

KΩ(x, ξ)

KD(x, η)
> 0.

By (4.5), we haveKD(·, η) ≤ α−1KΩ(·, ξ) onD. Also,KD(·, η) vanishes quasi-everywhere

on ∂D ∩ Ω by Lemma4.3.5. ThusK∗
D(·, η) is well-defined as a subharmonic function on

Ω and is dominated byα−1KΩ(·, ξ) on Ω. Let u = α−1KΩ(·, ξ) − K∗
D(·, η). Thenu is

superharmonic onΩ. SinceΩ\D is non-polar, there is a point inΩ\D at whichu is positive.

Therefore the minimum principle yields thatu is positive onΩ. Also, we have that

inf
x∈Ω

u(x)

KΩ(x, ξ)
= α−1 − sup

x∈D

KD(x, η)

KΩ(x, ξ)
< α−1,

inf
x∈Ω\(D∪F )

u(x)

KΩ(x, ξ)
= α−1 − sup

x∈Ω\(D∪F )

K∗
D(x, η)

KΩ(x, ξ)
= α−1,
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whereF is a polar set in∂D∩Ω such thatK∗
D(·, η) > 0 onF . Hence it follows from Lemma

4.3.3thatΩ \ (D ∪ F ) is minimally thin atξ with respect toΩ, and so isΩ \D.

We finally show the uniqueness ofη ∈ ∆1(D). We suppose to the contrary that there

existsζ ∈ ∆1(D) such thatKD(·, ζ) ≤ βKΩ(·, ξ) on D and KD(·, ζ) is different from

KD(·, η) := γ
(
KΩ(·, ξ) − ΩR

Ω\D
KΩ(·,ξ)

)
, whereβ andγ are some positive constants. We may

assume thatβ is the smallest number satisfyingKD(·, ζ) ≤ βKΩ(·, ξ) on D. Sinceξ ∈
∆1(Ω), it follows thatβKΩ(·, ξ) is the least harmonic majorant ofK∗

D(·, ζ) on Ω. Let W be

a Martin topology neighborhood ofζ with respect toD such thatη is apart fromW . Then

W ∩ D is minimally thin atη with respect toD. Thus the minimal thinness ofΩ \ D at ξ

with respect toΩ, together with Lemma4.3.4, yields thatW ∩D is minimally thin atξ with

respect toΩ.

On the other hand, sinceW ∩D is not minimally thin atζ with respect toD, we have

KD(·, ζ) = DR̂W∩D
KD(·,ζ) ≤ β DR̂W∩D

KΩ(·,ξ) ≤ β ΩR̂W∩D
KΩ(·,ξ) onD.

SinceβKΩ(·, ξ) is the least one among superharmonic functionsu onΩ satisfyingK∗
D(·, ζ) ≤

u on Ω, we haveΩR̂W∩D
KΩ(·,ξ) = KΩ(·, ξ) on Ω, so thatW ∩ D is not minimally thin atξ with

respect toΩ. Thus we obtain a contradiction, and hence the uniqueness ofη ∈ ∆1(D) is

established. The proof of Lemma4.3.1is complete.

4.4 Proof of Theorem4.2.1

In this section, we give a proof of Theorem4.2.1.

Proof of Theorem4.2.1. In order to prove the first assertion, we assume thatΦ \ (Φ ∩ Ψ) is

minimally thin atξ with respect toΦ. Let η ∈ ∆1(Φ ∩Ψ) be a point such thatKΦ∩Ψ(·, η) =

α
(
KΦ(·, ξ) − ΦR

Φ\Ψ
KΦ(·,ξ)

)
on Φ ∩ Ψ for some positive constantα. Then we have by Lemma

4.3.1with D := Φ ∩Ψ andΩ := Φ that

(4.6) 0 < mf
Φ∩Ψ

- lim
x→η

KΦ(x, ξ)

KΦ∩Ψ(x, η)
< ∞.

It also follows from [8, Theorem 9.3.3] thatKΨ(·, ζ)/KΦ∩Ψ(·, η) has a finite minimal fine

limit at η with respect toΦ ∩Ψ. The minimal thinness ofΦ \ (Φ ∩Ψ) at ξ with respect toΦ,

together with Lemma4.3.4with D := Φ ∩Ψ andΩ := Φ, concludes thatKΨ(·, ζ)/KΦ(·, ξ)
has a finite minimal fine limit atξ with respect toΦ.

To prove (i), we assume in addition thatΨ\(Φ∩Ψ) is not minimally thin atζ with respect

to Ψ. Then Lemma4.3.1with D := Φ ∩ Ψ andΩ := Ψ shows that for anyη ∈ ∆1(Φ ∩ Ψ),

the minimal fine limit in (4.4) is zero. Therefore we have

mf
Φ∩Ψ

- lim
x→η

KΨ(x, ζ)

KΦ∩Ψ(x, η)
= 0.

Hence (i) follows from (4.6) and Lemma4.3.4with D := Φ ∩Ψ andΩ := Φ.
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To prove (ii ), we assume in addition thatΨ\(Φ∩Ψ) is minimally thin atζ with respect to

Ψ, whereζ is a point in∆1(Ψ) such that (4.3) is satisfied. We note from (4.3) thatKΦ∩Ψ(·, η)

is also written asβ
(
KΨ(·, ζ) − ΨR

Ψ\Φ
KΨ(·,ζ)

)
on Φ ∩ Ψ for some positive constantβ. Then we

have by Lemma4.3.1with D := Φ ∩Ψ andΩ := Ψ that

0 < mf
Φ∩Ψ

- lim
x→η

KΨ(x, ζ)

KΦ∩Ψ(x, η)
< ∞.

Therefore (ii ) follows from (4.6) and Lemma4.3.4with D := Φ ∩Ψ andΩ := Φ.

To prove (iii ), we assume in addition thatΨ \ (Φ ∩Ψ) is minimally thin atζ with respect

to Ψ, whereζ is a point in∆1(Ψ) such that (4.3) is not satisfied. Then the normalization

KΦ∩Ψ(·, ω) of KΨ(·, ζ)− ΨR
Ψ\Φ
KΨ(·,ζ) at a reference point is a minimal Martin kernel ofΦ ∩Ψ,

but is different fromKΦ∩Ψ(·, η). We note from the uniqueness in Lemma4.3.1that for only

ω ∈ ∆1(Φ ∩ Ψ), KΨ(·, ζ)/KΦ∩Ψ(·, ω) has a positive minimal fine limit atω with respect to

Φ ∩Ψ. Therefore we have

mf
Φ∩Ψ

- lim
x→η

KΨ(x, ζ)

KΦ∩Ψ(x, η)
= 0.

Hence (iii ) follows from (4.6) and Lemma4.3.4with D := Φ∩Ψ andΩ := Φ. Thus Theorem

4.2.1is established.

4.5 Proof of Theorem4.1.1

In order to prove Theorem4.1.1, we collect lemmas on relationships between the convergence

of the integralsI+, I− in (4.1), (4.2) and the minimal thinness of the differencesΩφ\Rn
+,Rn

+\
Ωφ. See [23, Lemma 1 and Proof of Theorem 1] for Lemma4.5.1and [20, Theorem 4.2] for

Lemma4.5.2.

Lemma 4.5.1.The following statements hold.

(i) I+ < ∞ if and only ifRn
+ \ Ωφ is minimally thin at0 with respect toRn

+.

(ii) If I+ < ∞ andI− = ∞, thenΩφ \ Rn
+ is not minimally thin at0 with respect toΩφ.

Lemma 4.5.2. Let Ω be a Greenian domain inRn containingRn
+. Suppose thatΩ has a

unique Martin boundary point at infinity and it is minimal. IfΩ \ Rn
+ is minimally thin at∞

with respect toRn
− := {(x′, xn) : xn < 0}, thenΩ \ Rn

+ is minimally thin at∞ with respect

to Ω.

Lemma 4.5.3. If I− < ∞, thenΩφ \ Rn
+ is minimally thin at0 with respect toΩφ ∪ Rn

+.

Proof. By Lemma4.5.1, we see thatΩφ \Rn
+ is minimally thin at0 with respect toRn

−. Since

minimal thinness is invariant under the inversion with respect to the unit sphere, it follows

from Lemma4.5.2thatΩφ \ Rn
+ is minimally thin at0 with respect toΩφ ∪ Rn

+.
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Lemma 4.5.4. If I+ < ∞ andI− < ∞, thenΩφ \ Rn
+ is minimally thin at0 with respect to

Ωφ.

Proof. We note from Lemma4.5.3that(Ωφ∪Rn
+)\Rn

+ is minimally thin at0 with respect to

Ωφ ∪ Rn
+. Since(Ωφ ∪ Rn

+) \ Ωφ is minimally thin at0 with respect toΩφ ∪ Rn
+ by Lemmas

4.3.4and4.5.1, the lemma follows from Lemma4.3.4.

Let us prove Theorem4.1.1. We note in a Lipschitz domain that the existence of the

minimal fine limit of the quotient of positive harmonic functions implies the existence of the

non-tangential limit, and the both values coincide, since a non-tangential cone at a boundary

pointy is not minimally thin aty (cf. [25, Section 5]).

Proof of Theorem4.1.1. We first show (i). SinceRn
+ \Ωφ is minimally thin at0 with respect

toRn
+ andΩφ \ Rn

+ is not minimally thin at0 with respect toΩφ by Lemma4.5.1, it follows

from Corollary4.2.2(i) with Φ := Rn
+ andΨ := Ωφ thatKΩφ

(·,0)/KRn
+
(·,0) has minimal

fine limit 0 at0 with respect toRn
+, and hencetn−1KΩφ

(te,0) has limit0 ast → 0+.

We next show (ii ). Since(Ωφ ∪ Rn
+) \ Rn

+ is minimally thin at0 with respect toΩφ ∪
Rn

+ by Lemma4.5.3, we have by Lemma4.3.1 with D := Rn
+ andΩ := Ωφ ∪ Rn

+ that

KΩφ∪Rn
+
(·,0)/KRn

+
(·,0) has a positive minimal fine limit at0 with respect toRn

+, and hence

tn−1KΩφ∪Rn
+
(te,0) has a positive limit ast → 0+. Also, it follows from Lemmas4.3.4and

4.5.1that(Ωφ ∪ Rn
+) \ Ωφ is not minimally thin at0 with respect toΩφ ∪ Rn

+. Therefore we

have by Lemma4.3.1with D := Ωφ andΩ := Ωφ ∪ Rn
+ that KΩφ∪Rn

+
(·,0)/KΩφ

(·,0) has

minimal fine limit 0 at 0 with respect toΩφ, and henceKΩφ
(te,0)/KΩφ∪Rn

+
(te,0) has limit

∞ ast → 0+. Thus we conclude thattn−1KΩφ
(te,0) has limit∞ ast → 0+.

We finally show (iii ). SinceRn \Ωφ is minimally thin at0 with respect toRn
+ by Lemma

4.5.1andΩφ \ Rn
+ is minimally thin at0 with respect toΩφ by Lemma4.5.4, we have by

Corollary4.2.2(ii ) with Φ := Rn
+ andΨ := Ωφ thatKΩφ

(·,0)/KRn
+
(·,0) has a positive and

finite minimal fine limit at0 with respect toRn
+, and hencetn−1KΩφ

(te,0) has a positive and

finite limit ast → 0+.
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Chapter 5

Comparison estimates for the Green

function and the Martin kernel

This chapter is based on the manuscript [H4].

5.1 Statements of results

We give comparison estimates of the Green function and the Martin kernel in a uniform

domain. A proper subdomainΩ of Rn is said to be uniform if there exists a positive constant

A such that each pair of pointsx andy in Ω can be connected by a rectifiable curveγ in Ω

for which

`(γ) ≤ A|x− y|,
min{`(γ(x, z)), `(γ(z, y))} ≤ AδΩ(z) for all z ∈ γ.

It was proved by Aikawa [3] that the Martin compactification of a bounded uniform domain is

homeomorphic to the Euclidean closure. Moreover, all Martin boundary points are minimal.

In the sequel, we identify the Martin compactification with the Euclidean closure. Further-

more, we denote a unique Martin boundary point atξ ∈ ∂Ω by the same symbolξ. For

ξ ∈ ∂Ω andα > 1, we write

Γα(ξ) = {x ∈ Ω : |x− ξ| < αδΩ(x)}

for the non-tangential cone atξ with apertureα.

Our result in higher dimensions is as follows.

Theorem 5.1.1.Let Ω be a bounded uniform domain inRn with n ≥ 3, and letξ ∈ ∂Ω and

α > 1. Then we have

GΩ(x, x0)KΩ(x, ξ) ≈ |x− ξ|2−n for x ∈ Γα(ξ) ∩B(ξ, 2−1δΩ(x0)),

where the constant of comparison depends only onα andΩ.
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We note that Theorem5.1.1does not hold in general whenn = 2.

Example 5.1.2.Let n = 2. We considerΩ = B(0, 1) \ {0} andx0 = (1/2, 0). Then

KΩ(x,0) = −(log 2)−1 log |x| and

GΩ(x, x0) = GB(0,1)(x, x0) = log

(
1

2

|x− 4x0|
|x− x0|

)
.

Hence we obtain

GΩ(x, x0)KΩ(x,0) ≈ log
1

|x| for x ∈ B(0, 1/4) \ {0}.

Let ξ ∈ ∂Ω. We say thatξ satisfies the exterior condition if there exists a positive constant

A1 such that for eachr > 0 sufficiently small, there is a pointzr ∈ B(ξ, r) \ Ω such that

B(zr, A1r) ⊂ Rn \ Ω.

Our result in two dimensions is as follows.

Theorem 5.1.3.Let Ω be a bounded uniform domain inR2, and letα > 1. The following

statements hold.

(i) If ξ ∈ ∂Ω satisfies the exterior condition, then

GΩ(x, x0)KΩ(x, ξ) ≈ 1 for x ∈ Γα(ξ) ∩B(ξ, 2−1δΩ(x0)),

where the constant of comparison depends only onα andΩ.

(ii) If ξ ∈ ∂Ω is an isolated point, then there existsδ > 0 such that

GΩ(x, x0)KΩ(x, ξ) ≈ log
1

|x− ξ| for x ∈ B(ξ, δ) \ {ξ},

where the constant of comparison is independent ofx.

We may deduce from Theorems5.1.1and5.1.3the following relationship between the

boundary decay of the Green function and the boundary growth of the Martin kernel.

Corollary 5.1.4. LetΩ be a bounded uniform domain inRn. Letξ ∈ ∂Ω, α > 1 andβ > 0.

Suppose thatn ≥ 3. The following relationships hold.

(i) lim
x→ξ,x∈Γα(ξ)

GΩ(x, x0)

|x− ξ|β = ∞ if and only if lim
x→ξ,x∈Γα(ξ)

|x− ξ|n+β−2KΩ(x, ξ) = 0.

(ii) lim
x→ξ,x∈Γα(ξ)

GΩ(x, x0)

|x− ξ|β = 0 if and only if lim
x→ξ,x∈Γα(ξ)

|x− ξ|n+β−2KΩ(x, ξ) = ∞.

Moreover, if we assume the exterior condition atξ, then these relationships hold forn ≥ 2.
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5.2 Proofs of Theorems5.1.1and 5.1.3

Theorems5.1.1and5.1.3will be established by showing the propositions below.

Proposition 5.2.1.LetΩ be a bounded uniform domain inRn with n ≥ 3. Then we have for

x ∈ Ω \B(x0, 2
−1δΩ(x0)) andy ∈ Ω,

(5.1) GΩ(x, x0)KΩ(x, y) ≤ A|x− y|2−n,

whereA is a constant depending only onΩ.

This proposition follows from the 3G inequality. The 3G inequality was firstly proved in

a Lipschitz domain by Cranston, Fabes and Zhao [17]. Aikawa and Lundh [4] extended it to

a uniformly John domain. A uniformly John domain is more general than a uniform domain.

We may state the 3G inequality in a uniform domain as follows.

Lemma (3G inequality). LetΩ be a bounded uniform domain inRn with n ≥ 3. Then

GΩ(x, y)GΩ(x, z)

GΩ(y, z)
≤ A

(|x− y|2−n + |x− z|2−n
)

for x, y, z ∈ Ω.

Now, applying the 3G inequality withz = x0, we have by the continuity ofKΩ(x, ·) on

Ω that

KΩ(x, y)GΩ(x, x0) ≤ A
(|x− y|2−n + |x− x0|2−n

)
for x ∈ Ω andy ∈ Ω.

Since

|x− y| ≤ (diam Ω)
2|x− x0|
δΩ(x0)

for x ∈ Ω \B(x0, 2
−1δΩ(x0)),

we obtain Proposition5.2.1.

Proposition 5.2.2.LetΩ be a bounded uniform domain inRn with n ≥ 2. Letξ ∈ ∂Ω, α > 1

andκ ≥ 1. Then we have forx ∈ Γα(ξ) ∩B(ξ, (2κ)−1δΩ(x0)) andy ∈ Ω ∩B(ξ, κ|x− ξ|),

(5.2) GΩ(x, x0)KΩ(x, y) ≥ A|x− y|2−n,

whereA is a constant depending only onα, κ andΩ.

For the proof of Proposition5.2.2, we prepare some materials: the boundary Harnack

principle proved in [3] and a lower estimate of the Green function.

Lemma 5.2.3. Let Ω be a bounded uniform domain inRn with n ≥ 2. Then there exist

constantsr0 > 0 andA2 > 1 depending only onΩ with the following property: Letξ ∈ ∂Ω

and 0 < r < r0. Suppose thath1 and h2 are bounded positive harmonic functions on

Ω ∩B(ξ, A2r) vanishing quasi-everywhere on∂Ω ∩B(ξ, A2r). Then

h1(y)

h2(y)
≈ h1(y

′)
h2(y′)

for y, y′ ∈ Ω ∩B(ξ, r),

where the constant of comparison depends only onΩ.
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A uniform domain can be characterized in terms of the quasi-hyperbolic metric. Gehring

and Osgood [24] showed thatΩ is a uniform domain if and only if

(5.3) kΩ(x, y) ≤ A log

[( |x− y|
δΩ(x)

+ 1

) ( |x− y|
δΩ(y)

+ 1

)]
+ A for x, y ∈ Ω.

Lemma 5.2.4.LetΩ be a uniform domain inRn with n ≥ 2 and letx, y ∈ Ω satisfy

|x− y| ≤ A3 min{δΩ(x), δΩ(y)}.
Then there exists a positive constantA depending only onA3 andΩ such that

GΩ(x, y) ≥ A|x− y|2−n.

Proof. We may assume, without loss of generality, thatδΩ(x) ≤ δΩ(y) and |x − y| ≥
2−1δΩ(x). Takew ∈ S(x, 2−1δΩ(x)). Then |y − w| ≤ 2|x − y|, so that (5.3), Corollary

6.1.2and Lemma6.1.3yield that

GΩ(x, y) ≈ GΩ(x,w) ≥ GB(x,δΩ(x))(x,w) ≈ δΩ(x)2−n ≥ A|x− y|2−n,

as required.

Let us prove Proposition5.2.2. If necessary, we writeA(a, b, · · · ) for a constant depend-

ing ona, b, · · · .
Proof of Proposition5.2.2. Let x ∈ Γα(ξ)∩B(ξ, (2κ)−1δΩ(x0)) andy ∈ Ω∩B(ξ, κ|x− ξ|).
Thenx, y 6∈ B(x0, 2

−1δΩ(x0)). Let A4 be a constant sufficiently large so thatA4 ≥ 2A2

andA−1
4 δΩ(x0) < r0, whereA2 andr0 are constants appearing in Lemma5.2.3. Thenr :=

A−1
4 δΩ(x) < r0. We consider two cases.

Case 1: δΩ(y) < r. Lety∗ ∈ ∂Ω be such that|y−y∗| = δΩ(y). Then|x−y∗| ≥ δΩ(x) ≥ A2r

and|x0 − y∗| ≥ δΩ(x0) ≥ δΩ(x) ≥ A2r. Therefore Lemma5.2.3yields that

KΩ(x, y) =
GΩ(x, y)

GΩ(x0, y)
≈ GΩ(x, yr)

GΩ(x0, yr)
,

whereyr ∈ S(y∗, r)∩Ω is such thatδΩ(yr) ≈ r. Sinceyr 6∈ B(x0, 2
−1δΩ(x0)) and|x−yr| ≤

A(κ,A4, α)r, it follows from (5.3), Corollary6.1.2, Lemma6.1.3and Lemma5.2.4that

GΩ(x, x0) ≈ GΩ(yr, x0) and GΩ(x, yr) ≥ A|x− yr|2−n ≥ A|x− y|2−n,

so that

GΩ(x, x0)KΩ(x, y) ≈ GΩ(x, yr) ≥ A|x− y|2−n.

Case 2: δΩ(y) ≥ r. Since|x − y| ≤ A(κ,A4, α)r, it follows from (5.3), Corollary6.1.2,

Lemma6.1.3and Lemma5.2.4that

GΩ(x, x0) ≈ GΩ(y, x0) and GΩ(x, y) ≥ A|x− y|2−n,

and so (5.2) holds in this case.

Finally, lettingy to the boundary, we also obtain (5.2) for y ∈ ∂Ω∩B(ξ, κ|x− ξ|). Thus

Proposition5.2.2is proved.
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Proposition 5.2.5. Let Ω be a bounded uniform domain inR2. The following statements

hold.

(i) If ξ ∈ ∂Ω satisfies the exterior condition, then

GΩ(x, x0)KΩ(x, ξ) ≤ A for x ∈ Γα(ξ) ∩B(ξ, 2−1δΩ(x0)),

whereA is a constant depending only onα andΩ.

(ii) If ξ ∈ ∂Ω is an isolated point, then there existsδ > 0 such that

GΩ(x, x0)KΩ(x, ξ) ≈ log
1

|x− ξ| for x ∈ B(ξ, δ) \ {ξ},

where the constant of comparison is independent ofx.

In the proof of Proposition5.2.5, we use the following lemma.

Lemma 5.2.6. Let Ω be a domain inR2 and letα > 1. Suppose thatξ ∈ ∂Ω satisfies the

exterior condition. Then there exists a positive constantA depending only onα andA1 such

that

GΩ(x, y) ≤ A for x ∈ Γα(ξ) andy ∈ Ω \B(x, 2−1δΩ(x)).

Proof. Let x ∈ Γα(ξ) and putr = |x− ξ|. By our assumption, there iszr ∈ B(ξ, r) \Ω such

thatB(zr, A1r) ⊂ R2 \ Ω. We now writey∗ for the inverse ofy with respect toS(zr, A1r).

Then we obtain that fory ∈ S(x, 2−1δΩ(x)),

GΩ(x, y) ≤ GR2\B(zr,A1r)(x, y) = log

( |y − zr|
A1r

|x− y∗|
|x− y|

)
≤ A(α,A1).

Hence the maximum principle yields the lemma.

Proof of Proposition5.2.5. We first show (i). Let x ∈ Γα(ξ) ∩ B(ξ, 2−1δΩ(x0)) and put

r = A−1
4 δΩ(x) as in the proof of Proposition5.2.2. Repeating the argument in Case 1 in the

proof of Proposition5.2.2and using the same symbol, we have fory ∈ Ω sufficiently nearξ,

KΩ(x, y) ≈ GΩ(x, yr)

GΩ(x0, yr)
.

SinceGΩ(x, x0) ≈ GΩ(yr, x0), Lemma5.2.6yields that

GΩ(x, x0)KΩ(x, y) ≤ A.

Tendingy to ξ, we obtain (i).

We next show (ii ). Let ξ ∈ ∂Ω be an isolated point and letδ = 2−1 min{1, dist(ξ, ∂Ω \
{ξ}), δΩ(x0)}. We have that forx ∈ B(ξ, δ),

KΩ(x, ξ) = β1GΩ∪{ξ}(x, ξ) ≥ β1GB(ξ,2δ)(x, ξ) = β1 log
2δ

|x− ξ|
≥ 2β1δ log

1

|x− ξ| ,
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whereβ1 is some positive constant. On the other hand, since(B(ξ, diam Ω) \ {ξ}) \ Ω is

minimally thin atξ with respect toB(ξ, diam Ω), it follows from Lemma4.3.1and (4.5) that

KΩ(x, ξ) ≤ β2KB(ξ,diamΩ)\{ξ}(x, ξ) = β2 log
diam Ω

|x− ξ| ≤ A(δ, Ω) log
1

|x− ξ| .

We also have by the Harnack inequality that forx ∈ B(ξ, δ),

GΩ(x, x0) = GΩ∪{ξ}(x, x0) ≈ GΩ∪{ξ}(ξ, x0).

Hence we obtain (ii ).

5.3 Equivalence between ordinary thinness and minimally

thinness

Throughout this section, we suppose thatn ≥ 3. Let E be a subset ofRn and letξ ∈ Rn

be a limit point ofE. We write Ej = {x ∈ E : 2−j−1 ≤ |x − ξ| ≤ 2−j}, and denote

by R̂E
1 the regularized reduced function of the constant function 1 relative toE onRn. By

Wiener’s criterion, we can define thinness of a set as follows: a setE is thin atξ if and only

if
∑∞

j=1 R̂
Ej

1 (ξ) < +∞ (see [8, Theorem 7.7.2]), which is also equivalent to there exists

a positive superharmonic functionu on Rn such thatu(ξ) < +∞ and u(x) → +∞ as

x → ξ alongE (see [8, Theorem 7.2.3]). By [8, Theorem 9.2.7], the minimal thinness is

characterized as follows: letE ⊂ Ω and letξ be a minimal Martin boundary point ofΩ,

which is a Martin topology limit point ofE. ThenE is minimally thin atξ with respect toΩ

if and only if there exists a Green potentialGΩµ onΩ such that
∫

KΩ(x, ξ)dµ(x) < +∞ and

lim
y→ξ, y∈E

GΩµ(y)

GΩ(x0, y)
= +∞.

Let E be a set contained in a non-tangential cone at a boundary pointξ. In [28], Lelong-

Ferrand proved in the half space thatE is thin atξ if and only if E is minimally thin atξ.

Aikawa [1] proved this equivalence in a Lipschitz domain. The purpose of this section is

to extend this result to a uniform domain using Propositions5.2.1and5.2.2. We note again

that the minimal Martin boundary of a bounded uniform domain coincides with its Euclidean

boundary.

Theorem 5.3.1.Let Ω be a bounded uniform domain inRn with n ≥ 3, and letξ ∈ ∂Ω and

α > 1. Suppose thatE ⊂ Γα(ξ). ThenE is thin atξ if and only ifE is minimally thin atξ

with respect toΩ.

Proof. We may assume, without loss of generality, thatξ is a limit point of E andE ⊂
B(ξ, 6−1δΩ(x0)). We first show the necessity. LetEj be a set defined as above. Since

E is thin atξ, there exists a sequence of positive numbers{aj} such thataj → +∞ and
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∑∞
j=1 ajR̂

Ej

1 (ξ) < +∞. Let µj be the Riesz measure associated withR̂
Ej

1 , and letdνj(x) =

GΩ(x, x0)dµj(x). It then follows from Proposition5.2.2with κ = 3 that fory ∈ Ej,

R̂
Ej

1 (y) =

∫
|x− y|2−ndµj(x) ≤ A

∫
KΩ(x, y)dνj(x),

so that
1

A
≤ GΩνj(y)

GΩ(x0, y)
for quasi-everyy ∈ Ej.

Let u(y) =
∑∞

j=1 ajGΩνj(y). Thenu is a Green potential onΩ satisfying that

lim
y→ξ, y∈E\F

u(y)

GΩ(x0, y)
= +∞,

whereF is a polar set. Also, we have by Proposition5.2.1

∞∑
j=1

aj

∫
KΩ(x, ξ)dνj(x) ≤ A

∞∑
j=1

ajR̂
Ej

1 (ξ) < +∞.

HenceE \ F is minimally thin atξ with respect toΩ, and so isE.

We next show the sufficiency. SinceE is minimally thin atξ with respect toΩ, there

exists a Green potentialGΩµ with supp µ ⊂ Γα(ξ) such that
∫

KΩ(x, ξ)dµ(x) < +∞ and

lim
y→ξ, y∈E

GΩµ(y)

GΩ(x0, y)
= +∞.

Let dν(x) = GΩ(x, x0)
−1dµ(x). It then follows from Proposition5.2.1that

GΩµ(y)

GΩ(x0, y)
=

∫
KΩ(x, y)dµ(x) ≤ A

∫
|x− y|2−ndν(x),

so that

lim
y→ξ, y∈E

∫
|x− y|2−ndν(x) = +∞.

Also, Proposition5.2.2yields that
∫
|x− ξ|2−ndν(x) ≤ A

∫
KΩ(x, ξ)dµ(x) < +∞.

ThusE is thin atξ. The proof is complete.
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Chapter 6

Appendix

6.1 Quasi-hyperbolic metric and Harnack’s inequality

We show a relationship between the quasi-hyperbolic metric and Harnack’s inequality for

positive harmonic functions. Recall the definition of the quasi-hyperbolic metric onΩ:

kΩ(x, y) = inf
γ

∫

γ

ds(z)

δΩ(z)
,

where the infimum is taken over all rectifiable curveγ in Ω connectingx to y.

We say that a finite sequence of balls{B(xj, 2
−1δΩ(xj))}N

j=1 in Ω is a Harnack chain

betweenx andy if x1 = x, xN = y, andxj+1 ∈ B(xj, 2
−1δΩ(xj)) for j = 1, · · · , N − 1.

The numberN is called the length of the Harnack chain. As shown in the following lemma,

the shortest length of Harnack chain is estimated by the quasi-hyperbolic metric. By[x, y]

we denote the line segment betweenx andy.

Lemma 6.1.1.LetΩ be a proper subdomain ofRn andx, y ∈ Ω. Then the shortest length of

the Harnack chain betweenx andy is comparable tokΩ(x, y) + 1.

Proof. Let {B(xj, 2
−1δΩ(xj))}N

j=1 be a Harnack chain betweenx and y. Sincexj+1 ∈
B(xj, 2

−1δΩ(xj)), we havedist([xj, xj+1], ∂Ω) ≥ 2−1δΩ(xj). Letγ =
⋃N−1

j=1 [xj, xj+1]. Then

∫

γ

ds(z)

δΩ(z)
=

N−1∑
j=1

∫

[xj ,xj+1]

ds(z)

δΩ(z)
≤ N.

Hence we obtainkΩ(x, y) ≤ min N .

Conversely, lettingl = kΩ(x, y), we can find a rectifiable curveγ in Ω such that
∫

γ

ds(z)

δΩ(z)
< 2l.

Let M be the smallest integer such that2l/(log(3/2)) ≤ M . Then we can takeM points

x1, · · · , xM in γ so thatx1 = x, xM = y and

(6.1)
∫

γ(xj ,xj+1)

ds(z)

δΩ(z)
< log

3

2
for j = 1, · · · ,M − 1.
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SinceδΩ(z) ≤ δΩ(xj)+ `(γ(xj, z)) for z ∈ γ(xj, xj+1), the left hand side of (6.1) is bounded

from below by
∫ `(γ(xj ,xj+1))

0

ds

δΩ(xj) + s
= log

(
1 +

`(γ(xj, xj+1))

δΩ(xj)

)
.

This shows that|xj−xj+1| ≤ `(γ(xj, xj+1)) < 2−1δΩ(xj); that is,xj+1 ∈ B(xj, 2
−1δΩ(xj)).

Hence{B(xj, 2
−1δΩ(xj))}M

j=1 is the Harnack chain betweenx and y with length M , for

which

M ≤ 2l

log(3/2)
+ 1 ≤ 2

log(3/2)
(kΩ(x, y) + 1).

Thus the lemma is proved.

Lemma6.1.1and Harnack’s inequality yield the following corollary.

Corollary 6.1.2. Let Ω be a proper subdomain ofRn. Then there exists a constantA > 1

depending only on the dimensionn such that ifx, y ∈ Ω, then

exp(−A(kΩ(x, y) + 1)) ≤ h(x)

h(y)
≤ exp(A(kΩ(x, y) + 1))

for every positive harmonic functionh onΩ.

In order to apply Corollary6.1.2to the Green function, the following lemma is needed.

Lemma 6.1.3.LetΩ be a proper subdomain ofRn andz ∈ Ω. Then

kΩ\{z}(x, y) ≤ 3kΩ(x, y) + 6π for x, y ∈ Ω \B(z, 2−1δΩ(z)).

Proof. We first claim that ifw ∈ Ω satisfies3−1δΩ(w) > δΩ\{z}(w), thenw ∈ B(z, 2−1δΩ(z)).

Indeed,

3|z − w| = 3δΩ\{z}(w) < δΩ(w) ≤ δΩ(z) + |z − w|,
so that|z − w| < 2−1δΩ(z).

Let γ be a rectifiable curve inΩ connectingx to y. If γ ∩ ∂B(z, 2−1δΩ(z)) = ∅, then

the claim shows thatkΩ\{z}(x, y) ≤ 3kΩ(x, y). We consider the case whenγ intersects with

∂B(z, 2−1δΩ(z)). We writew1 andw2 for points of the first hit and the last hit, respectively,

i.e. γ(x,w1) ∩ ∂B(z, 2−1δΩ(z)) = ∅ andγ(w2, y) ∩ ∂B(z, 2−1δΩ(z)) = ∅. Let γ1 be a curve

in ∂B(z, 2−1δΩ(z)) connectingw1 to w2 such that̀ (γ1) ≤ πδΩ(z), and letγ′ = γ(x, w1) ∪
γ1 ∪ γ(w2, y). It follows from the above claim that ifw ∈ γ \ γ1, thenδΩ(w) ≤ 3δΩ\{z}(w),

so that
∫

γ

ds(w)

δΩ(w)
≥

∫

γ(x,w1)∪γ(w2,y)

ds(w)

δΩ(w)

≥ 1

3

∫

γ(x,w1)∪γ(w2,y)

ds(w)

δΩ\{z}(w)
+

∫

γ1

ds(w)

δΩ\{z}(w)
−

∫

γ1

ds(w)

δΩ\{z}(w)

≥ 1

3

∫

γ′

ds(w)

δΩ\{z}(w)
− 2π.
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Thus we have

kΩ\{z}(x, y) ≤ 3

∫

γ

ds(w)

δΩ(w)
+ 6π.

Sinceγ is arbitrary curve, we obtain the lemma.
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