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Preface

This doctoral dissertation consists of Part | and Part Il. In Part |, we treat the Laplace-Beltrami
operator on the unit ball of the-dimensional complex space associated with the Bergman
metric; in Part Il, we treat the Laplace operator on thdimensional real space associated
with the Euclidean metric.

Part | includes two chapters, Chapters 1 and 2. In Chapter 1, we discuss the boundary
behavior of invariant harmonic functions on the unit ball. In 1969, &tet introduced an
approach region to guarantee the existence of boundary limits of Poissod-Bregyals.

Our main purpose is to show the best possibility of thedfyi approach region. The resultis
stronger than the earlier work by Hakim and Sibony. In Chapter 2, we give characterizations
of the invariant harmoniea-Bloch space and the invariant harmonic BMO space by using
the spherical integral of compositions withdldius transformations. We also apply these
characterizations to show inclusion relationships amongatiidoch space, the weighted
Dirichlet space and the BMO space.

Part 1l includes three chapters, Chapters 3, 4 and 5. Chapter 3 is a joint work with H.
Aikawa and T. Lundh about minimal Martin boundary points of a John domain. We show
that the number of minimal Martin boundary points at each Euclidean boundary point is
estimated by the John constant. For a class of John domains represented as the union of con-
vex sets, we give a sufficient condition for the Martin compactification to be homeomorphic
to the Euclidean closure. In Chapter 4, we study the boundary behavior of the quotient of
Martin kernels of given intersecting domains. The main tool is a new characterization of
the minimal thinness for a difference of two subdomains. As a consequence, we obtain the
boundary growth of the Martin kernel in a Lipschitz domain. In Chapter 5, we give com-
parison estimates for the Green function and the Martin kernel in a uniform domain. These
estimates enable us to show the equivalence of ordinary thinness and minimal thinness of a
set contained in a non-tangential cone.

Keywords : invariant harmonic function, boundary behavior, Koyi approach region,
a-Bloch space, BMO space, Green function, Martin kernel, minimal Martin boundary point,
John domain, minimal thinness, comparison estimate
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Part |

Invariant harmonic functions in the unit
ball of C"






Introduction

This introduction includes consistent notations and terminologies employed in Partd” Let
be then-dimensional complex space with inner productw) = » °7_, z;w; and norm|z| =
m. In Chapterdl and2, we will discuss solutions of the Laplace-Beltrami equation in
the unit ballB of C" associated with the Bergman metrihe Laplace-Beltrami operator on

B associated with the Bergman metiscdefined by

~ 4 o o _ 0?
A= — 1(1 — |2 )]%::1(51‘,16 - ijk)ma

whered;, = 0 (j # k) andd; ; = 1. The group of holomorphic automorphisms Bf de-
noted byAut(B), plays an important role in the invariant harmonic function theory. Every
holomorphic automorphism d® can be represented as the composition of a unitary transfor-
mation onC™ and a Mdbius transformation of3. A Mobius transformation oB is defined

fora,z € B by
a— P,z—\/1—|a]*(z — P,2)
1—(z,a) ’

Pa(2) =

whereP,z = (z,a)ala|2 (a # 0) and B,z = 0. We note that the operatak is invariant
underAut(B): thatis,A(f o 1)) = (Af) o ¢ for eachf € C2(B) andy € Aut(B). For this
reason, a2-solution of the equation

ﬁf:() in B

is calledan invariant harmonic functiorfor an M-harmonic function) onB. We note in
the casen = 1 that invariant harmonic functions are just harmonic functions for the (usual)
Laplace operator.

The gradient operator o associated with the Bergman metric is denoted%y It
satisfies that fof € C''(B),

Sep_ 2 o N“ys = (0 0f  Of OF
V1l _n+1(1 ‘ZHMZZI((S”’“ %) azjazk+azjazk ’

and |V (f o )| = |(Vf) o 1| for ¥ € Aut(B). The gradientVf is calledthe invariant
gradientof f on B.



Let v denote the Lebesgue measure@hnormalized so that(B) = 1. The measura
on B defined byd\(z) = (1 — |z|>)~*Vdv(z) is useful in our study because it is invariant
underAut(B): that is, for a measurable subdétof B, an integrable functiorf on B with
respect to\ andy € Aut(B), we have

/ R = [ 1w

We call A the invariant measuren B.

In the invariant harmonic function theory, the Hardy space is fundamental and important.
Forl < p < oo, thep-th Hardy spacé+? is defined as the collection of all invariant harmonic
functionsf on B for which

1/p
|l = sup ( / |f(r<)\pd0(6)) < o0,
o<r<1 S

whereS is the unit sphere and is the surface measure ¢hnormalized so that(S) = 1.
We also denote b§{> the collection of all bounded invariant harmonic functionsint is
easy to show, using dlder’s inequality, that{? C H? if 1 < p < ¢ < co. We should note
that each element ik? can be represented as a Poisson-8aetggral: that is, iff € H?,
then there exists a complex measuren S such that

16) = [ PEQdn(0) forz e B

whereP(z, () is the Poisson-Szégkernel of B defined by

(1 —[=[*)"
11— (2O
In particular, ifp > 1, theny is absolutely continuous with respectd@nd is represented as
dp = f*do for somep-th integrable functiory* on S. Then we writeP[f*] and call itthe
Poisson-Szegintegral of f*. Conversely, Jensen’s inequality shows that the PoissonédSzeg
integral of a complex measure (respp-¢h integrable function) or$ belongs toH! (resp.
HP).

In Chapterl, we will discuss the boundary behavior of invariant harmonic functions in
the Hardy space. In 1969, Kamyi introduced an approach region to guarantee the existence
of boundary limits of invariant harmonic functions in the Hardy space. Our main purpose is
to show the best possibility of the Kamyi approach region. The result is stronger than the
earlier work due to Hakim and Sibony (1983).

In Chapter2, we will discuss characterizations of certain spaces of invariant harmonic
functions. A motivation of the characterization is to clarify the inclusion among spaces. For
0 < p < oo anda € R, the weighted Dirichlet spacB? is defined as the collection of all
invariant harmonic functiong on B for which

1 fllpz == (/B VI(z)P(1 - \ZI2)O‘CM(2)>UP < 0.

P(z,¢) =



In 1993, Stoll gave a characterization of the Hardy space and clarify the inclusion between
the Hardy space and the weighted Dirichlet space:

DF CcHP forl<p<2
DP =HP forp=2;
HP C DE for2 < p < oo

DP Cc 'HP fora <nandl <p < oo.

Our main purpose is to give characterizations of th8loch space and the BMO space
(whose definitions will be described later), and to clarify inclusion relationships among the
a-Bloch space, the weighted Dirichlet space and the BMO space.

Throughout Part I, we use the symbélto denote an absolute positive constant whose
value is unimportant and may change from line to line. If necessary, we M(itg, - - - ) for
a constant depending anb, - - - .






Chapter 1

Boundary behavior of invariant harmonic
functions

This chapter is based on the paper [H1].

1.1 Historical survey

Many investigations of the boundary behavior of (invariant) harmonic functions on the unit
disc D of C would be motivated by the following result due to Schwdrg] in 1872.

Theorem (Schwarz).Let f be a continuous function on the unit cirédd®. Then its Poisson-
Szeg integral P[f] is extended continuously & and has valueg ondD.

This result means that the Dirichlet problem with continuous boundaryfdata

Ah =0 in D,
lim h(z) = f(§) forall{ e oD,

z—&,2€D

has a unique solution. Moreover, the solution is given by the PoissoroSziegral of the
boundary data. However, if omitting continuity of boundary data, then the above problem
does not have a solution in general. So it is important to consider what approach region is
admissible for Poisson-Szégntegrals to have boundary limits.

In 1906, Fatou4] considered a non-tangential approach region to guarantee the existence
of boundary limits of bounded harmonic functions bn For{ € 9D anda > 1, a non-
tangential approach regioat¢ is defined by{z € D : |z — ¢| < a(1 — |z]|)}.

Theorem (Fatou). If h is a bounded harmonic function dn, thenh has a non-tangential
limit at almost every point afD.

The best possibility of the non-tangential approach region was first established in 1927
by Littlewood [13] in the following sense.



Theorem (Littlewood). Let~, be a tangential curve i which ends at = 1, and lety, be
the curvey, rotated about the origin through an angle so thaty, touches) D internally at
¢, Then there exists a bounded harmonic functiomowhich admits no limits as — ¢%
alongy, for almost every in [0, 27).

In 1990, Aikawa [L] improved no convergence “almost everywhere” to “everywhere”.

Theorem (Aikawa). Under the same assumption as in Littlewood’s theorem, there exists a
bounded harmonic function aff which admits no limits as — ¢ along-y, for everyé in
[0, 27).

Remarkl.1.1 Fatou’s theorem can be extended to the upper half space atdimaensional

real space. Se2(, Chapter VII]. The best possibility of the non-tangential approach region

in the upper half space was proved by Aika\h [In 1984, Nagel and SteiriLf] obtained

the marvelous result that Poisson integrals in the upper half space have boundary limits at
almost every point of the boundary within an approach region which is not contained in any
non-tangential approach regions.

The extension of Fatou’s theorem to the unit Halbf C* was achieved by Kaynyi [11].
He considered the following approach region. Ear S anda > 1, we let

A©) ={zeB: 1= (0] < 50-1:P)}

We note that this approach region is non-tangential in the special real direction and is tan-
gential in the complex tangential directions. In the sequel, we will.4a{) the Koranyi
approach regiorat . Koranyi's result is stated as follows.

Theorem (Koranyi). If f is an integrable function o, then its Poisson-Széantegral P| f]
has the boundary limif (¢) asz — & within A, () at almost every poing of S.

1.2 Sharpness of the Koanyi approach region

The best possibility of the Kanyi approach region for Poisson-Saeigptegrals to have
boundary limits was proved in 1983 by Hakim and Sibc8lyi the following sense.

Theorem (Hakim - Sibony). Suppose that > 2. Leta > 1 and letg : (0,1] — [, ) be
a decreasing function such that

(1.1) tli%i g(t) = 0.

For ¢ € S, we define

L= (5O < 911 (= 6D~ |z])
Then there exists a bounded holomorphic functionBowhich admits no limits as — £
within D, ,(£) at almost every poirg of S.

Dmg(g):{zEB ’1_<Z7€>|§a(1_|<27§>|)a }



We now comparé),, (&) with A, (§). To this end, we may assume by unitary invariance
that = e; = (1,0,---,0) for simplicity. In view of (1.1), the set of points satisfying the
second inequality defining,, ,(e;) is quite wider than the Ké@nyi approach regionl, (e;)
neare; in all directions. On the other hand, the first inequalitylis- z;| < a(1 — |z1])
and provides the restriction in the-plane only. From these, we see that ,(¢) is wider
than any Koanyi approach regions in the complex tangential directions, and is the same,
non-tangential, in the special real direction. See Fiduie

e Do)

Figure 1.1:Difference betwee, ,(¢) and.A,(¢).

In 1986, Sueiro23] proved a result similar to Nagel-Stein’s theorem. He actually studied
in more general domain, the so-called space of homogeneous type, than the unit ball.

Theorem (Sueiro). If f is an integrable function o1, then its Poisson-Szédntegral P|f]
has the boundary limif(¢) at almost every poing of S within a certain approach region
which is not contained in any Kanyi approach regions &t.

The purpose of this chapter is to show the best possibility of tham§amapproach region
in the Littlewood sense. We consider a cutvim B which ends at; and satisfies that

(1.2) i L (zen]

z—e1, 26y 1 — |Z|2

This means that for each > 1, points ofy neare; lie outside the Kaainyi approach region
A, (e1). Letd denote the group of unitary transformationgfand writeU~ for the image
of v throughU € U. Since unitary transformations preserve inner products, we se&that
touchesS internally atUe; and lies outside the Kanyi approach regiosl,(Ue;) nearUe;
for eacha > 1.

Our result is as follows.

Theorem 1.2.1.Let~ be a curve inB which ends at, and satisfies the proper{l.2). Then
there exists a real valued bounded functipron S of which Poisson-Szégntegral P|f]
admits no limits a$z| — 1 alongU~ for everyU € U, that is,

liminf P[f](z) # limsup P[f](z) foreveryU € U.

|z| =1, z€Ux |z|—1, €U



Remarkl.2.2 In addition, we can mak¢ satisfy

liminf P[f](2) =inf f(¢) and  limsup P[f](z) =sup f(C)

|z|]—1,zeU~ |z|]—1, zeUy ¢es

for everyU € U.

Remarkl.2.3 Inview of Sueiro’s theorem, the limit iriL{2) can not be replaced by the upper
limit.

Remarkl.2.4 Sincel{ acts transitively onS, for each{ € S there isU; € U such that

¢ = Ugey. Therefore Theorerf.2.1implies that there exists a real valued bounded invariant
harmonic function o3 which admits no limits as — & alongU,~y ateverypoint¢ of S. We
note that the Poisson-Szetegral in Theorerd.2.1 may not be pluriharmonic. However,
Theoreml.2.1is stronger than Hakim-Sibony’s theorem in the following points:

e It improves no convergence “almost everywhere” to “everywhere”.

¢ It establishes that a tangential approach in the special real direction can not be allowed
in Koranyi’'s theorem.

e The existence of a bounded invariant harmonic function which fails to have boundary
limits is ensured even if we replade, ,(e;) by much smaller curve satisfying the
property (L.2).

Our method is different from Hakim and Sibony’s. Their proof is based on a higher
dimensional Blaschke product. However, we will prove Theotefhlin Sectionl.4 by
constructing a bounded function ¢ghand using lower and upper estimates of the Poisson-
Sze@ integral in Sectiorl.2. In the proofs we adapt ideas froit, 2]. Whereas the polar
(resp. the Euclidean) coordinate was used to construct a bounded function on the unit circle
(resp. R™) in [1, 2], they are not applicable in our case. This is an important difference
betweenl, 2] and our case.

1.3 Lower and upper estimates for Poisson-Szégntegrals

We begin with introducing a non-isotropic ball {1 We observe that the functiofiz, w) =
11 — {z,w)|'/? satisfies the triangle inequality d& U S, and defines a metric ofi (cf. [22,
Lemma 7.3]). Fog € S andr > 0, we writeQ(&,7) = {¢ € S : d(¢,€) < r}, the non-
isotropic ball of cente¢ and radius-. Note that, to emphasize the mettiove use the slightly
different definition from 22]. We observe from22, p. 84] thato (Q(U¢,r)) = o(Q(&,r))
for any unitary transformations and that

- o(QEr) 20 T()
(13) M e AATE )

10



Moreover, there is a constadt > 1 depending only on the dimensiansuch that
(1.4) At < o(Q(E.r)) < Agr®

for ¢ € Sand0 < r < diam S = /2. Herediam E = sup{d(n,() :n,( € E}for E C S.
LetT > 0 and{ € S. For an integrable functiomon S, we define the truncated maximal
function at¢ by

Mz[g)(€) = supr—" /Q 150t

r>T

Lemma 1.3.1. There exists a positive constast{ depending only on the dimensiansuch
that if g is an integrable function o8 andC > 0, then

Plgl(te)] < Ay (<1 o /Q o o(Qlar(0) + CQ"Mcm[g](E))

for¢ € Sand0 <t < 1.

Proof. Let¢ € S and0 < t < 1 be fixed, and put

- Q(S:CV 1 _t)a
V= Q& YCVI=D\ Q2 CVI—1)  (j=1,---,N),

Since|l — (t£,¢)| > 1 —tfor ¢ € S, it follows that

(1) . 20 :
e el S e [ 0l

Letj =1,---, N. By the triangle inequality, we have fqre V,

Hence it follows that

AP Oldo(() < s / 9(0)ldor(<)
o g
v, |1 = (&, Q) T 240 (1 =)™ Joe 20T g
29n
< Saigan Movr=ilgl (©)-
Sincer\L1 272" < 1, we obtain the lemma witdl; = 2°". O

As a consequence of Lemmia3.], we obtain the following lower and upper estimates.

Lemma 1.3.2. The following statements hold.

11



(i) If g is an integrable function o, then
Plgl(t&)| < AsM 1=lg](§) for& e Sand0 <t <1,
whereA, is a positive constant depending only on the dimension

(i) Leté € S,0<r <1landC > 0. If g is a measurable function ofi such thaty = 1
onQ(&,Cv1—r)and|g] <1ons,then
As

whereA; is a positive constant depending only on the dimension

Proof. PuttingC = 1 in Lemmal.3.], we obtain i) with A, = 2A,. Let us showif). We

puth = (1 —g)/2. Thenh =00onQ(§,Cv/1 —r)and|h| < 1onS. Applying Lemmeél.3.1

to h, we obtain from/L.4) that forr <t < 1,
A

A Q& AgA
PLR)(tE) = F5p Moyr=ilh](€) < 0_2171[)22‘1}% o p(% P) - o

SincePlg] = 1 — 2P[h], we obtainlii) with A3 = 24, A;. O

1.4 Proof of Theoreml1.2.1

Let = be the radial projection t&' defined byr(z) = z/|z| for = # 0. We note that/1.2)
implies

(1.5) lim A=)

imerzer d(z,m(2))

sincel — |z > 1 — |z| = d(z,m(2))? for z € B\ {0}.

Lemma 1.4.1.Let~ be the curve as in Theorein2.1 Then there exist sequences of positive

numbers{a;}52,, {b;}32, and subcurves; }52, of  with the following properties:

(|) 0< a; < bj < Qjy1 < bj+1 < land 111’[1 a; = 1;

J—00

(ll) a; < ’Zl < bj for z € Vi

(v) tim ST05)

Jj—0o0 \xl—aj

12



Proof. Let a; > 1 be such thaty; — oo asj — co. We shall chooséga;}, {b;} and{~;},
inductively. By {1.5), we finda; with inf ¢, |2| < a; < 1 and
d(z,e1) > and(z,m(z)) forze~yn{lz] > a}.
Let +/ be the connected component pin {|z| > a;} which ends at;. Since there is
2o € v N {|z| = a1}, we have from the triangle inequality that
diam (") > d(m(2), €1)

> d(zp,e1) — d(z0,7(20))

> (o — 1)d(z0,7(20))

= (a1 — 1)1 — ay.
Let+” be a subcurve of’ connecting a point if|z| = a; } and a point nea#; such that

"

1
diam 7 (v") > §diam ().

We takeb; so thatsup,..» |z| < by < 1, and lety, be the connected componentafi {a; <
|z| < by} containingy”. Then

—1
diam 7 (v;) > diam 7 (y") > a12 V1—a.
We next choose., b, and~, as follows. Leta, be such thak, < a; < 1 and

(1.6) i\/l — by > d(z,e1) > agd(z,m(z)) forzeyn{|z| > a}.

By repeating the above procedure, we can tindnd~; with ay < by < 1 anday < |z| < by
for z € 7, and

-1
diam 7(7y,) > a22 V1 — as.

It also follows from (.6) anda, > 1 that

d(r(2), e1) < d(z, e1) + d(z, () < %\/1 Ty forz € .

and sadiam 7(y2) < /1 — by by the triangle inequality.
Continuing this procedure, we obtain the required sequences. O

In the rest of this section, we suppose thaf}, {b,} and{v;} are as in Lemm4.4.],
and put

diam 7(~;) diam 7 () 12
Ej:T]7 ¢ = | —F/— 1__@]] and Pi = Cj 1—6Lj
to simplify the notation. We note from Lemrda4.1that

(1.7) lim ¢; =0, lim 2 =0 and lim ¢; = oo.

j—oo j—oo U j—00
Therefore, taking a subsequence if necessary, we may assume, in the argument below, that

p; < {; foreveryj € N.
For eacly € N, let us choose finitely many poinfg; }, in S such that

13



(P1) S =JQm. 4,

(P2) {Q(n?,¢;/2)}, are mutually disjoint.

This is possible. In fact, we first take an arbitragyc S, and takey € S'\ U] Qny, 4;)
inductively as long a$ \ U~} Q(n?,¢;) # 0. SinceS is compact, we can get finitely many

points{n} }, satisfying (P1). It also fulfills that(n}, n}) > ¢; if v # ;. Hence (P2) follows
from the triangle inequality.

We put
My = J{¢cesd¢,n) =1t}

Thenn(U~;) N M; # 0 for any unitary transformatioris. Indeed, (P1) shows thatU~;) N
Q(nY,t;) # 0 for somev. Sincediam 7(U~;) = diam7(y;) = 4¢; anddiam Q(n},¢;) <

2¢;, we haver(Uy;) N{¢ € S:d(¢,n)) = £;} # 0, and sor(U~;) N M; # 0.
Let G, be the subset ab given by

Gj={z€ B:a; <|z| <bjandn(z) € M;}.
SinceU~; C {a; < |z| < b;} by Lemmel.4.1(ii), it follows thatU~; N G; # 0. We also put
E; = JR,
whereR} =

{¢eS:t;—p;<d,ny) <L+ p;}, the non-isotropic ring. See FiguieZ.
Since the value (i) is independent of by unitary invariance, we write; for this value.
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In fact, we obtain from1.3) and (L.7) that forn € S,

ki a(Qn. i +p;)) —o(Q(n. 45 — p;))

o 2
_ (fj + Pj)zn o(Qn, 4 +pi)) (@' - Pj)Qn o(Q(n, ¢ — pj))
Z (6; + pi)*" Z (£; = pi)?"

— 0 asj — oo.

Lemma 1.4.2.Let {E;} be as above, and le{z, denote the characteristic function &f;.
The following properties hold.

(i) lim( sup P[xEj](Z)) = 0.

J=00 \|2|<bj—1
(i) lim o(E;) = 0.
j—00
Proof. Let z € B be such thatz| < b;_;. By Lemmal.3.2(i), we have

Plxg,l(2) = AaMmplxe,](n(2))
<Ay sup 1Y o(RYNQ(n(z),7)

r>4/1—|z| v
<Ay sup 7"_2”Nj(z, r)K;,
r>+/1-|z|

where N;(z,r) is the number ofs such thatR? N Q(w(z),r) # 0. Sincey/1—]z] >
diam 7(;) by Lemmel.4.1(iii), we observe from; < (; < r/4thatif RINQ(n(2),r) # 0,
thenQ(n7,¢;/2) C Q(7(z),2r). Therefore it follows from1.4) and (P2) thatV,(z,r) <
Ay(r/¢;)* with a positive constant, depending only on the dimensian Hence we obtain

Ry
2n?
gj

Plxe,)(2) < A2A,

so that () follows from (1.8).
Takingz = 0in (i), we obtain

o(E;) = Plxg;](0) — 0 asj — oo,
and thuslif) follows. Il
We now construct a bounded functigron S satisfying the property in Theorefn2.1.

Proof of Theoren..2.1. In view of Lemmal.4.2, we may assume, taking a subsequence of
j if necessary, that

(19) P[XEJ](Z) < 2_j for |Z| < bj—h

15



ando(E;) < 2779. Theno (N, U2, E;) = 0. Let

(-)BQO it e UL, B
£(¢) = | o
0 ifCgU_ B
where/;(() is the maximum integer such that{ € E; for ¢ € UJ . Then we observe

that f; converges almost everywhere 6ro

F(O) = (D" ifce U, B\ M U2 E
0 if (¢ U2, Ejor¢ e N, UL E

where(¢) is the maximum integei such that, € E£; for ¢ € U;2, £;\ N, Uj2, E;. We
also see that

(@ fj=(-1)YonkE;,and|f;| < 1onS;

(b) |fj1 = fil < 2xB,005
(c) P[f;] converges t&[f] on B.

Let U be a unitary transformation. Sin€gy intersects; for all j as stated in the paragraph
definingG;, we takez; € UyNG,. Note thata; < |z;| < b; andQ(7(2;),¢j+/1 —a;) C E;.
If j is even, then it follows from Lemmi&a.3.2(ii), Lemmal.4.1(i) and (.9) that

PIf1(z) = Pl (5) + Z Plfia = fillz)

[f] ZJ 227) XEk+1](Z]>

k=j
>1—é—21ﬂ

CJ

Similarly, if j is odd, then
As
Plfl(z) < —1+ 5 +247,

J
Hence we conclude froni(7) that

liminf P[f](z) = -1 < 1= limsup P[f](2).

|z|]—1, zeUxy |z]—1, zeUy

Thus the proof of Theoreih.2.1is complete. ]
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Chapter 2
Characterizations of function spaces

This chapter is based on the paper [H2].

2.1 Background and Motivation

There are several characterizations of spaces of holomorphic functions on the usitdall
C™. Choa and Choe3] and Jevtt [9, 10] gave characterizations of the BMOA in terms of
Carleson measures. 18]], Stoll characterized thg-th Hardy space by

(2.) / Gz O (2)P2% £(2)PdA(z) < oo,

whereG is the Green function for (whose definition will be described in Secti@).
Ouyang, Yang and Zhad 6] and Nowak [L5] also characterized the weighted Bergman space
and the Bloch space in terms of several finite integrals similaltt) {nvolving Mobius
transformations. The hyperbolic Hardy space was characterized by KMZpn [

The purpose of this chapter is to give characterizations of the invariant harmdiach
space and the invariant harmonic BMO space. Our characterization ofhech space is
motivated by the classical Hardy-Littlewood theorem in one dimension and its extension to
higher dimensions due to PavléJjil7]: Let 0 < p < oo anda > 0. An invariant harmonic
function f on B satisfies the property

2.2) (/ Wmo\pda(o)l/p —O((1-1%)) asr— 1,

if and only if f satisfies the property

(2.3) (/S If(TC)Ide(C)) " O((L—r*)"") asr— 1

Since then-Bloch space consists of functions with a property stronger 1Bd&), (it may be
interesting to characterize the space using the spherical integral lig3o (o this end,
we shall consider compositions with @dius transformations. We shall also characterize
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the invariant harmonic BMO space in terms of boundedness gf-thespherical integral of
compositions with Mbius transformations and in terms of the BMO property with respect
to “the invariant measure” ofs. As corollaries, we shall obtain characterizations similar to
(2.2) for the little «-Bloch space and the BMO space.

Throughout this chapter, we consider real valued invariant harmonic functioBs on

2.2 Characterizations of thea-Bloch space

Leta € R. The invariant harmonie:-Bloch spacewritten 55, is defined as the collection of
all (real valued) invariant harmonic functiogison B for which

15 = sgg(l — 2|V f(2)| < 0.

We recall thatp, (z) is the Mobius transformation oB. Let E(a,r) = {z € B : |pa(z)| <
r}.

Our characterizations for the invariant harmoni@loch space are as follows.
Theorem 2.2.1.The following statements hold.
() If « < —1, thenB,, consists only of constant functions.
(i) Letl <p < oo and set
((1 — |a|?)® if —n < ap <0,
(1—la>)*(1 —r)= @™ ifap < —n,
(1 —|al?)> (log ir)l if ap=—nora=0,

1
\(1 — |a]?)*(1 —r)* if a > 0.

Papla,r) =

The following properties for an invariant harmonic functigron B are equivalent:
(@) f € Ba;

1/p
(b) Hop(f) == sup papla,r (/ | f o @a(r¢) — (a)lde(C)) < 00;

O<7‘<1

1/p
(©) ILn,(f) := nggl Pap(a,T) (W /E(a,r) lf(2) — f(a)|pd)\(z)> < o0;
(d) there exist® < ry < 1 such that

o) = sup(t oy ([ NCE f(a)\?dA(z))l/p <o

a€eB

Moreover, the quantitie§f||z,, Ha,(f), 1a,p(f) andJ, ,(f) are comparable to each
other with a constant depending only prv, r, and the dimension.

18



Corollary 2.2.2. Let1 < p < oo and letf be an invariant harmonic function oR. If there
exist) < ro < 1 andp < [ < oo such that

/E( | |f(2) = f(@)lPdA(z) = O((1 — |af*)”) asla] — 1,

then f is constant.

Forz € Band0 < r < 1, let

1 T(] — 2\n—1
glra) =00 [ Eoa
|

n t?n—l

2
and letg(z) = ¢(1, z) for simplicity. The Green function fod is defined by
G(z,w) = g(pw(2)) forz,w e B.

As another consequence of Theor2rf.1, we obtain a characterization similar @.1)
for the little «-Bloch space.

Corollary 2.2.3. Let—1 < a < 0,1 < p < —n/a and let f be an invariant harmonic
function onB. The following properties are equivalent:

() f e Ba;
(ii) itelg(l - |a|2)°‘p/BG(z,a)|€f(z)|2|f(z) — [(@)"?dA(2) < oo.

The proofs of Theorer@.2.1and Corollary2.2.2will be given in Sectior2.4. We shall
prove Corollary2.2.3in Sectior2.€.

2.3 Characterizations of the BMO space

For0 < p < oo, the invariant harmonic BMO spagcevritten BMOH,, is defined as the
collection of every invariant harmonic functighon B which is represented as the Poisson-
Sze@ integral of a function of bounded mean oscillation ®nThat is, each elemertin
BMOH, is of the form

1) = [ Pl r o)
S
with a corresponding functiofi* integrable onS for which
|f ||BMOP(U) = 0<S:1S]D\/§ (m /Q(g,r) | f*(¢) — f§,7‘| U(O) < 00,

£es

wherefz, = o(Q(&7))™" [y fdo, the average of* overQ(¢, ). HereQ(¢,r) = {C €
S 1 — (¢, €)[? < r}, the non-isotropic ball of centérand radius-.
Our characterizations for the invariant harmonic BMO space are as follows.
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Theorem 2.3.1.Let1 < p < oo and let f be an invariant harmonic function oB. The
following properties are equivalent:

(i) f € BMOH,;
1/p
i) [fls, = sup ( / Ifosoa(rC)—f(a)lde(O> < o0
o<rz1 \Us

1/p
(i) [|fllBmo, ) = nggl (m /E(a’r) 1f(z) = f(a)lpdk(z)) < 0.

Moreover, the quantitie§f*||smo, (), || flls, and || f|smo,(r) are comparable to each other
with a constant depending only grand the dimension.

The interesting points of the above characterizatioB®fOH, are that a solution of the
Dirichlet problem forA with boundary data of bounded mean oscillation also has bounded
mean oscillation with respect to the invariant measuoe B, and that conversely an invariant
harmonic function orB of bounded mean oscillation with respecthtcan be represented as
the Poisson-Szégntegral of a function of bounded mean oscillation$n

Remark2.3.2 If fis the Poisson-Szégntegral of an integrable function &) then Theorem
2.3.1holds forl < p < co. Furthermore, iff is the Poisson-Szégntegral and holomorphic
on B, then Theoren2.3.1holds for0 < p < co. We note, in this case, that the equivalence
of (i) and fi) was proved by Ouyang, Yang and ZhA®&|[

As a consequence of Theor¢h8.], we obtain a characterization similar @.1) for the

BMO space.

Corollary 2.3.3. Let1 < p < o and let f be an invariant harmonic function oB. The
following properties are equivalent:

() f € BMOH,;

(ii) Sup/BG(Z,a)Iﬁf(Z)IQU(Z) — f(@)[P72dA(2) < o0.

a€B

The proofs of Theorerd.3.1and Corollary2.3.3will be given in Sectior?.5and Section
2.6, respectively.

2.4 Proof of Theorem2.2.1

For a real valued' functionf onB andj = 1,--- ,n, we let
af _~—_ Of
Xif(z) = 8_zj(z) — Zj 2 Z’“a_zk(z)‘
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Then we observe fron2R, Lemma 10.5] that for € B,

(2.4) VA |2<—Z\ )P < %ﬁﬂzm

and from R2, Proposition 10.4] that if is invariant harmonic o3, thenX;; f is so.

Proof of Theoren2.2.1(i). Letaw < —1andf € B,. Then, foreach =1,--- | n, it follows
from (2.4) that

\%
Xf ) < AT < Al (0 oy

Since the right hand side tends to zero|ds— 1—, the maximum principle yields that
X,f=0foreveryj =1,--- ,n,and sqVf| = 0 by (2.4). Hencef is constant. O

In the proof of Theoren2.2.1(ii), we use the following known lemmas.

Lemma 2.4.1 (B2, Lemma 10.9. Let f be areal valued’! function onB anda € B. Then
for each( € Sand0 < r < 1, we have

Foalrd) — fta)) < VT T [ DLl g,

Lemma 2.4.2 (R2, Proposition 8.18. Let5 € R. Then there exists a positive constant
depending only on the dimensiarsuch that forz € B,

Al —|zH)7" if B3>0,
1 .
A if 3 < 0.

Lemma 2.4.3 (R2, Proposition 10.1 and 1R Let0 < p < oo and let f be an invariant
harmonic function orB. Then fora € B and0 < r < 1, we have

F@)P < Aln,p.7) /E CLCE!

and

VI@P < Anpr) [ IFEPAG).

E(a,r)
Let us prove Theorer.2.1(it).

Proof of Theoren2.2.1(ii). We first show that (a) implies (b). Suppogec B,, and let
a € B, €Sand0 < r < 1. Since

(1 —fal*) (1 = |21
1=(za)l

1= |pa(2)|* =
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we have by Lemma.4.1

9 £ (palt)] (1 = lpalt)P)

|f o pa(rl) — |<@4/ ———————ﬁ<&MUHa/) T~ dt
1_ 2a
P R e

Hence it follows from Minkowski’s integral inequality that

([1re6ure) - rapao(o)) "

(2.5) < Allflls.(1 = |a) (/S (/0 %C@ da(g))l/p
< Al (1= e /or(l — (/s 1 - (ta, C)PO"’dU(C))l/p it

Using Lemma2.4.2, we now calculate the integral
" 1/p
F(a,r) ::/ (1—t%" (/ 11— (ta, {)|**Pdo(¢ )) dt.
0
If —n < ap < —n/2, then
! 1
F(a,r) < A/ (1— t2)—a—1(1 _ t2)(n+2ap)/pdt — A/ (1— t2)a—1+n/pdt < o0,

0 0

If ap = —n/2, then

1 1 1/p
F(a,r) < A/ (1 — )t <log . t2) dt < .
0 _

If —n/2 < ap, then

A if —n/2 < ap <0,
Fa,r) < A/ (1=#*)7"dt < { Alog | L fa=o,
0 -
A(l=r)= ifa>0.

Hence it follows from2.5) that fora € B and0 < r < 1,

e | Al (1= a7 if —n < ap <0,
(/S|f090a(7“C)—f(a)|pda(C)) < AHfHBQ(l—]a\Q)_alogli if & =0,

Al fll. (1 = a|*)~ (1 =r)~ if a >0,

If ap = —n, then

r 1
F@ﬂgA/a—ﬂlﬁgm%l
. _
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so that fore € B and0 < r < 1,

1
1—

1/p
( [1£ewtro) - f(a)|”d0(é‘)) < A flla. (1 — lal?)log
If ap < —n, then
Fl(a,r) < A/r(l — ) tnlegr < A(1 — r)atn/p,
0

so that fora € B and0 < r < 1,

1/p
([ 1700000~ 1@Pao(©)) < A, (0~ o)1 =,

Hence, taking the supremum ovek r < 1 anda € B, we obtain (b).
We next show that (b) implies (c). Lete B and0 < r < 1. Sincep,,,(a, r) is positive
and non-increasing function of we have by integration in polar coordinates

» - r t2n 1 ,
[ e rorae = [ T [ 7ot - rpastoa

< H,, (f) pocp(aT ) PA(E(a, 1)),

and (c) follows.
We easily show that (c) implies (d). In fact, for amy= B and0 < rq < 1, we have

1/p
(1~ [al*) (/E( ) 1f(z) = f(a)|pd>\(2)) < A(n, p, a,10) Lap(f)-

We finally show that (d) implies (a). Let € B. Then it follows from Lemm®.4.3with
r:=roandf = f — f(a) that

T (@) < A(n,p, o) / £(2) = F(@)PAA) < Adap(FP(1 — |al?)~

E(a,ro)

and sof € B,. Thus the proof of Theore/@.2.1is complete. Il

2.5 Proof of Theorem2.3.1

We recall the Poisson-Szégernel of B:
(=[P
1= (2, Q)

The following change of variables formula is found k8] Remark in page 44]:

(2.6) /S Pz O f(Qdo(C) = /S F(@:(O)do(Q)

To prove Theoren?2.3.], we need the following characterization in terms of the Garsia
norm.

P(z,¢) =
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Lemma 2.5.1.Let1 < p < oo and let f be the Poisson-Szégntegral of an integrable
functionf* on S. The following properties are equivalent:

() f € BMOH,;

1/p
@) 171, = sup ( / P(a,o\f*(o—f<a>\pdo<<>) < oo.

Moreover, the quantitielf*||smo,») @and|| f||, are comparable with a constant depending
only onp and the dimension.

Proof. The lemma will be proved in the same way asbngp. 224-225]. For completeness
we give a proof. Let us show first tha) (mplies {i). Leta € B be fixed, and pu§ = a/|a|
andp = (1 — |a|)'/2. As in the proof of Lemm4d.3.], we splitS into

Vo:=Q(&p) and Vi=Q(§,2p)\ Q&2 p) (j=1,--+,N),
whereN is the smallest integer such tt2ffp > /2. Then we have

11— {(a,¢)| >1—|a| = p* for¢es,
11— (a,Q)["/* >2772p for ¢ € V;with j > 1,

and thusP(a, ¢) < A2~*p=2"for ¢ € V; with j > 0. Therefore we have byi(4) that

[Pl = folrao©) = Y [ Pl - g, Pin(©

A X .
(2.7) < TZ / 770 - 12, Pdo(C)
Q(&,27p)
N
< AAo|| s, o) + 2PAA0 D 272 ([ o, o) + 1 Fe2ip — FE017) -
p(0)
j=1
Since
1
* i _ * o1 p < * _ * & p
ot~ il < S 3 VO 40
22 A2

< SQET ey O~ FiF70) < 2 A8 P

by Jensen’s inequality and.4), it follows that

j
e = Fepl? S 37D N feary = Fiari I < 227 A5 1 o, o)
k=1
Hence we obtain fronmi2,7) that

[ Placir© - falraso) < 27 [ Paolr© - g paolc)

S

A B 0
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and thuslif) follows.
We next show thalfii) implies {). Let¢ € Sand0 < r < /2, and putze,, = (1-5"172)¢.
Sincel — |z,|* > 5 'r? and

11— (20, O <1 = (26, O+ 1= (£, Q1 < 2r for ¢ € Q(&,7),

we haveP(z ., () > 2= ™r~2"for ¢ € Q(&,r). Therefore it follows from1.4) and 2.€) that

35%75L#M”“0‘f““wﬁﬂﬁﬁ%%Lgmwmn—ﬂ%nmw@>
<9740 [ Placs OII(Q) — FlaePao(c)
< 2™ Ao| fI1E, -
Hence we obtai f*||snio, (o) < A(n,p)| f||c,. and sol) follows. B

Let us prove Theoreid.3.1

Proof of Theoren2.3.1. We first show thati{) implies {). We observe, taking = 0, that
f € HP, thep-th Hardy space, so thdtcan be represented as the Poisson-8raggral of a
p-th integrable functiorf* on S. Thus it suffices to show thdltf*||zno,(») < 0o. Leta € B

be fixed. By 2.€) we have

[P0l @ = 1@Pin(©) = [ 150 2u(O) = F@las(o)
We observe that for almost every poinof S,
im fopa(r¢) = fla) = " 0 ¢alC) = fla).
Indeed, this follows from Kdanyi’'s theorem in Sectiah.1, since the inequality
—lal2)(1 —
Tl S T

implies that{,(r{) : 0 < r < 1} is contained in the Ké@nyi approach region at,(().
Since the functiory | f o ¢4 (r¢) — f(a)|Pdo(() is non-decreasing fdr < r < 1, we obtain
I flle, < |Iflls,- Hencef € BMOH, by Lemm&2.5.1

We next show thatii{) implies {i). Leta € B be fixed. By the monotonicity of the
spherical integral, it is enough to show that

1= |pa(rQ)?)

1= (pa(r¢), walC))] =

1706460 = F@Pdo(O) < Al o,y Tord <r <1,

whereA is a constant independent@findr. Since

_ (1+7r)%"
(B4 7r)(1—r)n’
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it follows from integration in polar coordinates that fof2 < r < 1,

[ 170 6ur0) = FPas(o) < 7= / / £ 0 0u(t€) — f(a)Pdo ()t

- (1 —r )n+1
- 1— r r2n-l
1 1 (1 — 7’2)n+1

2n—1
o 1o nltd) = f(a)Pdo(Cyar

r

S /() o pule) — F@)Par:)
1 (T4t 1 .
T e ) JRCERCICE
< 2 oo,

Hence we obtaif| f||s, < 2**n!| f|lBmo, (1), @and thusii) follows.
We finally show thatif) implies (ii). We assume that

f(z) = /S P(2.0)f*()do(©)

with || f*|lemo, ) < oo. Leta € B and0 < r < 1 be fixed. We put = a/|a| and
p =1—|a|]. SinceP(z,-)do is a probability measure afi, we have by Jensen’s inequality,
Fubini’s theorem and the mean value property

/ () — fla)PdA(z) = / P O (O) — fa)ldo()
E(a,r)

</, / ~ H(@Pdo(Q)d(:)
-/ (/ L Pq <>) 10~ F@)Pdo(C)

— A(E(a,1)) / Pla, OIF*(0) — f(a)Pdo(C).

’ d\(z)

Hence it follows from Lemma.5.1that || f|lgnvo, ) < A(n, p)||f*|lBMo, (o), @Nd so (i) fol-
lows. Thus Theorerg.3.1is proved. O

2.6 Proofs of Corollaries2.2.2 2.2.3and 2.3.3

Proof of Corollary2.2.2 It follows form Lemma2.4.3that

V) < A / () = f@)PdA(z) < AL — [a]?)?,

E(a,ro)

where A is a constant depending only @nr, and the dimension. Hence we havg €
B_3/,, and sof is constant by Theorei@.2.1(i). O

Corollaries2.2.3and2.3.3follow from the following lemma by Kwon12, Lemma 3.5].

26



Lemma 2.6.1.1f 1 < p < oo and f is an invariant harmonic function o, then we have
for0 <r <1,

(2.8) / FrOPdo(C) — |FO)P = plp — 1) / o(r, 2|V F ()PP 2A(2).

rB

Lettingr — 1— in (2.8), it follows from the monotone convergence that

@9) i [ If6QPaQ) = [FOF == 1) [ g@ITIEPIEPAG),

Proof of Corollary2.2.2 Multiplying the both sides of2.9) with f := f o p, — f(a) by
(1 — |al?)*? and taking the supremum overc B, we obtain Corollan2.2.3from Theorem
2.2.1and the invariance of underAut(B). O

Proof of Corollary2.3.3 Leta € B and apply2.9) to f := f o ¢, — f(a). Then, by the
change of variable, we have

sup / 1f 0 0alrC) — f(@)Pdo(C)

0<r<1

=plp - 1)/BG(Z>G)WJ”(Z)|2\J‘(Z) — f(@)[P72dA(2).

Hence, taking the supremum ovee B, we obtain Corollan2.3.3 H

2.7 Inclusion relationships

Theorem 2.7.1.Let2n < p < oo. The following statements hold.
(i) If a >0, thenD? C B, .
(i) If « =0, thenD} ¢ BMOH,. Moreover, this inclusion is strict.

Proof. Let f € D2, wherea > 0. Fixinga € B and0 < r < 1, we have by Lemma2.4.1
and Hlder’s inequality

(el

0 ulrC) — fla)] < 4 | FTE

1/p

< A4, ( | ea- t?)a"w%f(%(tc))v’dt) ,

where
o, L\ @-D/p
A5:(/ tpl(l—t?)”pldt) < 0.
0

Since ) )
o (1) —=17) _ 1l

1= @Ga)f = 2

1 — Jea(tC)]
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it follows from the invariance o%/ and\ underAut(B) that
[ 1roeard) - fapao(©
S
<A@ o [ [ - ) PRI Sl Pt (0
S JO
<AL= la) ™ [ (= PPITAEPIAG)

Therefore we obtain

1/p
sup (1= 1) ([ 1 0,00¢) = f@Pdo(@)) < Alflon
aEB

Hence we conclude from Theore&®?.1thatD?, C B, ), if a > 0, and from Theorer.3.1
thatDj ¢ BMOH,,.

The strictness of the inclusion betwe@&§ and BMOH, follows from results for the
boundary behavior. Indeed, we see frarh that invariant harmonic functions i®}, have
tangential limits at almost every point 6f. However, we know from Theoreih.2.1 that
there exists a bounded invariant harmonic functiorBowhich fails to have tangential limits
at every point ofS. Thus the inclusion is strict. Il

28



Bibliography

[1] H. Aikawa, Harmonic functions having no tangential limitBroc. Amer. Math. Soc.
108(1990), no. 2, 457-464.

[2] OO O, Harmonic functions and Green potentials having no tangential linditd.on-
don Math. Soc. (243(1991), no. 1, 125-136.

[3] J. S. Choa and B. R. Cho#, Littlewood-Paley type identity and a characterization of
BMOA Complex Variables Theory Appl7(1991), no. 1-2, 15-23.

[4] P. Fatou Series trigononétriques et &ries de TaylorActa Math. 30, 1906.
[5] J. B. GarnettBounded Analytic Functiongcademic Press, New York, 1981.

[6] K. T. Hahn and E. H. YoussfiM-harmonic Besoy-spaces and Hankel operators in
the Bergman space on the ball@r', Manuscripta Math71(1991), no. 1, 67-81.

[7] O OO, Tangential boundary behavior @f -harmonic Besov functions in the unit hall
J. Math. Anal. Appl175(1993), no. 1, 206—221.

[8] M. Hakim and N. Sibonyfonctions holomorphes boges et limites tangentielleBuke
Math. J.50(1983), no. 1, 133-141.

[9] M. Jevtic, On the Carleson measure characterization of BMOA functions on the unit
ball, Proc. Amer. Math. Sod.14(1992), no. 2, 379-386.

[10] O O O, On the Carleson measure characterization of BMO functions on the unit sphere
Proc. Amer. Math. Sod23(1995), no. 11, 3371-3377.

[11] A. Koranyi, Harmonic functions on Hermitian hyperbolic spadeans. Amer. Math.
So0c.135(1969), 507-516.

[12] E. G. Kwon,Hyperbolic mean growth of bounded holomorphic functions in the, ball
Trans. Amer. Math. So&55(2003), no. 3, 1269-1294.

[13] J. E. Littlewood,On a theorem of Fatgul. London Math. So@ (1927), 172-176.

[14] A. Nagel and E. M. SteirQn certain maximal functions and approach regipAdv. in
Math. 54 (1984), 83-106.

29



[15] M. Nowak,Bloch space on the unit ball &, Ann. Acad. Sci. Fenn. Matl23 (1998),
no. 2, 461-473.

[16] C. H. Ouyang and W. S. Yang and R. H. Zh&haracterizations of Bergman spaces
and Bloch space in the unit ball &", Trans. Amer. Math. So847 (1995), no. 11,
4301-4313.

[17] M. Pavlovic, Inequalities for the gradient of eigenfunctions of the invariant Laplacian
in the unit ball Indag. Math. (N.S.2 (1991), no. 1, 89-98.

[18] W. Rudin,Function Theory in the Unit Ball of™, Springer-Verlag, New York, 1980.

[19] H. A. Schwarz Zur Integration der partiellen Differentialgleichungi—;‘ + 227;‘ =0,J.
Reine Angew. Math. 74, 1872.

[20] E. M. Stein,Singular Integrals and Differentiability Properties of Functigiginceton
University Press, 1970.

[21] M. Stoll, A characterization of Hardy spaces on the unit ball@f, J. London Math.
Soc. (2)48(1993), no. 1, 126-136.

[22] O O O, Invariant Potential Theory in the Unit Ball ", London Mathematical Soci-
ety Lecture Note Series, 199. Cambridge University Press, Cambridge, 1994.

[23] J. SueiroOn maximal functions and Poisson-Saeégtegrals Trans. Amer. Math. Soc.
298(1986), no. 2, 653—669.

30



Part Il

Martin kernels of general domains inIR"

31






Introduction

This introduction includes consistent notations and terminologies employed in Part II. In
Chapters3, 4 and5, we will discuss potential theory on domainsit with n > 2. More
precisely, we will study minimal Martin boundary points of a John domain, the boundary
behavior of quotients of Martin kernels, comparison estimates for the Green function and the
Martin kernel.

We consider the (usualaplace operatoonR™:

Let Q be a domain ifR". A real valued functiork on (2 is said to beharmonicif » € C?(Q)
and
Ah =0 inQ,.

We say that a functiotf : 2 — [—o0, +00) is subharmonidf f is upper semicontinuous on
(2, not identically—oo, and satisfies that for every open bBl(z, r) contained ir2,

1
flz) < W/B(m) f(y)dy,

where |E| denotes the Lebesgue measure of a measurabl&.sék function f : Q —
(—o0, +00] is calledsuperharmonidf — f is subharmonic of. It is known that if a super-
harmonic functionf on 2 has a subharmonic minorant 63 then the greatest subharmonic
minorant of f on 2 exists and is harmonic.

To define the Green function, we recall the fundamental functionz fgre R",

—loglz —y| (z#y n=2)
Uy)=Nle—yP™ (#y,n=3)
+00 (x =y).
It is easy to check that if is fixed, therlJ, is superharmonic oR" and harmonic oR™ \ {y}.
Adomain(2inR" is said to be Greenian if, for eaghe €2, the function/, has a subharmonic
minorant onf2. We note that if2 is a Greenian domain, then for eaglE €2, the functionU,
has the greatest harmonic minoragton 2. The functionGq, : 2 x Q — [0, 4+o00], defined
by
Ga(z,y) = Uy(z) — hy(z),
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is calledthe Green functiowf 2 (for the Laplace operator). For example, the Green function
of B(z,r) is explicitly given as follows: ifn. = 2, then

(v (ly—=l]z -y
o (I ey e B, £ 42
Gt :) = 1og () (v € Bz )\ {2}, y = 2
+00 (z =y);
if n > 3, then
_ o 2—n
o= ypr = (B2 e B # o)
Goen(0) =) o= yfpon =y (v € B\ {z}, y=2)
+00 (=),

wherey* denotes the inverse of a point# = with respect to the sphers(z, r): that is,

y' = (ﬁ)Q(y—ZHZ-

We now define the Martin kernel of a Greenian dom@inand then define the Martin
boundary of2. Letz, € Q2 be fixed. The functiori(q, defined on2 x Q) \ {(zo,x0)} by

GQ(xvy)
Gal(zo,y)’

is calledthe Martin kernelof €2 (relative tozg). If y = xo, then the above quotient is
interpreted ad. We definethe Martin metricon 2 x Q2 by

KQ(‘%Z/) =

o) = [ min{1,|Ko(e.y) ~ Ko(e,2)bo(o)dr

whereg : Q@ — (0, 1] is an integrable function. We can regdrdas { Kq(-,y) : y € Q}
since the mapping — Kq(+,y) is @ homeomorphism between them. We then note that the
Martin topology on(2 deduced from the metri¢ coincides with the Euclidean topology on
Q. Let{y,;} be a sequence ift with no limit point in Q. Then{Kq(-,y;)};>j,» With jo
being sufficiently large, is a uniformly bounded sequence of positive harmonic functions on
a relatively compact open subset(@f Hence the Harnack principle shows that there exists a
subsequencéK(-,y;,)} converging to a positive harmonic functiéron €2, which implies
that{ K(-, y;, )} converges ta with respect to the Martin topology. We defing(?) to be

the collection of all harmonic functions dithat can be obtained as the limit K¢ (-, ;) }

for some sequencly; } in Q2 with no limit point in 2. We can now extend the Martin metric
dto QU A(Q), and then see th& U A(€2) is compact with respect to this metric, and that
2 is open and dense i U A(S2). Therefore the s U A(Q2) is a metric compactification

of 2, andA(2) is the boundary of? in this compactification. We cafd U A(£2) the Martin
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compactificatiorof 2, and A(2) the Martin boundaryof 2. See B, Chapter 8] for details.
To unify the notation, we writd{ (-, &) for £ € A(Q2) when we regard as a function.

We are interested in minimal Martin boundary points. We saygratA(£2) is minimalif
every positive harmonic function dn less than or equal to the corresponding Martin kernel
Kq(+,€) coincides with a constant multiple &€, (-, £). We denote by\,(£2) the collection
of all minimal Martin boundary points il\(2). Let& € Ay (2). If Kq(-, &) is given as the
limit of {Kq(-,y;)} for some sequencgy;} in Q “converging toy € 09", then Kq(-,¢)
and¢ are calledhe minimal Martin kernel afy andthe minimal Martin boundary point af,
respectively.

The notion of minimal thinness was introduced byitg31], using a regularized reduced
function. Letu be a positive superharmonic function @nand letE be a subset of). A
reduced function of; relative toE on (2 is defined by

“Ry (z) = inf{v(2)},

where the infimum is taken over all positive superharmonic functoms$2 such thaty > u
on E. By “RE, we denote the lower semicontinuous regularizatio®&f. Observe that
Qﬁf < wingeneral. Let € A;(A). AsetFE is said to beminimally thinat¢ with respect to
Qif

“RE (o(2) < Kqo(z,€) for somez € Q.

In Chapter3, we will discuss minimal Martin boundary points of a John domain. In
particular, we will show that the number of minimal Martin boundary points at each Euclidean
boundary point is estimated in terms of the John constant. For a class of John domains
represented as the union of open convex sets, we will give a sufficient condition for the
Martin boundary to be homeomorphic to the Euclidean boundary.

In Chaptel4, we investigate the boundary behavior of Martin kernels. Given two inter-
secting domains, we show the boundary behavior of the quotient of Martin kernels of each
domain. To this end, we characterize the minimal thinness for a difference of two subdo-
mains in terms of Martin kernels of each domain. As a consequence, we obtain the boundary
growth of the Martin kernel on a Lipschitz domain, which corresponds to earlier results for
the boundary decay of the Green function on a Lipschitz domain investigated by Burdzy,
Carroll and Gardiner.

In Chapter5, we will give comparison estimates for the product of the Green function
and the Martin kernel in a uniform domain. These comparison estimates will be applied
to show the equivalence of ordinary thinness and minimal thinness of a set contained in a
non-tangential cone.

Throughout Part I, we use the symhdlto denote an absolute positive constant whose
value is unimportant and may change from line to line. If necessary, we Afite, - - - ) for
a constant depending anb, - - - . For positive functiong; and f,, we write f; ~ f; if there
is a constantl > 1 suchthatd='f; < fo < Af.

35






Chapter 3

Minimal Martin boundary points of a
John domain

This chapter consists of results obtained in a joint work with Hiroaki Aikawa and dorbj
Lundh [AHL].

3.1 Historical survey and statements of results

In 1941, R. S. Martin3(Q] introduced an ideal boundary((2) of a Greenian domaif? in R
to guarantee the integral representation of positive harmonic functions?:

h(z) = / Kq(z,¢)du(¢) forx € €,
A(Q)

wherep is a measure orh(€2) such thatu(A(Q2) \ A1(2)) = 0. Moreover, the measurne
is uniquely determined by. From this viewpoint, it is important to show that the Martin
boundary is homeomorphic to the Euclidean boundary and all Martin boundary points are
minimal. For several domains, this has been proved by many authors: Hunt and Wheeden
[25] for Lipschitz domains, Jerison and Keni2g] for NTA domains (these domains have an
exterior condition, which admits the doubling property for harmonic measures), Aildlwa [
for uniform domains (this domain does not have an exterior condition). Anéjrsdudied
a bounded domain represented as the union of a family of open balls with the same radius.
He gave a sufficient (interior) condition for each Euclidean boundary point to have a unique
Martin boundary point.

It is also interesting to estimate the number of minimal Martin boundary points at a Eu-
clidean boundary point where the boundary disperses. BenediCkmyestigated the num-
ber of minimal Martin boundary points at a Euclidean boundary point of a Denjoy domain, a
domain whose boundary lies in the hyperplane. See FigdréHe gave an integral criterion
involving harmonic measures for a Euclidean boundary point to have one or two minimal
Martin boundary points. Ancon®]7] and Chevallier'16] also studied a Lipschitz Denjoy
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Rn—l 0
’ /N

Figure 3.1:Denjoy domain and sectorial domain.

domain, a domain whose boundary lies in a Lipschitz surface. In two dimensions, Cranston
and Salisbury18] considered a sectorial domain, a domain whose boundary lies in the union
of m rays emanating from the origin (see Fig3:&), and gave an integral criterion for deter-
mining whether or not there are minimal Martin boundary points at the origin. A higher
dimensional sectorial domain is called a quasi-sectorial domain, for wiiiotker P9] gave

an integral criterion for the origin to have minimal Martin boundary points.

As described in30], there is a domain such that a Euclidean boundary point has infinitely
many minimal Martin boundary points. One of the aim in this chapter is to show that every
John domain has finitely many minimal Martin boundary points at each Euclidean boundary
point. Let{) be a proper subdomain &", and writed(x) for the distance fronx to the
(Euclidean) boundargs2 of €2. Suppose thak’, is a compact subset 6f. We say thaf) isa
general John domain with John constant 0 < ¢; < 1, and John centeK, if eachx € Q
can be connected to some pointARy by a rectifiable curve in 2 such that

(3.1) da(z) > cjl(vy(x,z)) forall z € ~,

wherey(z, z) is the subarc ofi from z to z and/(vy(z, z)) is the length ofy(zx, z). We note
that K, is taken as one poirftz,} in the usual definition of a John domain. We can easily
show that a general John domain is a usual John domain, but the John constants between
them may differ. See the proof of PropositiBriL0.7 We also see that every John domain
is bounded sincér — x| < ¢;'dg(xo) for all z € . We can also check that all domains
(Denjoy domain, Lipschitz-Denjoy domain, sectorial domain, quasi-sectorial domain) stated
above are John domains if we restrict thenBt@, 1).

Our main result is as follows.

Theorem 3.1.1.Let(2 be a general John domain IR™ with John constant;. The following
statements hold.

(i) The number of minimal Martin boundary points at every Euclidean boundary point is
bounded by a constant depending onlycgrand the dimension.

(ii) If ¢; > +/3/2, then there are at most two minimal Martin boundary points at every
Euclidean boundary point.
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Remark3.1.2 In two dimensions, we considét = B(0,1) \ £, whereE is the closed
set of three equally distributed rays, with lengtf2, leaving from the origin. See Figure
3.2. ThenQ is a general John domain with John constantr/3) = +/3/2 and John center
Ky, = 5(0,2/3). There are three different minimal Martin boundary points at the origin. This
simple example shows that the bounyd> v/3/2 in Theoreni3.1.1(ii) is sharp. An example

in higher dimensions may be obtained by the similar matter.

Figure 3.2:Sharpness of the bourd > /3/2.

Remark3.1.3 Theoreni3.1.1generalizes some parts @&, [7], [10], [16], [18] and [29]. One

of the main interests of these papers was to give a criterion for the number of minimal Martin
boundary points at a fixed Euclidean boundary point (via Kelvin transformili@p.[ Such

a criterion seems to be very difficult for a general John domain, since the boundary may
disperse at every point.

As a generalization of Ancona’s result for the Martin boundary of the union of open
balls with the same size, we will consider in Seci&f0a bounded domain represented as
the union of a family of open convex sets, and give a sufficient condition for a Euclidean
boundary point to have exactly one Martin boundary point.

In order to prove Theorei®.1.], we will introduce a new notion, a system of local refer-
ence points of ordeN. This notion enables us to obtain a Carleson type estimate in a John
domain (Sectiol3.5) using observations in SectioBs3and3.4. The proof of Theorer3.1.1
(i) will be given in SectiorB.€. The proof of Theorer3.1.1(ii) will be given in Section3.8
using a weak boundary Harnack principle in a John domain proved in S&cion

3.2 System of local reference points

Let Q2 be a proper subdomain &". For a rectifiable curve : [0,4(v)] — Q and a non-
negative Borel functiorf on (2, the line integral off over~ is denoted by

L feyds() = |
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The quasi-hyperbolic metric dn is defined by

ko(r,y) = igf/gj—g,

where the infimum is taken over all rectifiable curvén 2 connectingr to y. It is easy to
show that if2 is a John domain, then there exists a positive constasich that

6Q(SEO)

which is called a quasi-hyperbolic boundary condition. We need more precise information
on the shape of the boundary. We introduce the following notion.

(3.2) ko(z,z9) < Alog +A forz e,

Definition 3.2.1. Let N be a positive integer artl< n < 1. We say that € 0¢2 has a system
of local reference points of orde¥ with factory if there existr, > 0 and A, > 1 with the
following property: for each positive < r, there areV pointsy; = y1(r),--- ,yn = yn(r)
in QN S(¢,7) such thavg(y;) > Ag'rforj=1,---, N and

nin {k, (v.3;)} < Aglog 5—(> +A¢ forz e QN B(E ),
whereQ), = QN B(&,n73r). If nis not so important, we simply say thate 9 has a system
of local reference points of ordéy.

J: ’

Figure 3.3:System of local reference points of order

Proposition 3.2.2. Let 2 be a general John domain with John constaptand John cen-
ter Ky. Then every € 0 has a system of local reference points of ordémwith N <
N(cs,n) < oo. Moreover, if the John constany is greater thany/3/2, then we can let
N < 2 by choosing a suitable factor< n < 1.

For the proof of the second assertion, we prepare an elementary geometrical observation.
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Lemma 3.2.3. Letw;, wy, andws; be points on the unit sphe0, 1). Then
max min [w; — wy| = V3,
j#k
where the maximum is taken over all positionsef w, andws.

Proof. This is a well-known fact (cf.21]). For completeness we give a proof. We can easily
prove the lemma fon = 2. Letn > 3. We observe from the compactnesssgf), 1) that the
maximumd is taken byw,, wy andws on S(0, 1). There is a uniqué-dimensional planél
containingw;, wy andws, since three distinct points &80, 1) can not be collinear. Observe
thatS(0, 1) N1l is circle with radius at most. Sincew,, wy, andws are points on this circle,

it follows from the case: = 2 thatd < v/3. Thus the lemma follows. ]

Proof of Propositior8.2.2 We prove the proposition with: = dist(/j, 092). Let§ € 09
ando < r < dist(Ko, dQ). We prove the first assertion with= 2-'. Letz € QNB(£, 2-1r).
By definition, there is a rectifiable curvein 2 connectingr to some point ink, such that
(3.1) holds. Then the first hig(z) of S(&,r) along~y satisfies tha=tc;r < dq(y(z)) < r
and

ko, (z,y(z)) < Alog #J;) +A

We associatg(x) with z, although it may not be unique.

Consider, in general, the family of bal3(y, 4 'c;r) with y € S(&,r). These balls are
included inB(¢, (47 'c; + 1)r), so that at mosi (c;, n) balls among them can be mutually
disjoint. Hence we can findV pointszy,--- ,zy € QN B(€,271r) with N < N(cy,n)
such that{ B(y,,4 c,r),--- , B(yn,4 'c;r)} is maximal, wherey; = y(z;) € QN S(€,7)
is the point associated with; as above. This means thatdf € Q N B(¢,2-1r), then
B(y(x),4 ¢ r) intersects some oB(y1,4 e r), -+, B(yn, 4 eyr), say B(y;, 4 eyr).
SinceB(y(z),4  cyr) N By, 4 teyr) # 0 and B(y(z), 2 eyr) U B(y;, 27 eyr) C Q,, it
follows thatkq, (y(z),y,;) < A. Hence we have

T
do(z)
Repeating some points, say= y(z,), if necessary, we may assume that this property holds
with some of N pointsy;, - - - ,yn, WhereN is independent of and N < N(c;,n). Thus
the first assertion follows.

For the proof of the second assertion,¥ét/2 < ¥ < b < c;andn = 1 — b/c; > 0.
Let us prove tha§ has a system of local reference points of order at ra@sath factorr. Let
0 < r < dist(K,, d0Q) and letz € QN B(&,nr). In the same way as in the proof of the first
assertion, we can fing(z) € QN S(&, r) such that

r

ko, (2, ;) < ko, (2, y(x)) + ko, (y(z),y;) < Alog + A.

er (xa y(l’)) S AIOg

+ A,

and /3
do(y(x)) = cs(1—n)r=0br >br> 737“.
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Lemmal3.2.3 says that at most two disjoint balls of raditis can be placed so that their
centers lie on the spher®(¢, ). Hence we can choosa,z, € Q N B(&, nr) such that
B(y(x),b'r) intersectsB(y;, b'r) for somej = 1,2, wherey; = y(z;). SinceB(y(z),b'r) N
B(y;,b'r) # 0 and B(y(z),br) U B(y;,br) C Q,, we havekq, (y(x),y;) < A. Hence the
second assertion follows. Thus Proposii®8.2is proved. Il

Remark3.2.4 In casec; < v/3/2, we may have an estimate dfbetter than the above proof,
by considering a lemma similar to Lemr8&.3

3.3 Growth estimate for subharmonic functions

In this section, we refine Domar’s theoreft®] Theorem 2] for the boundedness of a sub-
harmonic function majorized by a positive function. Actually, we give a growth estimate for
subharmonic functions satisfying a Nevanlinna type integral condition.

Theorem 3.3.1.Let() be a bounded domain IR” and let f be a non-negative subharmonic
function onQ). If there is a positive constaatsuch that

I:= /ﬂ(logJr f(z)" edr < oo,

then there exists a positive constahtlepending only oa and the dimension such that

1/e
(3.3) f(x) <exp (2 +A <;) ) forz € Q.

For the proof, we prepare the following lemma.
Lemma 3.3.2. Let f be a non-negative subharmonic function Bfr, ) and denote.,, =
(e2/|B(0, 1))/, If f(x) >t > 0and
(3.4) r > Lul{y € Blw,r) et < f(y) < et}'/",
then there exists a poigte B(z,r) such thatf(y) > et.
Proof. Suppose to the contrary that< et on B(z, ). Since 8.4) is equivalent to

H{y € B(x,r) e Mt < f(y) < et} _ 1
| B(z,7)] ~ e’

we have by the mean value property of a subharmonic function that

1
t<ule) € o /B Wy

: (/
- fy+ [ iy
|B(x,7)| B(z,r)n{f<e—1t} B(z,r)n{e~1t< f(y)<et}

t et
§—+—2<t.
e e

This is a contradiction, and hence the lemma follows. O

42



Let us prove Theorel.3.1

Proof of Theoren3.3.1. Since the right hand side ¢8() is not less thar?, it suffices to
show that

(3.5) do(z) < AIY™(log f(z))~*/",  wheneverf(z) > 2.
We fix x; € Q with f(x;) > €2, and let

ri = La|{y € Q: ej_Qf(il?l) < f(y) < ejf(l'l)Hl/n'

Let us show8.5) for z = x;. We choose a finite or infinite sequenge; } in 2 as follows:
If 0g(x1) < 71, then we stop. Bg(x;) > ry, thenB(zy, ) C €, so that there exists
x9 € B(xy,71) such thatf(z2) > ef(z1) by Lemme3.3.2with ¢ = f(z,). Next we consider
da(x). If dg(zs) < 1o, then we stop. 16 (x2) > 7o, thenB(z,, r2) C €2, So that there exists
13 € B(xy,79) such thatf(z3) > e f(z1) by Lemma3.3.2with ¢t = ef(z,). Repeating this
procedure, we obtain a finite or infinite sequefce}. We claim that

(3.6) So(x1) <2 1y,

j=1
Suppose first thafz; }7_, is finite. If J = 1, thendg(x1) < 1, So thatB.€) holds trivially.
If J > 2, thenz;., € B(z;,r;)forj=1,---,J —1andég(x,) < r; by our choice, and
hence

do(r1) < |z1 — 22|+ + |vs1 — 25| + d0(2)) < er.
j=1
Suppose next thafz;} is infinite. Sincef(x;) > e/~ f(z;) — oo, it follows from the
local boundedness of a subharmonic function thajoes to the boundary. Hence there is an
integerJ > 2 such thavg(x;) < dq(z1)/2, and then we have

<

—1

1
(Sg(l’l) < |l‘1 — 1’2’ + -+ ’$J,1 — .CEJ| + (SQ(.TJ) S T + §5Q($1)
1

<.
Il

Thus 3.6) holds.
To obtain B.5) with = = x4, it is enough to show that

(3.7) irj < AIY™(log f(z1))~/™.

j=1
Let j; be the integer such that < f(z;) < e/'*!. Thenj; > 2 and

r < Lol{y € Q: el 72 < f(y) < ettty n,
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Since the family of intervalg(e?* 72 e/1+71)} . overlaps at most 3 times, it follows from
Holder’s inequality that

Y or<3L, > H{yeQ:ed < fly) < e
j=1

J=i1

o (n—1)/n 00 1/n
1 n—14e | J
§3Ln<2m> (Z] {yeQ:e™ < fly) <€}

J=n J=n

1/n
< Aj; " ( /Q (log™ f (y))”‘”edy)
< A(log f (1)) /"1,

where A is a constant depending only anandn. Thus B.7) follows, and the proof is
complete. Il

3.4 Integrability of negative power of the distance function

In [2], the global integrability of negative power of the distance function have been proved in
a John domaif): there is a positive constantsuch that

/ do(z) Tdr < 0.
Q

The purpose of this section is to show the local version.

Theorem 3.4.1.Let(2 be a general John domain IR"” with John constant; and John center
Ky. Then there exist positive constantand A depending only or; and the dimension

such that .
r
dr < Ar
/QmB(g,r) (59(55)) B

for each¢ € 092 and0 < r < dist(Ky, 092)/2.

Proof. For eachj € NU {0}, we let

Vi={zecQnB(E&r+ (142" 7r) : 2777 < bg(x) <277r} .

For a moment, we fix € U;’;H V;. Then there is a rectifiable curvein {2 connectingr
to some point inkK, with the property'8.1). Lety € ~ be such thaty(y) = 277r. Then

|z — y| < ¢;'2797; in other wordsy € B(y,c;'2-7r). We observe that
(3.8) |B(y,5¢;'277r)| < A1|V; N B(y, ¢;'277r)],
whereA, is a constant depending only epandn. In fact, takingy’ € B(y,277~!r) so that

da(y) =2"1(277 42777 Yr, we haveB(y', 27972?r) C V; N B(y,277r). Thus B.8 holds.
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By the covering lemma, we can find a sequefigg such that

[j Vi C UB(yk,5cjl2—jr)

i=j+1 k

and{B(yx, c;'27r)}, are mutually disjoint. Then we have froi8.§) that

Uv

i=j+1

o0

> il =

i=j+1

< By, 5y 279 < Ay |V 0 By, e5'270r)| < AV,
k k

Hence, writingt = 1+ 27'A;!, we have

N N+1 N4+1 1—1 N i—1
Ay Z”“\V! > D TVI=) ) T2 Y Y eV
§=0 i=j+1 zle z’le
N gl g 1
I s 9
=1 =0

and so
N ; N N
AR | VA I — Vii=A V.
Jj=0 j=0 j=0

Letting N — oo, we have

o0

DTV S AY VI S ABEr+ (1+c5h)2r) < A

J=0 J=0

Sincet! < (r/dg(x))” < 7+t for z € V; with 7 = logt/log 2 > 0, it follows that

r o\’ = .
dr < YV < Arm,
/QmBgr (59( )) _Z | J| N

Jj=0

Thus the theorem is established. O

3.5 Weak Carleson estimate in a John domain

The purpose of this section is to show a Carleson type estimate in a John domain. The
original form obtained by Carlesoil 3] was stated as follows: Givef € 02, there exists

y. € QN S, r), apart from the boundary enough, such thak is a positive harmonic
function onQ N B(¢, 2r) vanishing (continuously) 082 \ B(&,27'r), then

h(z) < Ah(y,) forz e QNS r),

whereA is a constant independent.efr andh. This estimate may be obtained in a uniform
domain. However, itis impossible in a John domain. So we refine this estimate suitably using
local reference points introduced in Sect®a.

Throughout this section, we suppose thats a general John domain. We note from
Proposition3.2.2that each boundary point has a system of local reference points ofgtder
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Theorem 3.5.1.Let ¢ € 0N have a system of local reference poigis--- ,yy € QN
S(¢,r) of order N with factorn for 0 < r < re. If his a positive harmonic function on
Q N B(&,n~3r) which vanishes quasi-everywhere @0 N B(¢,n~?r) and is bounded on

QN B(& nr)\ B(&, nr), then
N
(3.9) h(z) < AY h(y;) forz e QNS n*r),

whereA is a constant independent ofr and h.

In the proof we use the following material: L@tbe a domain irR™ and letD be an open
subset of2. If & is a positive harmonic function o which vanishes quasi-everywhere on
0D N and is bounded near points @D N €, then we see from8, Theorem 5.2.1] that
h has a subharmonic extensidhto 2 which is valued) quasi-everywhere oD N €2 and
everywhere off) \ D.

Proof of Theoren3.5.1. By Definition3.2.1and Corollary6.1.2, there are positive constants
A, and ) such that

AN
.
(3.10) h(z) < A, (59(55)) ; h(y;) forz e QN B(E nr).

Let »* be a subharmonic extension/ofo B(¢, nr) \ B(&,n3r) as above, and apply Theorem
331toec = landf = h*/(A: 3, h(y;)) on B(&,nr) \ B(¢,n’r). Letr > 0 be as in
Theoren3.4.1. Applying the elementary inequality,

(logt)" < (;)ntT fort > 1,

tot =r/ég(x) > 1forz € Q, we have

s (mm)] =4(5@)

This, together with3.10) and Theoren3.4.], yields that

/r_ T
I:/log+u"dx§A/ ( ) de < Ar™.
Q( ) QNB(Er) da(r)

Hence we conclude from TheorediB.1thatu < exp(2 + AIr™") < A on S(&, n*r), which
shows B.9). Thus the proof is complete. Il

Corollary 3.5.2. Leté € 092 have a system of local reference poipts- - - , yn € QNS(E, )
of order N with factorn for 0 < r < r¢. If his a bounded positive harmonic function on
QN B(&,n73r) vanishing quasi-everywhere @2 N B(&, n~3r), then

N
h(z) < A h(y;) forz e QnB(E nPr),
j=1

whereA is a constant independent of » and h.
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Proof. Sinceh satisfies the assumption in Theor&b.1, we have 8.9). The conclusion
follows from the maximum principle. Il

Theorem3.5.1 also yields the growth estimate for kernel functions. Eog 0f2, we
denote byH, the collection of all kernel functions g@tnormalized atz, (John center in a
usual sense), that is, the set of all positive harmonic functioos 2 such thath(zy) = 1,
h vanishes quasi-everywhere 6f2 and is bounded of2 \ B(¢, r) for eachr > 0. We note
from (3.2) and Corollary6.1.2that there exist positive constamtsand A depending only on
¢y and the dimension such that

h(z) (c%z(a:()))A
3.11 — = <A forz € Q.
(341 o) = 4\ Ga@)
Corollary 3.5.3. Let¢ € 092 have a system of local reference points - - , yny € QNS(E,7)
of order N with factorn for 0 < r < r¢. If h € He, then

h(z) < Alx — ¢ forz e Q,
where)\ > 0 is as in(3.11) and A is a constant independent of» and h.

Proof. Sinceh € H, satisfies the assumption in Theor&b.1, we have 8.S). We also have
h(y;) < Ar~— by applying B.1]) to eachy;. Sinceh vanishes quasi-everywhere 6f and
is bounded near the boundary apart from a neighborhogditfollows from the maximum
principle that

N
h(z) < AZh(yj) < Ar~ forxz € Q\ B(&,nr).
j=1
Sincef is bounded, we obtaih(z) < Alx — &7 for x € Q. O

3.6 Proof of Theorem3.1.1(i)

Before giving the proof of Theorei®.1.1.(i), we show that all Martin kernels dtbelong to
He. The following theorem can be found if][

Theorem (Bass and Burdzy).Let{2 be a John domain ifR™. Suppose that” is an open set
and thatK is a compact subset &f. Then there exists a constaat> 1 depending oV, K
and(2 such that ifu andv are positive harmonic functions dhthat vanish quasi-everywhere
on o) NV and are bounded nedi{2 NV, then

u@) _ 4uly)

v(z) = u(y)

Let¢ € 0Q and let{y,} be a sequence i converging t&. Applying Bass and Burdzy’s
result, we have that for € 2\ B(¢, r) and; sufficiently large,

B GQ(J;O?yJ) GQ('T(MyO)

forz,y € KNAQ.
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wherey, is a fixed point i) N B(¢,271r). Lettingj — oo, we see that all Martin kernels at
¢ are bounded of \ B(¢,r) for eachr > 0 and vanish quasi-everywhere 6f2. Thus they
belong toH,. In particular,H, is non-empty.

From this observation, it is enough to show the following proposition in order to prove
Theorem3.1.1.(i).

Proposition 3.6.1. Let Q2 be a general John domain iR" with John constant;, and let
¢ € 02. Then the number of minimal functions#y is bounded by a constant depending
only onc; and the dimension.

For the proof, we prepare the following lemma.

Lemma 3.6.2.Let 2 be a Greenian domain iR” and¢ € 0€). Suppose that there exist a
positive integerM and a positive constamd with the following property: Ifhg,--- , hy €
He, then there igs € {0, --- , M} such that

hy < A Z h; onD.
i#k
ThenH, has at mosfl/ minimal harmonic functions.

Proof. Suppose that there afg + 1 different minimal harmonic function&, - - - hys € He.
If necessary relabeling, we may assume by assumption that

M
ho < AZhj onD.
=1

We may also assume that> 1. Then(A Y}, h; — ho)/(AM — 1) € He. Writing / for
this function, we have

1 1 1 &
o T = = 3 20

Compare the Martin representation measures for the both sides. The measure for the left
hand side has at leastAM mass athy, whereas the measure for the right hand side has 0
mass athy. This contradicts the uniqueness of the Martin representation. Hence the lemma
follows. O

Proof of Propositior8.6.1. Lethy,--- ,hy € He, and Iethj be a subharmonic extension of
h; toR™\ {£} as mentioned in the previous section. [EBtbe the Kelvin transformation of
b’ with respect taS(€, 1): that is,

Hj(z) = o — PR (E + o — &7 (x = €)).

We then observe thal/; is a non-negative subharmonic function Bft which is positive
and harmonic on the Kelvin imadge* of 2 and is equal t@ quasi-everywhere outside".
Moreover, Corollan8.5.3shows

Hj(x) < Alz — 7
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ThusH; is of order at mos2 — n + A\. We let

and letw™ be the upper semicontinuous regularizatiomofx{w,0}. Thenw* is a non-
negative subharmonic function dR™ of order2 — n + A. If none of {z : H,(z) >
> kzj Hi(7)} is empty, thenv™ hasM + 1 tracts. Henced2, Theorem 3] yields that

1 M+1 3
2—n+)\2510g( +>

> it M >3,
)72 =

Hence, ifM > 4exp(l — 2n + 2)) — 1, then{z : Hj(z) > >, Hy(x)} = 0 for some
j=0,---, M. This means thatl; < >_, . H; onQ2*, so that

hj <) hi ong.
k]
Hence Lemma8.6.2implies thatH, has at mosf/ minimal harmonic functions, or equiva-
lently there are\/ minimal Martin boundary points & Thus the number of minimal Martin
boundary points & is bounded byt exp(1 — 2n + 2\). O

3.7 Weak boundary Harnack principle in a John domain

In order to prove Theorei®.1.1(ii), we need more concrete discussion. First of all, we note
that there is a difference of the behavior of the Green function betweer2 andn > 3:
thatis, ifn > 3, then

Go(z,y) ~ r’ " forz e S(y, 27 (y)) with 5o (y) ~ r;

if n = 2, then this estimate does not necessarily hold. To avoid this difficulty, we consider the
Green functiorG, of the intersection2, := QN B(&, Asr) with sufficiently larged; > n73.
Then we have for any > 2,

(3.12) Go(z,y) = r*™™ forx € S(y,2 ' 6a(y)) with 6o (y) =~ 1,

where the constant of comparison depends onl{2@md As.

Let U be an open set and Iét be a Borel subset a#U. By w(z, £, U) we denote the
harmonic measure df for U evaluated at. That is , the Perron-Wiener-Brelot solution of
the Dirichlet problem iU with boundary data on £ and0 onoU \ E. We letU (r) = {z €
Q:og(x) <1}

Lemma 3.7.1.Let(2 be a general John domain iR™ with John centet,. Then there exists
constants) < g, < 1 and A; > 1 such that ifd < r < 27! dist(K,, 99), then

w(z, U(r)Nn S(z, A7), U(r) N B(x, A7r)) < ey forxz e U(r).
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Proof. Let z € U(r). By the definition, there is a rectifiable curgein © connectingz
to some point inK, with the property 8.1). Then we can find a point € ~ such that
Sa(z) = 2r. Sincelx — z| < {(y(x, 2)) < 2¢;'r, we haveB(z,r) C B(z,3c;'r) \ U(r).
Therefore there is a constank ¢3 < 1 depending only or; and the dimension such that

\U(r) N B(z,3c¢;'r)|
|B(z, 3¢;'r)]

> &p-

Let A; = 3c;'. We note thatv(-,U(r) N S(z, A7), U(r) N B(z, A7r)) has a subharmonic
extensionw to B(z, A7r) with zero values quasi-everywhere 0&/(r) N B(x, A;r) and

everywhere orB(z, A;r) \ U(r). Then the mean value property of a subharmonic function
yields that

=)
wx) < ———Mm— w(y)dy < ep.
) < B )] a0

Thus the lemma follows. O]

Lemma 3.7.2.Let(2 be a general John domain iR" and letA; be a constant as in Lemma
3.7.1 Then there exists a positive constaiat< 1 such that ifr > 0 andp > 0, then

(3.13)  w(z,U(p)nS(x,r),U(p) N B(x,r)) < exp (A7 - Ag%) forxz € U(p).

Proof. We note that if- < A;p, then B8.13) holds clearly since the right hand side 8f13) is
not less thari. So we assume that> A;p. Letk € Nbe suchthatA;p < r < (k+1)A7p.
We claim that forj =0, --- , &,

(3.14) sup w(-,U(p) NS(a,1),U(p) N Bla,r)) < &,

U(p)NB(z,r—jArp)
whereg, is a constant in Lemma.7.1. We show this by induction. If = 0, then 8.14)
holds clearly. Assuming thaB(14) holds for; — 1, we show 8.14) for j. Lety € U(p) N
S(xz,r — jAzp). SinceS(y, Azp) C B(x,r — (j — 1)Azp), it follows from the assumption,
the maximum principle and Lemnga7.1that

w(y, U(p) N S(x,r),U(p) N Bz, 7)) < & 'w(y, U(p) N S(y, Azp), U(p) N B(y, Aqp))

J
< .

Sincey is an arbitrary point ir/ (p) N S(x,r — jA;p), the maximum principle yields3(14)
for 5. Finally, noting that A;p)~'r < 2k, we obtain from8.14 with ; = & that

Thus the lemma is proved. H

In the rest of this section, we suppose thas a general John domain Rf*.
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Lemma 3.7.3.Let¢ € 092 have a system of local reference poipts- - - ,yny € QN S(E, )
of order N with factorrn for 0 < r < re. If x € QN B(&, n’r), then

N
(3.15) w(z, 2N S(En*r), Q2N B(& nr)) < Ar"—? Z G, (z,y;),

j=1
whereA is a constant depends only op, A, and the dimension.
Proof. Let0 < r < r¢. For eachw € Q N B(&,nr), there is a local reference pointr) <

{y1,--- ,yn} such that
ko, (z,y(z)) < A¢log o + Ag.

e
Lety'(z) € S(y(x),2 ' 0a(y(z))). Then we have by Lemna1.3

k . ! < A log —— + Ag.
2\ (@)} (T, Y (2)) < A¢log 30 (2) 3
Letting f(z) = 25N G, (z,y;), we obtain from®.12) and Corollary6.1.2that
7=1 J

f(x)> A (%—(z)y forz € QN B¢, nr),

T
whereA and\ are positive constants depending onlycgnA, and the dimension. Let
Q; = {z € O : exp(—2"") < f(x) < exp(~27)},
U={z € Q, : f(z) < exp(=27)}.
Then we see that

U,NB&nr)CV; = {x € Q:dq(xr) < Arexp (—QX]) } :

We now define a decreasing sequeficg by ro = n*r and

6(7 —11°) = 1
Tj:(n2_—(n7r2n)2@>r forj > 1.

k=1

We note that; — n’r. Letwy = w(-, 2N S(& n*r), QN B(&, n*r)) and put

if Qj N B(f,?”j) 7’é @1

sup
d] e IEQjﬂB({,T‘j) f(.']))

It is sufficient to show thad; is bounded by a constant independent ahdj, sincer; > n’r
forall j > 0. Letj > 0 and letr € Q; N B(, ;). Then the maximum principle yields that

(3.16) wo(r) < w(z, Uy NS(Er-1),U; N B(§, 1)) + dj-1 f(2).
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Figure 3.4:Maximum principle ort2; N B(&,rj_1).

Since B(z,r;_1 — r;) C B(&,rj_1), the first term of the right hand side d.L€) is not
greater than

[ —
w(x, ‘/J N S(JI, rj—1 — T'j), ‘/; N B(I,Tj_l - Tj)) S exXp (A7 — ASA’/‘ e}j(p1<—2j])\_1))

by Lemme3.7.2 Let us divide the both sides d8.(1€) by «(z) and take the supremum over
Q; N B(&, ;). Then we have

, 6(n? —n3) exp(22\~1
dj S exXp (2]_'_1 + A7 - Ag (77 2 i ) p(fUQ )) + dj_l.

Sinced, < €%, we obtain

- ; 6(n* — n*) exp(27171)
1
d; < jEZl exp (23+ + A, — Ag = A2 + dp < 0.
Thus the lemma is established. O

Lemma 3.7.4.Let¢ € 092 have a system of local reference poipts- - - ,yny € QN S(E, )
of order N with factorn for 0 < r < r¢. If x € QN B(E, %) andy € QN S(E,n73r), then

N N
(3.17) Gr(w,y) < A2 " Go(z,7) Y ol y),
j=1

k=1

whereA is a constant depends only op, A, and the dimension.
Proof. Let us apply Corollar8.5.2to h(z) = G,(z,y) with y € QN S(&, n~3r). Then

N
Go(z,y) <AY Gily;,y) forzeQnSEnr).

J=1

Hence Lemma&.7.3and the maximum principle yields that

N N
Go(x,y) < Ar"—2 ZGr(x,yj) ZGr(yk,y) forz € QN B(&, nr),

j=1 k=1

and thus the lemma follows. O
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For further arguments, we need the following improvemenr8df%): If z € QNS(&,n'r)
andy € QN S(&,n~3r), then

N
(3.18) Go(z,y) < A2 " Gol(x, ;)G (y5, 1),

j=1
whereA is a constant depending only ep, A, and the dimension. We should note that
the cross termé&/,(x, y;) G, (yk, y) (j # k) disappear from the right hand side Bf15).

If N =1, then B.18) is nothing but8.15. If N < 2, then Ancona’s ingenious trick

[6, Theoreme 7.3] gives3.18) from (3.15. However, the proof is rather complicated and
we postpone the proof to SectidC. The remaining arguments are rather easy and hold
for arbitrary N > 1, provided that'8.18 holds. Let us show the weak boundary Harnack
principle defined by Ancong| Définition 2.3].

Lemma 3.7.5 (Weak boundary Harnack principle). Let ¢ € 02 have a system of local
reference pointgy, - - - , yny € QNS(&, r) of order N with factorn for 0 < r < r.. Moreover,
suppose thaf3.18) holds. Leth, - -, hy € H. Then

ho(yj)

hj(yj)hj(x) forz € Q\ B(&,nr),

N
(3.19) ho(z) < AY

whereA is a constant depending only ep, n, A, and the dimension.

Proof. In (3.18), we replace the roles of andy and writez for y. By dilation and changing
Az, we obtain from the symmetry of the Green function that i€ Q N S(&, %) andz €
QNS n*r), then

N
Go(x,2) < Ar"? Z G (z,2)Gr (25, 2),

j=1

wherez, - -+, zy € QN S(&,n'?r) are local reference points. Moreover, for eaghwe can
find a local reference poing.;) € 2N .S(&,r) such that

ke oz (200 Uk()) < Akg (25, Uk(y) + A < A

By Corollary6.1.2 we havel, (z, z;) = G, (x, yr(;)) @andG,(2;, 2) = Gy (yr), 2), Whenever
r e QNS n’r)andz € QN S n?'r), where the constants of comparison are depend
only onn andn. Hence we obtain that if € QN S(&,n°r) andz € QN S(E,n*'r), then

N
(3.20) Go(x,2) < Ar"™2 Y " Gl y;)Gr(y;, 2).
j=1
Letd = n~3r andp = n*'r. We see that the regularized reduced funcﬁdﬁﬁf(s(g’é)us(g’p))

in O, is a Green potential of measuresoncentrated of2 N S(&,9) andv onQn S, p)
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such tha@rﬁg(s(g’é)us(g’p)) =hoonQNB(,0)\ B(&,p). Itfollows from (3.18) and B3.20
that forx € QN S(& n°r),

ho(x) :/ Gr(z,y)du(y) +/ G (x, 2)dv(z)
QNS(£,9) QNS(€,p)
N

<Ay (/ G (z,y;)Gr (5, y)dp(y) +/ Gr(z,y;)Gr(y;, z)du(z))
= \Jonseo) QNS(Ep)

N
= Ar"? Z G, (z,y5)ho(y;).
j=1
Lete = 1—n°. We observe fronid,12) and the Harnack inequality thaj(y; )r" G, (z, y;) ~
hi(x) forz € S(y;,eda(y;)), and soh;(y;)r"2G.(x,y;) < Ah;(x) forz € QN S(E,nr) C
Q, \ B(y;,£00(y;)) by the maximum principle. Henc8.19) follows for z € Q \ B(&,7%r)
by the maximum principle. ]

3.8 Proof of Theorem3.1.1(ii)

In order to prove Theorer®.1.1(ii), it is sufficient to show the following proposition.

Proposition 3.8.1.Let (2 be a general John domain iR" and let¢ € 02 have a system
of local reference points of ordeVN. Suppose thatv < 2. Then the number of minimal
functions inH, is at mosR. Furthermore, ifN = 1, then’, consists of exactly one minimal
function.

For the proof, we prepare the following lemma.

Lemma 3.8.2.Let (2 be a bounded domain iR” and¢ € 052 If h € He, then the measure
associated witth in the Martin representation is concentrated on minimal Martin boundary
points ate.

Proof. By the Martin representation, there is a unique meagueA (£2) such thap(A(Q2)\
A;(©2)) =0and
h(z) = / Kq(x,()du(¢) forx € Q.
A(Q)
We now write A(§; 2) for the set of all Martin boundary points &t Let £ be a compact
subset ofA(2) \ A(&;2) and let{ E; } be a decreasing sequence of compact neighborhoods

of £/in the Martin topology such th&t:, NQ)NB(E, 1) = () for somer, > 0and(; £; = E.
Then we have byg, Corollary 9.1.4]

Ry () =/A o R o (@)du(¢) forz € Q.
1

54



Noting that lim Qﬁfm is bounded and harmonic dh and vanishes quasi-everywhere on
Jj—00
0L sincefh is the kernel function &, we have by the monotone convergence

(3.21) 0= lim %R, (zg) = /A o lim “R,2 % (20)dp(C).

]—>()O ]—)OO

Let{ € ENA(2). ThenE; N Q2 is not minimally thin at; with respect td? for eachj (see
[8, Lemma 9.1.5]), and stim “R 2" (z0) = Ka(z0,¢) = 1. Hencep(E) = 0 by (3.23).
Jj—00

Thus the lemma follows. O

Proof of PropositiorB8.8.1for N = 1. As stated in the first paragraph of Sect®., H; is
non-empty. Lethy,hy € H¢. Let {r;} be a sequence such thgt — 0 and take a local
reference poini/ € QNS(¢,7;). Then one of the inequalitigs (v]) < hi(y]) andh, (i) <
ho(y]) holds for infinitely manyj. Hence Lemm®.7.5with N = 1 yields that eithet, <
Ahy or hy < Ahg holds onf2. Moreover we suppose that and h; are minimal. Then
ho = hy in any case. This implies that, is singleton. Moreover, the Martin representation
theorem and Lemma.8.2show that the element K, is minimal. O

Proof of Propositior8.8.1for N = 2. As we shall show in the next section th&8t18 holds
for N = 2, and hence Lemma.7.5holds for N = 2. We follow the proof of Ancona
[6, Theoreng 2.5]. We slightly generalize the proof of Proposit®®.1for N = 1. Let
ho, hy, he € He, and take a decreasing sequefegt such that-; — 0. For eachr; suffi-
ciently small, we find reference poing‘é € DN S(¢, ry) withi = 1,2. For a moment, we
fix j and considemaxo<y<s . (y]). Then we findk(j) such thath,;) = maxo<r<a hi(yi).
This holds for infinitely manyj, so that there i%; € {0, 1,2} such that

(3.22) Py (yl) = max hk(?/l)

0<k<L2

for infinitely many;. We also findk, € {0, 1,2} such that

hao () = max hie(v3)

for infinitely many; satisfying 8.22). Thus
hi(yl) < hy,(y!) forallk € {0,1,2} andi € {1,2}

holds for infinitely manyj. If necessary relabelinfy, 21, ho, we may assume that # 0
andky # 0. Then LemméB.7.5yields that
2

o) S D O (2) S 4D () fora < 0\ B ),

This holds for infinitely many;. Lettingj — oo, we obtain

2
ho gAth onf.

This, together with Lemma.6.2, completes the proof. ]
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3.9 Proof of (3.18 and open problem

Lemma 3.9.1.Let¢ € 0N2 have a system of local reference poiptsy, € Q2N S(&,r) of
order2 with factorn for 0 < r < r¢. If 2 € QN S(E,7n%r) andy € QN S(E,n~%r), then

2
GT(£7 y) S ATH*Q Z GT(J;7 yJ)GT(yJ7 y)7

j=1
whereA is a constant depending only ep, , A and the dimension.

Proof. Besides the local reference poinisy, € 2N S(€, r), we take local reference points
i, ys € QN S(E n°r) such thabg(y}) > Aenrfor j = 1,2 and

6
. * nr e TN
Eig{kmB(&n% (x, yj)} < A¢log —5Q(m) + A forz e QN B(E,n™r).

See figuré8.5.

Figure 3.5:Position ofy;, v;.

Then, forj = 1, 2, we have

.
' * < _— < A.
min {ka, (47, ye)} < A¢log Sl A< A

So, we may assume either

(3.23) ko,(yi,v1) <A and ko, (y5,y1) < 4,
or
(3.24) ko,(yi,v1) < A and ko, (v5,12) < A,

by replacing the roles af; andys, if necessary.
We first consider the case whéh23) holds. Letr € QN B(&,7%7). Then Lemm&B.7.4
for y7, y3 and Corollary6.1.2(together with Lemm#®.1.9 yield that fory € QN S(&,7%r),

Gr(w,y) < A2 Gol(w,y7)Gr(ui, y) < Ar2Gr(e, 11) G (11, y)-

gk
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By the maximum principle, we have this inequality foe QN .S(&,n73r). Hence the lemma
follows in this case.

We next consider the case wh&4) holds. Letd = {z € Q, : G.(z,11) > G.(z, 1)}
If eitherz,y € ®orx,y € Q, \ &, then the lemma follows from3(1%). Let us consider
the remaining cases. Exchanging the roleg0éndy, if necessary, we may assume that
z e ®nSEnr)andy € (Q, \ ®) N SEn3r). Let E = &\ B(¢,7°r) and consider
the regularized reduced functi@nﬁa(‘7y) in Q. This function is represented as the Green
potential of a measure supported irE. For a moment, we let € E. Then we have from
(3.17%) for y§, y; and the maximum principle that

(3.25) G(z,2) < Ar"? Z Gr(7,y7)Gr(yy, 2)-
7,k

By (3.29 and Corollary6.1.2(together with Lemm#.1.3, we haveG, (z,y;) < AG, (7, y;)
for j = 1,2. We also havé?, (v}, z) < AG,.(yx, z) for k = 1,2. Infact, if 2 € B(yx, 27 (1 —
1°)0a(yx)), then

Gr(yr, 2) = |y — 27" > Ar*™" > AG,(y;, 2);
if 2 €O\ By, 271(1 — 1%)0q(yx)), then B.24) and Corollary6.1.2(together with Lemma
6.1.3 yield G, (v}, z) = G,(yx, z). Hence8.25) becomes

Gp(1,2) < A2 " Gr(x,;)Gr(yr, 2) < Ar" G (2, 91) G (41, 2)
J,k
by the definition ofd. Therefore
RE(s) < A6y (e) [ Gl 2)dl2)

E
= ATH_QGr (xv yl)Qrﬁgr(-,y) (yl) < Arn_2Gr (:L‘, yl)GT(yl’ y)’

(3.26)

Letv, = G,(-,y) — ﬁrﬁgrw). Then

(3.27) v, =0 quasi-everywhere of = ® \ B(&, n’r).

By (3.17) we have

(3.28)  w,(x) < Gp(2,y) < Ar" G (2, 12)Gr(ya,y)  for z € QN O® N B(E, 73r).

Observe tha@ N d(® N B(&,nPr)) C (@ \ B(&,n3r)) U (QNod N B(E,nr)). HenceB.27),
(3.28 and the maximum principle yield that

vy < ArV2GL (5 y2) G (2, y)  on® N B(E, 7).
This, together withi3.2€), implies that
Gr(x,y) < A (Gr(z,51)Gr(y1,y) + Gol(2, 42) Gr (Y2, 1))

Thus the proof of Lemma&.9.1is complete. Il
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WhenN > 3, we could not prove Lemmia.9.1.

Open problem. Let ©2 be a John domain ilR™ and let¢ € 92 have a system of local
reference points of ordeN with factor0 < n < 1for0 < r < r.. Does(3.1§ hold for
N>37

If we can prove this, then the similar argument with the proof of Propos&i8ul. for
N = 2 yields that there are at moat minimal Martin boundary points &t

3.10 Domains represented as union of convex sets

In this section, we consider a class of John domains represented as the union of a family of
open convex sets. Especially, we give a sufficient condition for the Martin boundary and the
Euclidean boundary to be homeomorphic.

In [5], Ancona considered a bounded domain represented as the union of a family of
open balls with the same radius and gave a sufficient condition for the Martin boundary and
the Euclidean boundary to be homeomorphic. lzet)] stand for the (open) line segment
with endpointsz andy. For0 < 6 < m, we denote byl'y(z,y) the open circular cone
{z e R": Lzxy < 0} with vertexz, axis[z, y| and aperturé. Ancona says that a bounded
domain in R™ is admissiblaf

(A1) Qs the union of a family of open balls with the same radius.

(A2) Let¢ € 09). If two balls, sayB; and B,, tangent to each other gtthen(2 includes a
truncated circular congy (¢, y)NB(&, r) for somed > 0, r > 0 andy in the hyperplane
tangent taB; at{. See Figure.€.

Lo(S,y) N B(E,7)
Figure 3.6:Condition (A2).
He proved the following.

Theorem (Ancona). Let Q2 be a bounded admissible domain®t. Then every Euclidean
boundary point of) has exactly one Martin boundary point and it is minimal. Moreover, the
Martin boundary of2 is homeomorphic to the Euclidean boundary.
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We now generalize (Al) and (A2). Let> 1 andpy, > 0. We consider a bounded domain
2 in R™ such that

(I) Qis the union of a family of open convex s€tS', }\cx such that

(3.29) B(zx, po) C Cy\ C B(zy, kpo) forsomez, € C,.

Instead of (A2), we consider the following conditionéat 052.

(1) There exist positive constangs < sin™'(1/x) andp; < po cos 6, such that the union
C(¢) of truncated coneBy, (&, y) N B(£, 2p;) included inf2 is connected, that is,

C() = U Ty, (€,y) N B(£,2p,) s connected.

yeN
Lo, (§,y)NB(&,2p1)CQ

See Figurés.7.

Figure 3.7:Condition (I1).

We note that if2 is a bounded domain represented as the union of a family of open balls
with the same radius, then our condition (Il) is equivalent to Ancona’s condition (A2).
Our result is as follows.

Theorem 3.10.1.Let 2 be a bounded domain IR™ satisfying (1). If¢ € 0 satisfies the
condition (I1), then there exists exactly one Martin boundary poirgtand it is minimal.

Corollary 3.10.2. Let(2 be a bounded domain IR™ satisfying (I). If every € 0f) satisfies
the condition (I1), then the Martin boundary 6fand the minimal Martin boundary &t are
homeomorphic to the Euclidean boundary.

Remark3.10.3 The bound®); < sin™'(1/k) andp; < pycosf; are sharp. See Examples
3.10.4and3.10.5below. Under these assumptions, there exists a truncated circular cone
Ty, (€,y) N B(&,2py) included inf2.

We now give examples for sharpness of the bouhds sin~'(1/x) andp; < pocos 6,
for whenn = 2 andp, = 1. Write R? = {(z,y) € R? : y > 0} andR? = {(z,y) € R*:
y < 0}, and denote the interior of the convex hull of a 8ty co(E).
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Example 3.10.4 (The casé, > sin '(1/x)). Letw, = (0, k) and consider

D= <B(O, k+ 1)\ (B0,r—1)N Ri)) U co({0} U B(wp, 1)).

See Figure3.8 Thenco({0} U B(wy, 1)) does not contaii’y, (0,y) N B(0,2p;) for any
y € R* andp, > 0. ThereforeC(0) = B(0,2p;) N R?. However there are two Martin
boundary points &i.

Example 3.10.5 (The casé < 6; < sin"!(1/x) and p; > pycos ;). The example is given
ineach case of > 2andl < k < 2.

e The case: > 2. Letw; = (0,1), ws = (1,1) andws = (1,1 — k). Consider
D= (B(o, 5)\ (B(0,3) N Ri)) U B(w1, 1) U co({ws} U B(ws, 1)).
See Figuré8.S. Thenco({ws} U B(ws, 1)) NR2 C B(0,+/3). Sincep; > cosf >
cos(/6) = v/3/2, eachl’y, (0,y) N B(0, 2p,) intersecting withco({ws,} U B(ws, 1)) N
R? is not contained inD. Clearly, eachl's, (0,y) N B(0,2p;) is not included in

B(wy, 1). ThereforeC(0) = B(0,2p;) N R%. However there are two Martin boundary
points at0.

e Thecasel < k < 2. Pute = 271(k + 1) tkcos(sin™(1/k)). Letw] = (0,1),
wh = (cos(sin"H(1/k)) —&,1 — x~1) andwjy = (cos(sin ' (1/k)) —e,1 — k7L — k).
Consider

D= (B(o, 5)\ (B(0,3) N Ri)) U B(w),1) U co({wl} U B(w,, 1)).

See Figuré8.1Q Thenco({w}} U B(w}, 1)) NR2 C B(0,2cos(sin™'(1/x))). Since
p1 > cos by > cos(sin™(1/k)), anyTy, (0, y)NB(0, 2p,) are notincluded ifco({w} }U
B(w}, 1)) NR3) U B(w, 1). ThereforeC(0) = B(0,2p;) N R2. However there are
two Martin boundary points 4t

Before proving Theorer.10.], we show that a bounded domain satisfying (I) is a John
domain. To this end, we prepare the following elementary lemma.

Lemma 3.10.6.LetC' be an open convex set. Then the following statements hold.

(i) éc is a concave function ofi'.
(i) Letz € C. If C satisfies that3(z, py) C C C B(z, kpo) for somez € C, then

|z —w| < kéc(w) forallw e [z, 2].

Proof. We first show ). Letz,y € C, w € B(0,1), and0 < ¢ < 1. Then the points
r+0c(z)w andy+dc(y)w liein C. Hence the pointl —t)z+ty+{(1—1t)dc(x)+tdc(y) jw
lies in C' by convexity. Sincev is an arbitrary point in3(0, 1), it follows that

oc((1 = t)z +ty) = (1 = )dc(x) + tdo(y).
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Figure 3.8:Example3.10.4 Figure 3.9:Example3.10.5for « > 2

Figure 3.10:Example3.10.5for 1 < k < 2
We next showiif). Letz € C andw € [z,2]. Writing w = (1 — t)x + tz with some
0<t<1,wehaver — w| < t|lz — z| < tkpy. Hence it follows from) that
So(w) > (1 —t)dc(x) + téc(2) > téc(2) > tpo > v Ha — wl.
Thus the lemma is proved. Il
Proposition 3.10.7.Every bounded domain IR" satisfying () is a John domain.

Proof. Let 2 be a bounded domain represented as the union of a fa@ily .-, of open
convex sets satisfyin@(29. We putK, = {z): A € A}, and letz, € K,. We first show
that eachr,, € K, can be connected tg, by a rectifiable curve i satisfying 8.1). Since
(2 is connected andl, is continuous o2, there is a positive; < p, such that the closed set

E:={xe€Q:dq(x) >r} Iisconnected.

Then Ky C F by (3.29. By compactness of’, there is a positive integel/; such that

E c U™ B(y;,27'r1), wherey; € E. Lety, be a curve inE connectingz,, to zo. We may
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assume, by relabeling if necessary, that

Mo
" C U B(%"Tlh) for someM, < M;,

j=1
B(y;,27'r) N B(yj1,27'r)NE#0 forj=1,--- M, —1,
2y, € B(y1,2*1r1) NE and Ky € B(ynm,, 2*17*1) NE.

Hence we can take a curve in U;le B(y;,27'r) connecting,, to z, so that

(330) g("}@) S M27"1 S M17"1.

We see that ;™ B(y;,27'r1) C {x € Q : do(x) > 2771}, S0 thatdg(z) > 27'r, for all
z € v,. Hence we have

(3.31) U ya(2rg, 2)) < U(72) < 2Msda(2) < 2Mi6q(z) forall z € ~,.

We next show3.1) for a general point: € €. Letx € C,. Applying Lemme3.10.6to
C =C,, andz = z,_, we havex — w| < kig(w) forall w € [z, z,,]. Let~s be a curve in2
connecting:,, to x, and satisfying3.30) and 3.31). We define the curve in {2 connecting
x 10 xo by
v =z, 2\, ] Uys.
Then/(v) < kpo + Myry. It suffices to show that satisfies8.1) for z € 3.
Case L z € v3 N B(zy,, po/2). In this case, we have

Po Po
> — > .
(59(2) =9 = 2(/€p0 +M1T1)£(PY($’ Z))

Case 2 z € 3\ B(zy,, p0/2). By the property ofy;, we have

1 Po Po
0. > 14 > > 1 :
Thus the proposition is established. Il

In order to prove Theorei®.10.], it is enough to show, by PropositioBs8.1and3.10.7
that if ¢ € 0() satisfies the condition (1), thefrhas a system of local reference points of
orderl.

Proposition 3.10.8.Let (2 be a bounded domain iR" satisfying (I). If¢ € 0N satisfies the
condition (I1), then¢ has a system of local reference points of order 1.

To this end, we prepare some lemmas. We may assume, by translation and dilation, that
¢ = 0andp, = 1. The aperturd; < sin"'(1/x) is fixed and we writd(z, y) for T'y, (z, y)
to simplify the notation. Note thdt= p; < pycos 6y, so that) < 6; < 7/2 andpy > secb.
Let Cy be a convex set such thB{(zy, py) C Cy C B(zy, kpo). If € Cy \ B(zz, po), then

(3.32) ['(x,2z)) N B(x,2) C co({z} U B(zx,p0)) C Ch,
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whereco({z} U B(zy, po)) is the convex hull of 2} U B(zy, po). Let
Y={yeS0,1):T(0,y)nB(0,2) C Q}.

We first show thafy is non-empty and that the poiftcan be accessible along a ray
issuing from the origin toward a point .

Lemma 3.10.9.There is a positive constamt < 1 such that ifC, N B(0,r) # 0, then
CyxNY # 0. In particular, Y # ().

Proof. Suppose to the contrary that there is a sequdiige} with dist(0,Cy;) — 0 and
Cy, NY # (. Letzy, be suchthaB(zy,, po) C Cy; C B(zy,, kpo). Taking a subsequence if
necessary, we may assume thatonverges, say ta,. We claim that

(3.33) I'(0,2) N B(0,2) C | JCh,

j
Letz € I'(0, 20)NB(0,2). ThenZz0z, < 6, and|z| < 2 by definition. From our assumption,
we can findz,, € dC\; with z), — 0 asj — oo. Therefore we have by continuity that
Zxwy, 2y, < 01 and|z — x| < 2 for j sufficiently large. Then it follows from3.32) that

xv € I(xy,,2z,) N B(wy,;,2) Cco({wy; } U B(2y;,00)) C Cl,.

Thus B.33) follows. Now we lety, = zy/|z0|- Then we have by definition an8.83) that
Yo € YN U]. C,,. However, this contradicts’y, N Y = ¢ for all 5. Hence the lemma
follows. O

Let C' be a convex set. As shown in LemiB4.0.6 the function¢ is concave. Therefore
we have

|z — 2|
|z —yl

(3.34) 5o(z) > Z s () +

> ) for z € [z, ],
r— c(v) [, y]

wheneverr # y € C.

Lemma 3.10.10.Let0 < 9 < 1 be asin Lemma&.10.9 and let) < r < min{ry, 3" sin 6, }.
If C, N B(0,r) # D andy € C\ N Y, then there exists a point € C\ N T(0,y) N

B(0,3r/sin ;) such that
sin 0
dcsnro(w) 2 —r

Proof. Letz € C\ N B(0,r). Then[z,y] C C,. We observe that there is a point <

[z,y] N T'(0,y) with |wy| < r/siné,. Infact, if z € I'(0,y), then we may takey; = z.
Otherwise, lettingu, be the intersection df, y] andoT’(0, y), we have

r > dist(z, [0,y]) > dist(wy, [0, y]) = |w;|sinb;,
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so that|w;| < r/siné,. Sincelw; —y| > 1 — r/sinf; and3r/sinf; < 1, we can find a
pointwsy € [wy,y] C C\ NT(0,y) with |w; — wy| = r/sin 6. By (3.34 with C' = I'(0,y),

we obtain "
Or(o,y) (we) > H % sin 0; > g

Moreover, we havéws| < 2r/sin 6. Sincelwy — z)| > pg — 2r/sinéy; > r by 3r/sinf; <
1 < po, We can take a point € [wy, zy] C C, such thatw — wy| = /4. Then it follows

from (3.34 with C' = C, that

5F(0,y) (y) Z

r/4 sin 04
J, > L —py >
C)\(ZA) Y Po = 4

r

Hence we conclude that

r 7 sinf } sin 6,
z _ r,

Or(0y)nc, (w) > min {—

2 4 4 4
and 5
T r T r
< — — < — < .
[l < Jo = wsf +fwz =] +fun| < 4 * sinfy,  sinf#;  sin6,
Thus the lemma is proved. ]

We fix a pointy; € ), and lety, = ry, for0 < r < 1. Theny, € QN S(0,r) and
da(y,) > rsinf;. Let0 < n® < 6~ 1sin; and writeQ2, = QN B(0,n73r).

Lemma 3.10.11.Let0 < ry < 1 be asin Lemm&.10.9 Then there is a positive constast
such that if0 < r < rg, then

ko, (ry,y.) < A fory e Y.

Proof. Note thatC(0) N S(0, 1) is connected since the cog¢0) is connected. We observe
that there is a closed connected subiBedf C(0) N S(0,1) and0 < r; < sin#,; such that
Y C E anddist(£,0C(0)) > r. Theny,y; € E. In view of the compactness @f, we can
take a curvey in C(0) N S(0, 1) joining y andy; such thabc(z) > 27'r, forall z € v and
((v) < Ary, whereA is a constant depending only on a covering constatit.dfet , be the
image ofy in S(0, ) under dilation. Then we have

d A
o < [ 1< A
7

0a(z) T 27Mryr =24,

Thus the lemma follows. O
Let us prove Propositio8.10.8

Proof of Propositior8.10.8 By translation and dilation, we may assume that 0 and
p1 = 1. Let0 < ry < 1 be as in Lemm.10.9and suppose that < 7 < 6-!sin#, and
y, = ry; are as above. Lét < r < min{rq, 37 !sin 6, }, It is sufficient to show that

(3.35) ko, (z,y.) < Alog I + A forxz e Qn B(0,nr),
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whereA is a constant independent.ofandr. Letx € QN B(0,nr). Then there is a convex
setC', containingz and there ig; € C', N Y by Lemme3.10.9 By Lemma3.10.1( we find
a pointw € C, NI'(0,y) N B(0,3r/sinb;) such thabe, ar,,) (w) > 4 'rsin6;. Since

sin2 91
16

50, () > 60 (2) > 1L 7

(w) >

P——ge |z — 2| forz € [z,w]

by [z,w] € B(0,27'n73r) and B.34), it follows that

Since

lw — 2| sin? 0

|z —z| forz € [w,ry],

it also follows that

)
ko, (w,ry) < < —_—
0, (,79) /H 50, (2) 5a(2)

Hence we obtain from the triangle inequality and Len®nED.11that

ka,(z,y,) < kq,(z,w) + kq,(w, ry) + ka, (ry, y.) < Alog + A,

-
o ()
and thus Propositio8.10.8is established. O
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Chapter 4

Boundary behavior of Martin kernels

This chapter is based on the manuscript [H3].

4.1 Motivation and results

One of the purposes of this chapter is to show the boundary growth of the Martin kernel on a
Lipschitz domain. This is motivated by earlier works due to Burdzly12], Carroll |14, 15]

and Gardiner23]. We write 0 for the origin ofR" (n > 2) to distinct from0 € R, and denote
r=(2,2,) € R"! x Rande = (0’,1). Suppose thap : R"! — R satisfiesp(0') = 0

and the Lipschitz property:

0(z') = o(y)| < LI’ —y/| (2,5 €eR™)

for some positive constaiit. We put(2, = {(z/, z,,) : x, > ¢(2)} and set

(4.1) I+ — / max{gb/(:v’),O}dx,’
{lz'|<1} ||

(4.2) = / max{ =) 03 ;.
{|z'|<1} ||

In [11], Burdzy obtained a result on the angular derivative problem of analytic functions in a
Lipschitz domain. The following theorem was an important step in his work.

Theorem A. Suppose that™ and/— are asin(4.1) and(4.2). If T < coandl~ = oo, then
Ga, (te,e)

lim ——— = 0.
t—0+ t

Burdzy’s approach was based on probabilistic methods and the minimal fine topology. An
analytic proof was given by CarrolLfl]. Gardiner R3] also gave a simple proof of Theorem
Al In[18], Carroll investigated the boundary behavior@f, (te, e) /t in other cases.

Theorem B. Suppose thaf* and I~ are as in(4.1) and (4.2). The following statements
hold.
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(i) If I =ccandl~ < oo, then

Ga, (t
lim —Q¢( .) =0
t—0+ t

(i) If I <ooand/~ < oo, then the limit ofGq, (e, e) /t, ast — 0+, exists and

Ga, (te,
0 < qip Celte e
t—0+

< 00.

Theorem#A andB|show the relationship between the convergence of the intefrals
and the boundary decay of the Green functiofilgf We are now interested in a relationship
between the convergence of the integials] — and the boundary growth of the Martin kernel
Kq,(+,0) of Q; with pole at the origin.

Theorem 4.1.1.Suppose thaf™ and I~ are as in(4.1) and (4.2). The following statements
hold.

() fIT™ <occandl~ = oo, then

tli%i "' Kq,(te,0) = 0.

(i) f I" =occandl~ < oo, then

: n—1 o
tl_l)%}i_t Ko, (te,0) = oc.

(i) If I <ocoandl~ < oo, then the limit of"~' Kq, (te, 0), ast — 0+, exists and
: n—1
0< tlir&t Kq,(te,0) < oc.
WhenI* = oo and/~ = oo, the limit of "~ Kq, (te, 0) may take any value$, positive
and finite, oroco, as the following simple example shows.

Example 4.1.2.To simplify the notation, we writR};' = {2/ € R*""! : z; > 0} and
R}~ = {2/ € R* : z; < 0} in this example.

(i) If ¢(2’) is equal taz; /2 onRY, " andz; onR}~', then

. n—1 _
tl_l)%}i_t Kq,(te,0) = 0.

(i) If ¢(z’) is equal toz; on R} ' andz; on RYZ', then the limit oft"~' K, (te, 0), as
t — 0+, exists and
: n—1
0< tl—lg}i-t Ko, (te,0) < oo.
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(i) If ¢(2’) is equal tar; onRR; " andz;/2 onR}~', then

: n—1 o
tl—l}g}i—t Ko, (te,0) = oc.

It is easy to check that™ = oo andI~ = oco. The value of the limit in each case follows
from [27, Theorems 1 and 2].

Let R} = {(«/,2,) : z, > 0}. As we will state in Sectio@.5, the convergence of
the integrals/™ and I~ is connected with the minimal thinness of the sits\ 2, and
Q4 \ R?. See Sectiod.2 for the definition of minimal thinness. Sind€g- (te,0) = ¢'~",
Theorem4.1.1 may be interpreted as the relationship between the minimal thinness of the
setsR? \ 4, 2 \ R and the boundary behavior of the quotient of Martin kernel8 pnd
R”. So, given two intersecting domaidsand ¥, it is valuable to investigate a relationship
between the minimal thinness of the séts ¥, ¥ \ ® and the boundary behavior of the
guotient of Martin kernels o and V.

4.2 Statements for general domains

To state our results for general domains, we need a definition of minimal fine limit. Recall
that a subsel’ on (2 is said to be minimally thin a§ € A,(Q2) with respect td? if

Qﬁﬁﬂ(,yg)(z) < Kq(z,&) forsomez € Q.

Minimal thinness enables us to equip the minimal fine topology in the Martin compactifica-
tion of (2. Roughly speaking, the minimal fine topology is the collection of subdétsf

the Martin compactification such th@t\ W is minimally thin at every point of¥’ N A, ().

See B, Definition 9.2.3] for the precise definition. L&t be a minimal fine neighborhood of

¢ € A1(Q2). We say that a functiorf on U hasminimal fine limit/ at £ with respect td? if

there is a subsdt on 2, minimally thin at¢ with respect td?, such thatf(z) — [ asz — &
alongU \ E, and then we write

rgf—lim flz) =1

r—E

We note from the definition that a function is not necessarily defined in whole of a domain
when we consider minimal fine limit.

Theorem 4.2.1. Suppose tha® and ¥ are Greenian domains ifR™ such that® N V¥ is

a non-empty domain. Le&t € A;(®), where¢ is in the closure ofb N ¥ in the Martin
compactification ofb. Let( € A;(¥), where( is in the closure ofb N ¥ in the Martin
compactification oft. If &\ ¥ is minimally thin at with respect tab, thenKy (-, () /Ko (-, €)
has a finite minimal fine limit a§ with respect tob. Furthermore, the following statements
hold.
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(i) If '\ @ is not minimally thin atf with respect tol, then
K‘I/(xa C)

f-lim ——2% = 0.
it e 0

(i) If ¥\ @ is minimally thin at with respect tol, where( is a point such that

U\ P P\W
(4.3) Ky(¢) = "Ry o = a(Ke(-.6) = "R\ ) ondn
for some positive constant then
K
0< mf—limM < Q.

o a—g Ko(2,8)

(iii) If ¥\ @ is minimally thin at{ with respect tol, where( is a point such tha{4.3) is
not satisfied, then
K‘l/(xa C)

f-lim ——= = 0.
n% xl_’né K<I>(£a§)

For Lipschitz domains, Theorem?2.1can be restated as follows. We note frc2s][that
each Euclidean boundary point of a Lipschitz domain has a unique Martin boundary point
and it is minimal. So we identify a Martin boundary point with a Euclidean boundary point.

Corollary 4.2.2. Suppose thab and ¥ are Lipschitz domains iiR” such thatd N ¥ is also
a Lipschitz domain. Ley € 0P N 0V, and suppose thab \ ¥ is minimally thin aty with
respect tod. The following statements hold.

(i) If ¥\ @ is not minimally thin aty with respect tol, then

mf - lim —K\P(x’ y)

=0.
e oy ch(l',y)

(i) If ¥\ @ is minimally thin aty with respect tol, then

O<mf—hmM < 0.
o z—y Kq;(l’, y)
Remark4.2.3 If &\ W is “not” minimally thin aty with respect tod and ¥ \ ¢ is “not”
minimally thin aty with respect toV, then the limit of Ky (-, v)/Ks(-,y) may take any

values), positive and finite, oso. See Exampld.1.2

4.3 Characterization of minimal thinness for a difference of
two subdomains

Naim [31, Theoeme 11] gave a characterization of the minimal thinness for a difference
of two subdomains in terms of Green functions of each domain, which played an important
role in the proof of Theorema andB. In order to prove Theorem.2.], we give a new
characterization of the minimal thinness for a difference.
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Lemma 4.3.1. Suppose thaf) is a Greenian domain iR™ and thatD is a subdomain of
Q. Leté € A1(Q2), where is in the closure ofD in the Martin compactification of2. The
following statements are equivalent.

(i) ©\ D is minimally thin at with respect td?;

(i) there exists) € A;(D) such that

(4.4) mf - lim M

> 0.
D z—n KD(:E777)

Furthermore, the poing € A;(D) in (ii) is uniquely determined and the corresponding
Martin kernel is represented as

Q\D
Kp(-.n) = a(Ka(€) — "Ry o) onD
for some positive constant
Remark4.3.2 We note in Lemma.3.1that the minimal fine limit in'4.4) exists and satisfies

that

4.5 £-lim 2358 = inf 2258 _ i SODS)
(48) -l )~ Hrece () = I g Moy = it ) =

wherepgﬂ(.@ is the measure o\ (D) associated withiq(-, ) in the Martin representa-
tion. See8, Theorems 9.2.6 and 9.3.3]. Thus the minimal thinnesQ §fD can be also
characterized in terms of any of quantities4nS) instead of the minimal fine limit.

For the proof of Lemmal.3.], we need the following lemmas. Lemrda3.3can be
deduced from8, Theorems 9.2.6 and 9.3.3]. Lem#a.4is due to N&m [31, Théoreme 15]
(cf. [8, Theorem 9.5.5]).

Lemma 4.3.3. Let E be a subset of a Greenian domdmnin R™ and let§ € A(f2). The
following statements are equivalent.

() E is minimally thin at¢ with respect td?;

(i) there exists a positive superharmonic functioon 2 such that

inf ﬂ < inf ﬂ

z€Q KQ(JI,&) rel KQ<x7£)

Lemma 4.3.4. Suppose tha® is a Greenian domain ifR™ and thatD is a subdomain of2.
Leté € Aq(R2), whereg is in the closure oD in the Martin compactification of2. Assume
that2 \ D is minimally thin at{ with respect td?, and lety € A;(D) be a point such that

Kp(-n) = a(Kal-,€) — QR%XZ@) onD

for some positive constant The following statements for a subgebf D are equivalent.
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() £ is minimally thin aty with respect taD;
(i) £ is minimally thin at¢ with respect td.

We say that a property holds quasi-everywhere if it holds apart from a polar set. The
following lemma is elementary. For the convenience sake of the reader, we give a proof.

Lemma 4.3.5. Let D be a Greenian domain ifR" and let{ € A;(D). ThenKp(-,()
vanishes quasi-everywhere om.

Proof. LetV be a Martin topology (closed) neighborhoodafith respect taD. ThenV N D
is not minimally thin at{ with respect taD. Therefore we have fron8[ Theorem 6.9.1] that

D\V
Kp(z,¢) = VQD olr) = HK;(HOXBVHD () forze D\V,
WhereHﬁ\‘(/ Oy denotes the Perron-Wiener-Brelot solution of the Dirichlet problem in

D\ V with boundary functiorkp (-, () ond(V N D) N D and0 ondD. SinceV is arbitrary,
we obtain the lemma. O

Let ©2 be a domain ifR™ and letD be a subdomain of2. If & is a positive harmonic
function onD which vanishes quasi-everywhere @b N 2 and is bounded near each point
of 9D N, then we see fronB, Theorem 5.2.1] that has a subharmonic extensibhto (2
which is valued) quasi-everywhere ofiD N 2 and everywhere of2 \ D. In what follows
we use the mark, like ash*, to denote such a subharmonic extension.

Let us prove Lemm4.3.1.

Proof of Lemma.3.1. By [31, Théoreme 12] (cf. B, Theorem 9.5.5]), we can easily show
that ) implies {i). In fact, f := Kq(-,¢) — QRQ\D |s a minimal harmonic function o,
and so there existgc A, (D) such thatk (-, n) = f/f(xo) on D. Hence we obtain

e >
w2 Kpla) - 1>
and thus/4.4) follows from (4.5).
We next show thali() implies {). We may assume th&\ D is non-polar. Lety € A;(D)

be a point such that

mf - lim —Kg(x, ¢
D x—n Kp(z,n)
By (4.5), we haveKp(-,n) < a tKq(-,£) on D. Also, Kp(-,n) vanishes quasi-everywhere
on 9D N Q by Lemma4.3.5 Thus K75 (-,n) is well-defined as a subharmonic function on
Q and is dominated by ' Kq(-,€) on Q. Letu = a 'Kq(-,&) — K5(-,n). Thenu is
superharmonic ofe. SinceQ2\ D is non-polar, there is a point in\ D at whichu is positive.
Therefore the minimum principle yields thais positive or2. Also, we have that

> 0.

[0

u(z) 1 Kp(z,n) -1
inf ———=a " —sup—= < a ,
xeQ) KQ( ) xeg KQ(:U>£)
U<I> ~1 KB( ) -1
inf =a  — su = a =
2€Q\(DUF) Kg(x, £) chQ\(lID)UF Ka(z,§)
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whereF is a polar set i D N Q2 such that<’;,(-,7) > 0 on F. Hence it follows from Lemma
4.3.3thatQ2 \ (D U F') is minimally thin at{ with respect td2, and so i2 \ D.

We finally show the uniqueness gfe A;(D). We suppose to the contrary that there
exists¢ € A;(D) such thatKp(-,() < SKq(-,&) on D and Kp(-, () is different from
Kp(-,n) == v(Ka(-,§) — QR%]?-,@)’ where3 and~ are some positive constants. We may
assume that! is the smallest number satisfyingy(-,() < fKq(-,£) on D. Since¢ €
A4 (), it follows that 5K (-, §) is the least harmonic majorant &f},(-, ) on2. LetV be
a Martin topology neighborhood @fwith respect taD such that; is apart fromiV. Then
W N D is minimally thin atn with respect toD. Thus the minimal thinness 61 \ D at¢
with respect td?, together with Lemmd.3.4 yields thatiV’ N D is minimally thin at¢ with
respect td).

On the other hand, sind& N D is not minimally thin at{ with respect taD, we have

Ep(-,¢) = R0 < BPREN ) < BORKIY, onD.

Sincef Kq(+, £) is the least one among superharmonic functions 2 satisfyingK;, (-, ¢) <
uong), we havle{IVg&?g) = Kq(+, &) on$, so thatiW N D is not minimally thin at¢ with
respect to2. Thus we obtain a contradiction, and hence the uniquenegscfA,(D) is
established. The proof of Lemrda3.1is complete. ]

4.4 Proof of Theorem4.2.1

In this section, we give a proof of Theoreh®.1.

Proof of Theorens.2.1. In order to prove the first assertion, we assume dhat(® N V) is
minimally thin at¢ with respect teb. Letn € A, (P N W) be a point such thak'sqy (-, 1) =
a(Kos(-, &) — %}2‘?@) on ® N ¥ for some positive constant. Then we have by Lemma
4.3.1with D := & N ¥ and(? := ¢ that

K
(4.6) 0 < mf -lim ﬂ < 00.
e z—n Keny(z,1)

It also follows from B, Theorem 9.3.3] thak(y (-, ()/Ksnu (-, ) has a finite minimal fine
limit at  with respect tob N ¥. The minimal thinness ob \ (® N ¥) at¢ with respect tab,
together with Lemmd.3.4with D := & N ¥ and(? := &, concludes thak'y (-, ()/Ko(+, &)
has a finite minimal fine limit a§ with respect tab.

To prove [), we assume in addition that\ (® N ) is not minimally thin at, with respect
to ¥. Then Lemmat.3.1with D := & N ¥ and(2 := ¥ shows that for any) € A;(® N V),
the minimal fine limit in @.4) is zero. Therefore we have

mf - lim ————
e NY  z—n KCI)(‘]\IJ(I,??)

=0.

Hence ) follows from (4.6) and Lemmat.3.4with D := & N ¥ and) := .
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To prove (i), we assume in addition that\ (®N V) is minimally thin at¢ with respect to
U, where( is a point inA; (V) such that4.3) is satisfied. We note fron#(3) that Koy (-, 1)
is also written a$3’(K\1,(-, () — ‘PR}IQP%C)) on ® N ¥ for some positive constapt. Then we
have by Lemma.3.lwith D := & N ¥ and(? := ¥ that

0< mf—limM < 0.
dNY  z—n quq,(x,n)
Thereforelff) follows from (4.€) and Lemm&t.3.4with D := & N ¥ and() := .

To prove (ji), we assume in addition that\ (¢ N V) is minimally thin at¢ with respect
to ¥, where( is a point inA;(¥) such that'4.3) is not satisfied. Then the normalization
Kony(-,w) of Ky(-, () — ‘I’R[‘I;fz.vg) at a reference point is a minimal Martin kerneld®f ¥,
but is different fromKsnq¢ (-, 7). We note from the uniqueness in Lem#h&.1that for only
we A (PNVY), Ky(+,()/Kenu(-,w) has a positive minimal fine limit at with respect to

® N . Therefore we have
mf - lim ————
eNY z—n Kq;mq;(l’, 77)
Hence[(i) follows from (4.6) and Lemmat.3.4with D := &NV and(? := ®. Thus Theorem

4.2 1is established. ]

=0.

4.5 Proof of Theorem4.1.1

In order to prove Theoremh.1.], we collect lemmas on relationships between the convergence
oftheintegrald ™, 7~ in (4.1), (4.2) and the minimal thinness of the differendes\ R’y , R"} \

Q. See 3, Lemma 1 and Proof of Theorem 1] for Lemi##.1and 20, Theorem 4.2] for
Lemma4.5.2

Lemma 4.5.1. The following statements hold.
(i) I < ooifand only ifR" \ €4 is minimally thin at0 with respect taR’; .
(i) If I < ooandl~ = oo, thenQ, \ R’} is not minimally thin aD with respect td,.

Lemma 4.5.2. Let 2 be a Greenian domain iiR" containingR’}. Suppose thaf) has a
unique Martin boundary point at infinity and it is minimal.Qf\ R” is minimally thin atoo
with respect taR” := {(2',z,) : x, < 0}, thenQ \ R’} is minimally thin atoo with respect
to €.

Lemma 4.5.3.1f I~ < oo, thenQ, \ R} is minimally thin at0 with respect td2, U R’

Proof. By Lemma4.5.], we see tha),, \ R’} is minimally thin at0 with respect t&®" . Since
minimal thinness is invariant under the inversion with respect to the unit sphere, it follows
from Lemme4.5.2thatQ, \ R’} is minimally thin at0 with respect td2, U R’ . O
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Lemma 4.5.4.1f I < coand/~ < oo, then(, \ R” is minimally thin at0 with respect to
Q.

Proof. We note from Lemm#4.5.3that(Q2, UR? ) \ R is minimally thin at0 with respect to
Qs UR™. Since(Q2, UR™) \ €4 is minimally thin at0 with respect td2, U R’} by Lemmas
4.3.4and4.5.], the lemma follows from Lemmad.3.4 O

Let us prove Theorerd.1.1. We note in a Lipschitz domain that the existence of the
minimal fine limit of the quotient of positive harmonic functions implies the existence of the
non-tangential limit, and the both values coincide, since a non-tangential cone at a boundary
pointy is not minimally thin aty (cf. [25, Section 5]).

Proof of Theorer#.1.1. We first showl). SinceR’} \ €2, is minimally thin at0 with respect
to R} and), \ R is not minimally thin a0 with respect td2, by Lemma4.5.], it follows
from Corollary4.2.2(i) with ¢ := R} andV := Q, that Ko, (-, 0)/Kg~ (+,0) has minimal
fine limit 0 at0 with respect taR’;, and hence” ' K, (te, 0) has limit0 ast — 0+.

We next showil). Since(Q2, UR?) \ R% is minimally thin at0 with respect ta2, U
R? by Lemma4.5.3 we have by Lemm&.3.1with D := R%} and( := Q, U R’} that
Ka,urr (+,0)/Kgr (+,0) has a positive minimal fine limit & with respect tdR"}, and hence
t”—lK%URi (te,0) has a positive limit ag — 0+. Also, it follows from Lemma&.3.4and
4.5.1that (24, UR?Y) \ €, is not minimally thin at0 with respect td2, U R"}. Therefore we
have by Lemma.3.1with D := Q4 andQ := Q4 U R} that Kq,ur» (+,0)/Kq, (-, 0) has
minimal fine limit 0 at 0 with respect td2;, and henceiq, (te, 0)/Ko,ur~ (te, 0) has limit
oo ast — 0+. Thus we conclude that~' K (te, 0) has limitoo ast — 0+.

We finally show {ii). SinceR"™ \ 2, is minimally thin at0 with respect taR”} by Lemma
4.5.1and, \ R’} is minimally thin at0 with respect ta2, by Lemma4.5.4 we have by
Corollary4.2.2(ii) with ® := R’ and¥ := , that Kq,(-,0)/ K- (-, 0) has a positive and
finite minimal fine limit at0 with respect taR’;, and hence" ' K, (te, 0) has a positive and
finite limit ast — 0+. O
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Chapter 5

Comparison estimates for the Green
function and the Martin kernel

This chapter is based on the manuscript [H4].

5.1 Statements of results

We give comparison estimates of the Green function and the Martin kernel in a uniform
domain. A proper subdomain of R is said to be uniform if there exists a positive constant
A such that each pair of pointsandy in 2 can be connected by a rectifiable curvéen 2

for which

((y) < Alz —yl,
min{l(y(z, 2)),0(v(z,y))} < Adg(z) forall z € ~.

It was proved by Aikawe3] that the Martin compactification of a bounded uniform domain is
homeomorphic to the Euclidean closure. Moreover, all Martin boundary points are minimal.
In the sequel, we identify the Martin compactification with the Euclidean closure. Further-
more, we denote a unique Martin boundary point at 02 by the same symbd. For

& € 0N anda > 1, we write

Faf§) ={z € Q: [z —¢| < ado()}

for the non-tangential cone atwith aperturex.
Our result in higher dimensions is as follows.

Theorem 5.1.1.Let() be a bounded uniform domain " withn > 3, and let{ € 0 and
a > 1. Then we have

Ga(z,20)Ka(z, ) = |z — &> forz € To (&) N B(&,27a(x0)),

where the constant of comparison depends only amd 2.
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We note that Theore.1.1does not hold in general when= 2.

Example 5.1.2.Let n = 2. We considef? = B(0,1) \ {0} andzy = (1/2,0). Then
Kq(x,0) = —(log2)~!log|z| and

1|z — 4m0|)

2 |z — x|

Go(z,z0) = Gpo1(z, x9) = log (
Hence we obtain

Galz, 70) Ko(z,0) ~ log ﬁ for z € B(0,1/4)\ {0}.

Leté € 092. We say that satisfies the exterior condition if there exists a positive constant
Aj; such that for each > 0 sufficiently small, there is a point. € B(¢,r) \ Q such that
B(z., Air) CR™\ Q.

Our result in two dimensions is as follows.

Theorem 5.1.3.Let 2 be a bounded uniform domain i®?, and leta > 1. The following
statements hold.

(i) If & € 09) satisfies the exterior condition, then
Ga(r,m0) Ka(z,§) 1 fora € To(£) N B(E, 27 0a(x0)),
where the constant of comparison depends only amd 2.

(ii) If £ € 0Qis an isolated point, then there exigts> 0 such that

Go( 10) Ko, €) = log ﬁ forz € B(€,0)\ {¢},

where the constant of comparison is independent of

We may deduce from Theorerbsl.land5.1.3the following relationship between the
boundary decay of the Green function and the boundary growth of the Martin kernel.

Corollary 5.1.4. Let() be a bounded uniform domain . Let¢ € 092, o > 1 and3 > 0.
Suppose that > 3. The following relationships hold.

i Ga(z, z0) : . ) B

' —2 = coifand only if 1 T ¢ —0.
I . GQ(H? .1'0) . . . B

I 1 ———~ =0ifandonlyif 1 _ A2, — o
O %o T —ep yit Jm ole—¢l a(z,£) = o0

Moreover, if we assume the exterior conditiorg athen these relationships hold for> 2.
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5.2 Proofs of Theorems.1.1and5.1.3

Theoremb.1.1and5.1.3will be established by showing the propositions below.

Proposition 5.2.1. Let 2 be a bounded uniform domain R" with n > 3. Then we have for
x € Q\ B(wg,2 ' 0g(70)) andy € ©,

(5.1) Gal(z,z0)Ko(z,y) < Alz —y* ",
whereA is a constant depending only éh

This proposition follows from the 3G inequality. The 3G inequality was firstly proved in
a Lipschitz domain by Cranston, Fabes and ZHad.[Aikawa and Lundh4] extended it to
a uniformly John domain. A uniformly John domain is more general than a uniform domain.
We may state the 3G inequality in a uniform domain as follows.

Lemma (3G inequality). Let(2 be a bounded uniform domain " withn > 3. Then
Ga(z,y)Gal(z, 2)
GQ(yv Z)

Now, applying the 3G inequality with = z, we have by the continuity oK (z, -) on
Q that

<Az —y "+ ]z —2*") forz,y,z € Q.

Ko(z,y)Galz,20) < A(lz —y|* " + |z — xo[*™™) forz € Qandy € Q.

Since
2|z — x|

—y| < (diam €2
o~ 9] < (diam @) S

forz € Q\ B(xg,2 'q(x0)),
we obtain Propositiob.2.1

Proposition 5.2.2.Let(2 be a bounded uniform domaingr* withn > 2. Let{ € 090, o > 1
andx > 1. Then we have far € T, (€) N B(&, (2k)"0q(x0)) andy € QN B(E, |z — &),

(5.2) Ga(,20)Ka(x,y) > Alz —y[*™",
whereA is a constant depending only an x and(Q.

For the proof of Propositio®.2.2, we prepare some materials: the boundary Harnack
principle proved in8] and a lower estimate of the Green function.

Lemma 5.2.3. Let 2 be a bounded uniform domain iR" with n > 2. Then there exist
constants, > 0 and A, > 1 depending only of2 with the following property: Lef € 052
and0 < r < rqg. Suppose thab; and h, are bounded positive harmonic functions on
QN B(¢, Agr) vanishing quasi-everywhere a2 N B(€, Ayr). Then

hly) M)
ha(y) — ha(y')

where the constant of comparison depends onl§2on

fory,y € QN B(&, ),
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A uniform domain can be characterized in terms of the quasi-hyperbolic metric. Gehring
and Osgood24] showed thaf is a uniform domain if and only if

(5.3)  kal(z,y) < Alog K’?sz%’ n 1) (’;ﬁzy?;’ n 1)} +A forzye.

Lemma 5.2.4.Let() be a uniform domain ifR™ withn > 2 and letx, y € 2 satisfy
|z — y| < Asmin{da(z), da(y)}-

Then there exists a positive constahtiepending only onl; and (2 such that

Galw,y) = Alx -y

Proof. We may assume, without loss of generality, thatz) < do(y) and |z — y| >
271q(x). Takew € S(z,27'dq(x)). Then|y — w| < 2|z — y|, so that6.3), Corollary
6.1.2and Lemméb.1.3yield that

GQ(‘I7 y) ~ Gﬂ(xa w) 2 GB(w,(SQ(x)) (ZB, U)) ~ 6Q(x)2_n Z A|l’ - y|2—n7
as required. Il

Let us prove PropositioB.2.2 If necessary, we writel(a, b, - - - ) for a constant depend-
ingona,b,---.

Proof of Propositiorb.2.2 Letx € T, (§) N B(E, (2k)1da(xo)) andy € QN B(&, klz —&]).
Thenz,y € B(xg,2 '0a(x)). Let A, be a constant sufficiently large so that > 24,
and A} '6q(x) < ro, WhereA, andr, are constants appearing in Lem®2.3 Thenr :=
A;'6q(x) < ro. We consider two cases.

Case 1 0q(y) < r. Lety* € 9Q be such thaly —y*| = da(y). Then|z—y*| > dq(x) > Agr
and|xy — y*| > da(xo) > da(x) > Agr. Therefore Lemm&.2.3yields that

_ Go(r,y) _ Galz,y,)

~ Galwo,y) ~ Galzo,yr)’

wherey, € S(y*,r)NQis such thatq(y,) ~ r. Sincey, & Bz, 27 0o () and|z —y,| <
A(k, Ay, a)r, it follows from (5.3), Corollary6.1.2, Lemmag6.1.3and Lemméb.2.4that

KQ(IL‘,ZD

Ga(,20) ® Ga(yr,m0) and Ga(w,y,) > Alz —y,[*™" > Alw —y*™",

so that
GQ(IE7$O)KQ(:E7?/) ~ Gﬂ(x’yT) Z A|£B - y|2_n‘

Case 2: dq(y) > r. Sincelr — y| < A(k, Ay, a)r, it follows from (5.3), Corollary6.1.2,
Lemma6.1.3and Lemméb.2.4that

Ga(z,x0) = Goly, ) and Gq(z,y) > Alz —y|*",

and so0%.2) holds in this case.
Finally, lettingy to the boundary, we also obtalf.p) for y € 0Q N B(&, k|z — &|). Thus
Propositiorb.2.2is proved. Il
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Proposition 5.2.5. Let Q2 be a bounded uniform domain iR?. The following statements
hold.

(i) If & € 09 satisfies the exterior condition, then
Go(w, z0)Ka(x,6) < A forz e T\ (&) N B(&, 27 0a(x0)),
whereA is a constant depending only enand (.

(i) If £ € 0Q2is an isolated point, then there exigts> 0 such that

Ga(z,z0)Ka(z,§) = log

. ! g forr e Ble.o)\ (),

where the constant of comparison is independent of
In the proof of Propositio®.2.5 we use the following lemma.

Lemma 5.2.6.Let Q be a domain inR? and leta > 1. Suppose that € 0N satisfies the
exterior condition. Then there exists a positive constaniepending only on and A; such
that

Go(z,y) <A forzeT,(¢)andy € Q\ B(z,2 '0q(z)).

Proof. Letx € I',(¢) and putr = |z — £|. By our assumption, there is € B(¢,r) \  such
that B(z,, A;r) € R?\ Q. We now writey* for the inverse of; with respect taS(z,, A;r).
Then we obtain that fog € S(z,2710q(z)),

ly — 2|z =y
< = 1 < A (0 A .
Ga(2,y) < Gra\5 A (4 Y) = log ( A ey ) =AM

Hence the maximum principle yields the lemma. [
Proof of Propositiorb.2.5 We first show (). Letz € T',(§) N B(&,2710q(z0)) and put

r = A;'6q(z) as in the proof of Propositich.2.2 Repeating the argument in Case 1 in the
proof of Propositiorb.2.2and using the same symbol, we havegat () sufficiently neak,

GQ(:C7yr)
K N —
Q($’ y) GQ(xm yr)

SinceGg(z, xo) =~ Go(y., o), Lemma5.2.6yields that
Ga(x, zo)Ka(z,y) < A.

Tendingy to &, we obtain ).
We next showii). Let& € 99 be an isolated point and I6t= 27! min{1, dist(&, 9Q \
{&}),0a(x0)}. We have that for € B(¢,0),

20
Ka(z,§) = ﬁlGQU{E}(waf) > BIGB(€,26)($7£> = (3 log m

1
> 20616 log eIk
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where; is some positive constant. On the other hand, s{i¢€, diam ) \ {¢}) \ Q is
minimally thin at¢ with respect taB(¢, diam ), it follows from Lemme4.3.1and 4.5) that

diam €2 1
< A(5.Q) 1o .
w—g S A0Wle g

We also have by the Harnack inequality thatfoe B(¢, ),

Ka(2,8) < BoaKp(e diam o)\ (¢} (7, §) = Palog

Go(z,70) = Gaugey (7, 20) = Gaugey (&, o).

Hence we obtairii(). Il

5.3 Equivalence between ordinary thinness and minimally
thinness

Throughout this section, we suppose that 3. Let £ be a subset oR” and let{ € R”
be a limit point of E. We write E; = {z € F : 27771 < |z — ¢| < 277}, and denote
by ﬁlE the regularized reduced function of the constant function 1 relative em R™. By
Wiener’s criterion, we can define thinness of a set as follows: & sethin at if and only
if >0, Efﬂ' (€) < 400 (see B, Theorem 7.7.2]), which is also equivalent to there exists
a positive superharmonic functian on R™ such thatu({) < +oo andu(z) — +oc as
xr — £ along E (see B, Theorem 7.2.3]). By8, Theorem 9.2.7], the minimal thinness is
characterized as follows: ldf C 2 and let{ be a minimal Martin boundary point &2,
which is a Martin topology limit point of2. ThenE is minimally thin at¢ with respect td?
if and only if there exists a Green potentfa. on 2 such that/ Kq(z,&)du(z) < 400 and
Iim Goply) _ too

y—¢&yeE Go(ro,y)

Let E be a set contained in a non-tangential cone at a boundaryfdm{28], Lelong-
Ferrand proved in the half space thatis thin at if and only if £ is minimally thin até.
Aikawa [1] proved this equivalence in a Lipschitz domain. The purpose of this section is
to extend this result to a uniform domain using Propositir2sland5.2.2 We note again
that the minimal Martin boundary of a bounded uniform domain coincides with its Euclidean
boundary.

Theorem 5.3.1.Let() be a bounded uniform domain R* withn > 3, and let{ € 09 and
a > 1. Suppose thatl C I',(§). ThenE is thin at¢ if and only if £ is minimally thin at¢
with respect td).

Proof. We may assume, without loss of generality, thas a limit point of £ and £ C
B(£,6719q(x0)). We first show the necessity. Léf; be a set defined as above. Since
E is thin at¢, there exists a sequence of positive numbders such thata; — +oo and
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S a; R (€) < +o0. Lety; be the Riesz measure associated wiifH, and letdy;(z) =
Go(z,zo)dp;(x). It then follows from Propositios.2.2with « = 3 that fory € £},

R = [ 1o = oP "dus(o) < A [ Kale,p)ivy(a),

so that

1 < Gav;(y)

A G (l’o,y)
Letu(y) = > 72, a;Gav;(y). Thenu is a Green potential oft satisfying that

for quasi-every € E;.

u(y)

- T = +OO,
y—& yEE\F GQ($O>y)

whereF' is a polar set. Also, we have by Propositi.2.1

>0y [ Kolwdy () <43 0RE(E) < +oo
7j=1 Jj=1

HenceFE' \ F is minimally thin at{ with respect td2, and so is¥.
We next show the sufficiency. Sinde is minimally thin at¢ with respect ta, there
exists a Green potentiélo . with supp 1o C ', (€) such that[ Ko (z, £)du(x) < 400 and

I Gapu(y)
11m —_—
y—&vel Go(zo,y)

Letdv(z) = Go(z, zo) 'du(z). It then follows from Propositio.2.1that

Ganly) /K (x,y)du(zx <A/|x y|* "dv(z),

GQ 1‘07

so that

lim x —ylP "du(z) =
dim / & — P dv ()

Also, Propositiorb.2.2yields that

/|x — P du(x) < A/Kg(x,g)du(x) < +o0.

ThusF is thin at¢. The proof is complete. Il
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Chapter 6

Appendix

6.1 Quasi-hyperbolic metric and Harnack’s inequality

We show a relationship between the quasi-hyperbolic metric and Harnack’s inequality for
positive harmonic functions. Recall the definition of the quasi-hyperbolic metrie:on
, ds(z)
ka(z,y) = inf  Gal)
where the infimum is taken over all rectifiable curven €2 connectingr to y.
We say that a finite sequence of bajlB(z;, 27 'dq(x;))}, in Q is a Harnack chain
betweenr andy if x1 = z, xx = y, andz;; € B(x;,2  q(x;)) forj = 1,--- \N — 1.
The numberV is called the length of the Harnack chain. As shown in the following lemma,
the shortest length of Harnack chain is estimated by the quasi-hyperbolic metrie:, By
we denote the line segment betweeandy.

Lemma 6.1.1.Let) be a proper subdomain ®&" andz, y € 2. Then the shortest length of
the Harnack chain betweenandy is comparable td:q(x, y) + 1.

Proof. Let {B(z;,27'da(z;))}}., be a Harnack chain betweenandy. Sincex;,, €
B((L’j, 27159(113]‘)), we haV&liSt([Ij, {L‘j+1], 89) > 271(59(‘@]‘). Let7 = Ujvzzl [ZE]‘, Il'j+1]. Then

ds(z) = ds(z)
[Y(SQ(Z) B ; /[xjvxﬂ—ﬂ 0a(2) =4

Hence we obtairtg(x,y) < min N.
Conversely, lettind = kq(x,y), we can find a rectifiable curvein Q2 such that
ds(z)
, 6a(2)
Let M be the smallest integer such tiedf (log(3/2)) < M. Then we can také/ points
x1,- -+, xpy N~y sothatr; =z, x) = y and

ds(z) 3 .
(6.1) / <log= forj=1,--- M —1.
V(@)5mj41) da(2) 2

< 2.
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Sincedq(z) < do(x;) +L(y(xj, 2)) for z € v(z;,x41), the left hand side ofd,]) is bounded
from below by

(y(zj,x541)) o
/ ds log (1 N 5(7(%%4&))) '
0 da(zj) + s da(z;)

This shows thabc] — .73]'_;,_1’ < g(’}/(l’], ilfj+1)) < 2_159(33]'); that iS,.fI?j+1 € B(l‘j, 2_159<$]’)).
Hence{B(z;,2 '0a(z;))}}L, is the Harnack chain betweenandy with length M, for
which

M= a2 TS Toa(3/2)

Thus the lemma is proved. H

(ka(x,y) +1).

Lemma6.1.1and Harnack’s inequality yield the following corollary.

Corollary 6.1.2. Let () be a proper subdomain @&". Then there exists a constaAt > 1
depending only on the dimensiarsuch that ifz, y € €2, then

exp(—A(ka(z,y) + 1)) < % < exp(A(ka(e,y) + 1))

for every positive harmonic functignon €.
In order to apply Corollarg.1.2to the Green function, the following lemma is needed.

Lemma 6.1.3.Let () be a proper subdomain @&" andz € €. Then
kﬂ\{z}(x7 y) S 3kﬂ($7 y) + 67 for T,y € Q \ B(Z, 27169(2))

Proof. We first claim that ifw € Q satisfie}™!dg(w) > do\ 23 (w), thenw € B(z,27dq(2)).
Indeed,

3|z — w| = 3o\ 1 (w) < da(w) < da(z) + |2 — wl,
so that]z — w| < 2716q(2).

Let v be a rectifiable curve if2 connectingz to y. If v N dB(z,2710a(z)) = 0, then
the claim shows thato, (.1 (2, y) < 3ko(z,y). We consider the case wherintersects with
0B(z,27150(z)). We writew; andw, for points of the first hit and the last hit, respectively,
i.e.v(z,w1) NIB(z,2710q(2)) = 0 andy(wy, y) N OB(z,2715o(z)) = 0. Lety, be a curve
in 9B(z,2710g(z)) connectingw; to w, such that'(y,) < wdq(z), and lety’ = ~(z,w;) U
71 U y(w2, y). It follows from the above claim that i) €  \ 71, thendo(w) < 3da\ 123 (w),

so that
/ds(w) / ds(w)
v (59(&)) v (z,w1)Uy(wa2,y) 59(11))
ds(w) / ds(w) / ds(w)
-~ 7 + -~ 7 -~ 7
A yy) O\ (W) S davg(w) s Gz (w)

ds(w) i
/7’ O\ (=} (w) o
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Thus we have ds(u0)
s(w
ko (z,y) < 3/ + 6.

Sincer is arbitrary curve, we obtain the lemma.
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