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Abstract

This paper extends the recent result due to Hsu (2010) about removable singularities of
semilinear parabolic equations. Our result is applicable to solutions of equations of the form
—Au+ Gu = |ulP"ruwith 0 < p < n/(n — 2). The proof is based on the parabolic potential
theory and an iteration argument. Also, we prove that p < (n + 2)/n, then integral solu-
tions of semilinear parabolic equations with nonlinearity depending on space and time variables
andu? are locally bounded. This implies that the blow-up for continuous solutions is complete.
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1 Introduction

The classical removability theorem states that a compact polar set is removable for bounded har-
monic functions. If the set is singleton, then the boundedness of functions can be weaken. Indeed, it
is well known that a harmonic functidnhas a removable singularity @if and only if

o([lz[[>=")  (n > 3),
h(x)| =
) {0(10g||5ﬂ|) (n=2),

asz — 0. Also, there are many investigations about a removable isolated singularity of solutions of
semilinear elliptic equations (see [2, 7, 13]).

The parabolic analogue that a compact polar set is removable for bounded solutions of the heat
equation was given by Watson [14]. Also, Oswald [9] obtained some results about a removable
isolated singularity and the asymptotic behavior near an isolated point of nonnegative solutions of
semilinear parabolic equations. See also Taliaferro [11] for semilinear parabolic inequalities. By the
way, the fundamental solution of the Laplace equation is also the solution of the heat equation. Thus
it is interesting to study removable singularities{@} x (0, co) in the parabolic case. This problem
was recently researched by Hsu [5] and Hui [6] for solutions of the heat equation and solutions
of semilinear parabolic equations with a bounded nonlinear term. However, it is not known about
semilinear parabolic equations of the forrl\u + 9;u = |u|P~1u for instance. Thus the purpose of
this paper is to extend Hsu and Hui’s result to such equations.

In this paper, we suppose > 3 and denote a typical point iR"*! by (z,t), wherex € R
andt¢ € R. Also, let$2 be a domain irR™ containing the origid and letT" > 0 be fixed. We study
semilinear parabolic equations of the form

—Au + Opu = F(z, t,u, Vu), (1.1)
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whereA is the Laplacian o™, Vu the gradient of, andd; = 9/0t. Assume thaf’ is a measurable
function onQ2 x (0,T) x R x R™ satisfying

[F(,t,u, Vu)| < Cr(1+ [uf?) (1.2)

for some constanf’; > 0 and n
0<p< ——.
n

By saying a solution of (1.1), we mean a continuous function having continuous first partial deriva-
tives with respect to the spatial variables and satisfying (1.1) in the sense of distributions. A solution
wof (1.1) in(Q\ {0}) x (0,T) is said to haveemovable singularitiesen {0} x (0, T') if there exists

a solutionz of (1.1) inQ x (0,T) such thati = w on (2 \ {0}) x (0,T"). We prove the following
theorem.

Theorem 1.1. Assume thal’ satisfieq1.2) for somed < p < n/(n — 2), and suppose that is a
solution of(1.1)in (2 \ {0}) x (0,T). Thenu has removable singularities ofd} x (0,7T) if and
only if for any0 < t; < to < T and0 < ¢ < 1 there exists > 0 such that

Ju(z, )] < 8fj|>~" (1.3)
forany0 < |jz|| < randt; <t < t,.

Remarkl.2 In Theorem 1.1, the upper boupd n/(n — 2) is optimal. Indeed, ip > n/(n — 2),
thenu(z) = ||z|| =2/~ is a solution of-Au = Vu? in R™ \ {0} with
2{(n—2)p—n}

(p—1)?

Also, if 0 < v < (n — 2)/2, thenu(z) = ||2||> " (~log ||=|)~" satisfies—Au = Vu™/("=2) in
B(0,1/10) \ {0}, where

V =

V(z) =v{n—2— (v + 1)(~log|lz]) "L} (~ log J«]) ~+2/(»=2

is nonnegative and bounded &0, 1/10). Thereforeu(z,t) = wu(z) is the stationary solution of
the corresponding parabolic equatieAu + d,u = VP in (B(0,1/10) \ {0}) x (0, 00), which
satisfies (1.3), but can not be extended$ x (0,7) as a solution.

We say that: is atemperatureon Q x (0,7) if u € C%1(Q x (0,7)) andu satisfies the heat
equation—Au + d;u = 01in Q x (0,7). The following corollary is the special cage = 0 of
Theorem 1.1.

Corollary 1.3. Suppose that is a temperature orfQ2 \ {0}) x (0,7"). Thenu has removable
singularities on{0} x (0,7) if and only if for any0 < ¢; < t2 < T'and0 < § < 1 there exists
r > 0 such that(1.3) holds for any0 < ||z|| < r andt; <t < to.

This corollary and the removability theorem for bounded solutions of (1.1) Whking bounded
were recently proved by Hsu [5]. His proofs are based on estimates for the Green functions of a
circular cylinder and the exterior, and a careful analysis of the behavior of solutions near singularities
using the Duhamel principle. After that, Hui [6] gave another proofs for Corollary 1.3 using the
parabolic Schauder estimates and the maximum principle. But the proof of the essentiakfact
Lo (2 x (0,7)) is not easy. Also, we note that the maximum principle argument is not applicable
to solutions of (1.1). Thus we give a proof based on the parabolic potential theory and an iteration
argument developed in the area of nonlinear analysis. When0, it also provides a simple proof
for Corollary 1.3.

Theorem 1.1 and its proof have some similarities with Giga and Kohn’s result [4] concerning
blow-up problems. Lety € Q andT > 0. A solutionw of (1.1) inQ x (0,7 is said toblow upat



a point(xo, T') if u is not locally bounded nedrq, 7). They proved that ifi is aC?'!-solution of
(1.1)—(1.2) inQ2 x (0,T") for somep > 1 satisfying

lu(z, t)| < e(T — t)~ /(=1 (1.4)

forall (x,t) € B(xg,r0) % (T —r2, T) and for some small < ¢(Cy, p,n), thentherei® < r; < ro

such thatu is bounded orB(zg, 1) x (T — 72, T). In other wordsy does not blow up at the point
(zo,T). For the proof, they first used a Duhamel formulation and a Gronwall type inequality to
obtain an estimate better than (1.4), and then iterated this argument until getting the boundedness
of u. The last step in our proof of Theorem 1.1 is similar to their's. But, before proceeding to an
iteration argument, we must first establish a Duhamel formulatioft an(0, 7) because solutions

may have singularities of0} x (0,7'). Also, it is difficult to apply a Gronwall inequality in space
directions. This will be conquerable by obtaining estimates for potentials of the déngity* (see

Lemma 2.3). This iteration argument also yields the following theorem.

Theorem 1.4. Assume thak’ satisfieg1.2)for somep > 1. Letu be a solution of1.1)in 2x (0,T).
If there are constantg < 2/(p — 1), » > 0 andd > 0 such that

u(z, )] < [l (1.5)
forany|jz|| < randT — 6 < ¢t < T, thenu does not blow up at the poid, T).

Also, concerning blow-up problems, we shall prove in Section 4 that<f (n + 2)/n, then
integral solutions are locally bounded. This implies that the blow-up is complete.

2 Preliminary

This section collects some known results from the parabolic potential theory (see Doob’s book [3]
and Watson'’s paper [14] for details and further informations). We adopt Watson’s terminology. Let
D be a bounded domain iR"*!. A functionu : D — (—o0, +0o0] is called asupertemperaturen

D if u is lower semicontinuous of, « is finite on a dense subset 6f, andu satisfies the mean
value inequality: for anyz,t) € D and smalld < r < 7, 4,

1 |z =y
t) > —— — dyd
10 2 gy /B(W ()2 1o

where

) — : 1 2 —y|I” 1
B(z,t;7) = {(y7s) 15 < t, (ts)”/QeXp{_ 1= s) > T (-
If —u is a supertemperature dn, thenu is said to be gubtemperaturen D. Also, a setF in R**+!
is called apolar set if there exists a supertemperaturdefined on a neighborhood @ such that
u = +o0 on E. Observe that the functiom(z, ) = ||=||>~" is a supertemperature @i+, and so
{0} x Ris a polar set. The following is the removability theorem for supertemperatures.

Lemma 2.1([14, Theorem 29]) Let E be a relatively closed polar set iP. If » is a supertemper-
ature and bounded below dn \ F, then the function

u(z,t) ((z,1) € D\ E),

lim inf , ,t) € F),
D\E;{ng,i?ﬁ(x,t)“(y s) ((z,t) € B)

u(x,t) =

is a supertemperature ob.

We call the functior: thelower semicontinuous regularizatiaf «. Also, a temperature on D
satisfyingv < w on D is said to be ahermic minoranof v on D. The Riesz decomposition theorem
for supertemperatures is stated as follows.



Lemma 2.2([14, Theorem 22]) If u is a supertemperature aR, then there exists a unique measure
1 on D such that—Awu + 0,u = p in D in the sense of distributions. Moreoveruifis bounded
below onD, thenu is represented as

u(z,t) = h(x,t) +/ Gp(z,t;y,s)du(y,s) forall (x,t) € D,
D
whereh is the greatest thermic minorant efon D and G, is the Green function fob and the heat

operator.

Note that for any(z, t), (y, s) € D with s < ¢,

| i - ol
Go(@,tiy,s) < {4r(t — s)}7/? eXp{ At —s) }

Finally, we give an elementary estimate which plays an important role in proving the local bound-
edness of; in the proof of Theorem 1.1. By the symb@| we denote an absolute positive constant
whose value is unimportant and may change from one occurrence and the next.

Lemma 2.3. Leta < nandT > 0. Then there exists a constatitdepending only o, T andn
such that for allz € R™ \ {0} and0 < ¢ < T,

t ! le =yl yoa
/0 /n WQXP{_M}||Q|| dyds

CHJTHQ_O‘ if2<a< n, (21)
< C<1+log+1) if =2,
[
Cllz|?~+1)  ifa<?2,

wherelog™ a = max{log a,0}.

Proof. Letz € R™ \ {0} be fixed and lef2; = {y : |ly]| < ||z]l/2}, Q2 = {y : ||lz]|/2 < |ly]| <
2||z||} andQs = {y : ||ly|| > 2||z||}. Then the integral in (2.1) is not greater thAn+ I + I3,

where
t ! o=yl
I- = . N /9 L —ad d )

Let us estimatel;. Note that [~ p("="/2exp(—p)dp < oo whenn > 3. Since|z — y| >
]| = l[yll = [lz[| /2 for y € 1, we have

11</t/ e e e gy
<)) S, G5 P\ 60— )
t

. 1 Jal?
< n (a4 - =
< Claf™~= [ (t_swexp{ s Yas
<Clalp= [ (g dp
I

z||2/16t
< Cllz|*~.

Also, ||y — | < |ly|l + ||=|| < 3||=|| for y € Q. Therefore
t 2
- 1 [z —yll
I, < C|lz]| a/ / exp{— dyds

o Jwly-zl<slaly (t = )"/ 4t =)
Bllzll pt =1 r2

< Cllz||7« — dsd

<clel™ [ [ g en{ - ot

3|z 00
<Cx||-a(/0 d)(/ p<”-4>/2exp<—p>dp)

< Cll=f*=.




Fory € 3, we havelx — y|| > [ly|l — [l=[| > |lyl|/2, and so

I- </t/ _ exp —7”y|‘2 lyll~ dyds
= Jo, =92 16(t — s)

2

e’} t n—a—1
< C/ / ! exp{— ! }dsdr (2.2)
2l Jo (t—s)"/2 16(t — s)
o0 —a o0

<C o </ P2 exp(—p) dp>d7".
2)||| 2 /16t

If a > 2, thenlz < CJ|z||>~“. Hence (2.1) follows in this case. Lat< 2. By (2.2), we have for

0<t<T,
1'3 < C(/OO T,lfoz exp (72>dr) (/Oo p(n74)/2 exp<p> dp)

o0 7"2
<C rl-e exp(—)dr.

2|zl

If 2||z]| > 1, thenIz < C. If 2||z|| < 1, then

1 [e%e] 2
I3 <C / ri % dr +/ ri=%exp (—T> dr)
’ ( 2« 1 32T

C (v < 2),

< 1

- Clogw—i—C (a=2).
x

Combining the above estimates yields (2.1)doK 2. O

3 Proofs of Theorems 1.1 and 1.4

As given in [5, p. 156], the proof of necessity in Theorem 1.1 is easy becaissbounded near
{0} x (t1,t2). We provide a proof for sufficiency.

Proof of Theorem 1.1 (sufficiencylet0 < 6 < 1and0 < t; < tp < t3 < t4 < T. By assumption,
there isrg > 0 such that (1.3) holds for all < ||z|| < ro andt; <t < t4. Take a bounded open set
wwith@w C Q and writeD = w X (t2,t3) andDy = (w \ {0}) X (¢2,t3). Sincew is continuous on
(@ \ {0}) x (0,7), it follows from (1.2) and (1.3) wittd = 1 that there is a constagt, such that
forall (z,t) € (w\ {0}) x (t1,t4),

|F(2,t,u, Vu)| < Colz||PE). (3.1)

Claim 1: We first show that there exists a temperatien D such that for al(z, t) € D,
u(z,t) = h(x,t) +/ Gpl(x,t;y,s)F(y, s,u, Vu) dyds. (3.2)
Do

To this end, we let
’U(.’I}, t) = 02 / GD(xa ty Y, S)”pr(Q_n) dyd57
Do

and consider
us(z,t) = u(z, t) + v(z, t) + 62> (3.3)

Thenus is continuous orDy. Sincel|- ||~ is a temperature oy, we observe from (1.1) and (3.1)
that—Aus+0,us > 0in Dg in the sense of distributions. Therefargis a supertemperature @y.
Sinceu; is bounded below o, the lower semicontinuous regularizatiognis a supertemperature



on D, and so there exists a unique measwesuch that—Augs + 0;us = us in D. By the Riesz
decomposition theorem, we have for@il t) € D,

s, t) = ho(z, £) + /D Gp(z,t:y. 5) dysa(y, ), (3.9)

whereh; is the greatest thermic minorant@f on D. Let0 < r < min{rg, /ta — t1, /s — t3}
be small. WriteB, for the open ball of centey and radius- in R”. By (1.3) and Lemma 2.3, we
find a constant’ independent of such that for al(x, t) € B,. x (t1,t4),

20||z)| 2™ + C||z|[PC=™*2 i p(n —2) > 2,

1 .
[us(z, )| < 25H9€||2_”+Clogm+c if p(n —2) =2,
20|z ||*>" + C if p(n —2) < 2.

Take a nonnegative functiohe C3° (B, x (t1,t4)) such thaty = 1 on{0} x (t2,¢3) and| — A¢ —
| < Cr=2. Then

s ({0} x (t2,15)) < / 6 dus

B/rX(tl,tAl)
— [ -ao- a0 dyds
B,~><(t1,t4)

C (8 + rPC=mHny if p(n —2) > 2,
< C(E+r""2log 1) if p(n —2) =2,
r
C(6+r"2) if p(n—2) <2.
Sincep(2 — n) +n > 0 andr > 0 is arbitrary, we have
M§({O} X (tg,tg)) S 05

Let(z,t) € Dy. ThenGp(x,t;-,-) is bounded o0} x (t2,ts), and so

lim Gpl(z,t;y,s)dus(y,s) = 0.

070 J {0y x (t2,t2)
Observe thati; = —Aus + dyus = F(x,t,u, Vu) + Csljz||P3~™) in Dy. The uniqueness of such
a measure implies thau; (v, s) = {F(y, s, u, Vu) + Cy||y[|P*~™} dyds on Dy. Also, as proved
(3.1), there is a positive constafitindependent of such thatis(x,t) > u(z,t) > —C||z||>~ for
all (x,t) € Dy. Since

hs(z,t) = sup{w(x,t) : w is a subtemperature dd such thaty < ;},* (3.5)

we haveh;(z,t) > —C|z|> " for all (z,t) € D. Thereforehs converges decreasingly to a
temperaturé, on D asé \, 0. Then it follows from (3.4) that for al{z, t) € Dy,

u(z,t) +v(z,t) = hx,t) + Gp(z,t;y,8)F(y, s,u, Vu) dyds + v(z, t).
Do
Thus Claim 1 is proved. Note thatis bounded apart from the poifQ, ¢5).
Claim 2: Next, we show that is bounded orD,. We give a proof for the case< p < n/(n —2),
which actually covers the proof for the case&l p < 1 (see Remark 3.1). Thén< n—p(n—2) < 2.
Let V be the smallest number satisfying

1 2
® p(n—2)
log p
1In (3.5), the set taking the supremum is the saturated family of subtemperatures, so the right hand side is a temperature
on D (see [14, Theorem 7]).

N >

)




which is equivalent to
B=pN2—n)+2p" "+ - +2p+2>0.
To apply Lemma 2.3, we note, in arguments below, thagfer2 --- /N — 1,
—n<p2-n)<p2—n)+27 + F2p < 2.

Taket; <7 <7 <+ < Tny2 =ty and letDd = w x (7, 13) andDg = (w\ {0}) x (75,13).
By Claim 1, there is a temperatukg on D7 such that for al(z, t) € D,

u(z,t) = hj(z,t) + . Gpi(z,t;y, s)F(y, s,u, Vu) dyds.
0

Sinceh; is bounded orD?, it follows from (3.1) and Lemma 2.3 that for dlt, t) € D3,
[u(x, £)] < C + Clla|PE="*2 < ]P0+, (3.6)

Then (1.2) and (3.6) imply thaf (z, ¢, u, Vu)| < C||z||?"@=+2r for all (x,t) € D2. Sincehs is
bounded orD3, it follows from Lemma 2.3 that for allz, t) € D,

lu(z,t)| < C + CHx||p2(2_")+2p+2 < C||x||p2(2_")+2p+2.

Repeat this proces§ — 1 times. Then, for al(z,t) € DY,

lu(z,t)] < C||1:HPN71(2*”)+2PN*2+~-+2p+2’

and so|F(z,t,u, Vu)| < C(1 + ||z||*~2) by (1.2). The boundedness kf; on DV*! and Lemma
2.3 yield that for all(z, t) € DY,

C (B>0),

C’—i—Clog+L (8=0).

[l

u(z, )] <

Therefore, ifg > 0, then Claim 2 follows sincé, C Dé\f“. If 8 = 0, then the above inequality

implies that|u(z,t)| < C|z||~'/?, and so|F(z,t,u, Vu)| < C|z||~" for all (z,t) € DY
Applying Lemma 2.3 again, we obtajn(z,t)| < C for all (z,t) € DY*? = Dy. Thus Claim 2 is
proved.

Finally, we observe from (1.2) and Claim 2 that the integral in (3.2) is continuous and has
continuous first partial derivatives with respect to the spatial variables (see [3, pp. 303—-305]). This
implies thatu has a continuous extensiom,say, to2 x (0,7") becauses, t; andw are arbitrary.

Also, Vu exists and, by (3.2), we have for &it,t) € D,

u(x,t) = h(z,t) —|—/ Gp(z,t;y,8)F(y, s,u, Vu) dyds.
D

Sincets, t3 andw are arbitrary, this implies that is a solution of (1.1) if2 x (0,7T). Henceu has
removable singularities of0} x (0, 7). This completes the proof. O

Remark3.L When0 < p < 1, we takel < ¢ < n/(n — 2). Sincew is bounded, we have
|||~ < C|jz||~# forall z € wif 0 < a < B. This implies that (3.1) and each estimate [fiofor
|F’| in Claim 2 are valid fory in place ofp. Hence Claim 2 is true fdb < p < 1 as well.

Remark3.2 WhenF' = 0, we can remove from u; in (3.3). Also, Claim 1 shows that can be
extended td2 x (0,7T) as a temperature. Hence we do not need any arguments in Claim 2. Thus the
proof of Corollary 1.3 is simpler.



Proof of Theorem 1.4The proof is almost the same as Step 2 in the proof of Theorem 1.1. Let
D = B(0,r) x (T —¢,T). By the Duhamel principle, there exists a temperatuom D such that
forall (z,t) € D,

(e t) = ha.t) + [ Gl iy )Py, . V) dyds.
D

Sincewu is bounded on the parabolic boundary Bfby the continuity and (1.5), the maximum
principle shows thak is bounded orD. For convenience, letq = ¢ — 2/(p — 1) for somes > 0
and letN be the smallest number such that¥ > 2/(p — 1). Let (x,t) € D. Then, by (1.2) and
(1.5), we haveF (z,t,u, Vu)| < C||z|P~2/®=1 and squ(z,t)| < C|z||*P~/ =) by Lemma
2.3. Repeat this procesé — 1 times. Therju(z,t)| < C||z||**" ' ~%/(~1, and so

|F (2, t,u, V)| < C{1 4 ||z||*" ~2»/(e= 1},

As in the final of Step 2, we can show thais bounded orD. Henceu does not blow up at the point
(0, 7). O

Remark3.3 Now, letu be a nonnegative classical solution-efAu + d;u = w? in R™ x (0,7),
which blows up at the poini0, 7). As shown by Merle [8], there exists a profil§-, T') such that
u(-,t) converges ta(-, 7") uniformly on compact sets &” \ {0} ast — T'— 0. Then Vebzquez's
result [12] implies that there is a unitary vectoe R™ such that for smalt > 0,

1 ,,,2 *1/(P*1)
T > — ——— .
ulra,T) 2 0(|1ogr|>

Thus itis an interesting question whether one can teke2/(p — 1) in Theorem 1.4.

4 Integral solutions and complete or incomplete blow-up

This section deals with complete or incomplete blow-up of nonnegative solutions of

—Au+ dyu = F(x,t,u) inQx (0,00), (4.2)
u=0 onofN x (0,00), 4.2)
u(z,0) =up(z) forallz e Q, (4.3)

whereu is honnegative and bounded tn Assume thaf is regular for the Dirichlet problem (to
understand (4.2) in a usual sense) and that a nonnegative measurable functionfox (0, co) x
[0, oo] satisfying

0 < F(z,t,u) <C(1+uP) (4.4)

for some constar®’ > 0. We say that: blows up in a finite time” if » is a continuous function on
0 x (0,T) satisfying (4.1) i2 x (0,T) in the sense of distributions and

lim sup [[u(-, )| Lo () = oo
t—=T-0

Throughout this section, we simply writ@, for the Green functiorG g ,)- A nonnegative

measurable function on 2 x (0, c0) is anintegral solutionof (4.1) if there exists a nonnegative

temperaturé, on {2 x (0, co) such that for a.e(z,t) € £ x (0, c0),

u(et) =he )+ [ Gale i) Ply.s,u) dyds. (4.5)
Qx(0,00)
If u satisfies (4.2) and (4.3), thértx, t) = fQ Gq(z,t;y,0)ug(y) dy. Given an integral solution,
we write
T* = T*(u) = sup{t : uisfinite a.e. o) x (0,¢)}.



Observe that: = co onQ) x (T*, o). Let us define complete or incomplete blow-up for continuous
solutionsu of (4.1)—(4.3) in2 x (0, T"). We say that: blows upcompletehat a timeT' if T' = T*(U)
for any integral solutioi/ of (4.1)—(4.3) satisfying/ = v onQ x (0,7). If T' < T*(U) for some
integral solutionJ of (4.1)—(4.3) satisfyind/ = w on) x (0,7T), then the blow-up isncomplete

In [1], Baras and Cohen proved that the blow-up is complete when the nonlinearFtaésm
independent ofz, t) and is comparable te” with 1 < p < (n+2)/(n—2). Quittner and Simondon
[10] investigated complete blow-up in the caBe= V (x)u(x)P and gave sufficient conditions for
V andp. The next result is applicable to more general nonlinearity.

Theorem 4.1. Assume thal’ satisfieq4.4) for some0 < p < (n + 2)/n. Letu be a nonnegative
integral solution of(4.1). Thenu is locally bounded and continuous éhx (0, 7).

Proof. If w is locally bounded of2 x (0,7*), thenF(-, -, u) is so by (4.4). Therefore we see that
is continuous there. Let us prove the local boundedness bétzy € Q2 and0 < tg < T*. Take

r > 0 satisfyingty — r> > 0 and B(xo,2r) C Q and writeQ; = B(xo,7/27) x (to — r?/2%7 ).

It suffices to show that is bounded orQ,,, for somem. By the definition of7™, we find a point
(z1,t1) € B(zg,r) X (to, T*) such thatu(z,t1) is finite. It is known from [15] that there exists a
constanC' > 1 depending only om, T* andn such that for alke, y € B(zo,r) ands < t < T,

_Clz— y||2}

1
Gal(z, t;y,s) > GB(m0,2r)($7t§y»5) > W exp{ —s

Sinceh is nonnegative, we have by (4.5)

o> ulenst) 2 [ ol tiiy.s)F(y.s,u) dyds
1 ’ (4.6)
25 o, F(y, s,u) dyds.
Let(z,t) € Qj+1 and(y, s) € (2 x (0,00)) \ Q;. SinceGq (-, -;y, s) is a nonnegative temperature
on (2 x (0,00)) \ {(y,s)}, it follows from Harnack’s inequality that there exists a consignt
depending ony such that
Ga(z,t;y,5) < ¢;Galz1,t1;Y, 5),

and so
/ Gale, t,y, $)F(y, 5, u) dyds < cyulzs,ty).
(£2%(0,00))\Q;

Sinceh is bounded o), we have by (4.5) that for a.€z,t) € Q,+1,
u(x,t) < C+ cju(e, tr) + Ga(z,t;y,s)F(y, s,u) dyds. 4.7)
Qj

Also, in arguments below, we use the elementary factthatz, ¢;-,)? andGq (-, -; y, s)? are lo-
cally integrable orf2 x (0, 00) if ¢ < (n + 2)/n.

Let
n+2 log(q/(q — 1))
max{p,1} <g< —— and /= [ + 1.
1) n log(q/p)
For simplicity, we write
Uiz, t) = [ Galz,t;y,s)F(y,s,u) dyds.
Qj

Then (4.7) gives that fof = 0,1, ..., ¢ and a.e(x,t) € Q,+1,

u(z,t) < C+ ¥ (x,t). (4.8)



Letx > 1. By Jensen’s inequality, we have for a(e, t) € Qo,

Ui(z,t)" <C | Galz,t;y,s)F(y,s,u)" dyds.
Qj

This and Minkowski’s inequality for integrals give

1/q 1/q
(/ Uiz, t)™ d:rdt) <C < Ga(z,t;y,s)? dacdt) F(y,s,u)" dyds
0 Qi \JQo

<C F(y,s,u)" dyds.
Qj

By the way, (4.4) and (4.8) imply that for a.ex,t) € Q;11,
F(z,t,u) <C(1+uP) <C+ C¥j(z,t)’.

Leta = g/p. Then

/ F(x,t,u)m‘dzdtSCJrC(/
Qj+1 Q

Using this inequality’ times, we obtain

q
F(y,s,u)" dyds) .

J

2

q
F(y,s, u)az dyds < C + C(/ F(y,s,u) dyds) <C.
Qe

0

Here the last inequality is by (4.6). Since our choicé ohplies that

¢

o n—+2
<g< ,

ol —1 -1 n

it follows from (4.8) and Hlder’s inequality that for a.dx, t) € Qp41,

1/«
u(z,t) < C+ C(/ F(y, 57u)o/~’ dyds) <C.
Qe

The lower semicontinuity of concludes that < C onQ,. 1. This completes the proof of Theorem
4.1. O

Corollary 4.2. Assume thaF satisfieg4.4) for some0 < p < (n + 2)/n. Letu be a solution of
(4.1)H4.3)which blows up in finite time. Then the blow-up is complete.

Proof. LetT be a blow-up time and let blow up at a poin{xzo, 7). Thenz, € Q by (4.2). Suppose
to the contrary thaf™(U) > T for some integral solutiod/ of (4.1)—(4.3) satisfyind/ = w on

Q x (0,T). Then Theorem 4.1 implies that is bounded on a neighborhood of the pding, T),
and sou is bounded orB(xg,r) x (T — r2,T) for smallr > 0. This is a contradiction. Hence the
blow-up is complete. O

In Corollary 4.2, the upper bound pfis nearly optimal.

Theorem 4.3. LetT > 0. If p > (n + 2)/n, then there exist’ € C*°((R™ x (0,00)) \ {(0,7)})
with 0 < V < 1, a nonnegative bounded continuous functignon R™ and an integral solution
u e CH((R" x (0,00)) \ {(0,7)}) of

—Au+ u=VuP inR" x (0,00),

(4.9)
u(x,0) = up(x) forall z € R™,

such thatu blows up incompletely at the poi(t, 7). Moreover,

limsup ||z]|* P~ Yu(z,T) >0 and limsup(T — )/ P~Vyu(0,T) > 0.
lel—0 t>T—0
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For the proof, we need the following elementary estimate.

Lemma 4.4. There exists a positive constaty depending only on such that for eactk > 0,
/ GR" (l',t;y,()) dy 2 C37
B(0,R)

whenever: € B(0,2R) and R?/8 <t < R2.

Proof. Letx € B(0,2R) andt > 0. By the change of variables= (z — y)/v/4t, we have

1 ||z—y||2> ) )
exp| — dy = exp(—||z[|*) dz
/B(O,R) (4rt)n/? ( 4t ™2 B2V, R) VD)
S 1 R \" 9R?
—|—=] exp|——).
- C\ V4t P 4t

The right hand side is bounded below by a positive constant itt¢s < t < R2. O

Proof of Theorem 4.3By the scalingu, (z,t) = r2/"=Du(rz, r2t), it suffices to consider the case
T =1/5 Forj e NU{0},letR; =1/4/,r; = R;/4andt; = (1 — R?)/5. Then

1
§R§ < (tjg1 —3ri,) —t; <T —(t; —2r7) < R (4.10)
Letxz; = (4R;/3)e1, Wheree; = (1,0,...,0). Then
0e B($j+1, 2Rj+1) - B(a:j, 2Rj). (411)

Also, the first inequality in (4.10) implies théB(x;, 2R;) x (t; — 37‘?, t;)}52, is mutually disjoint.
Take a constant’, > 0 satisfying

p 2p
(0304) > 4510y, (4.12)

whereCs is the constant in Lemma 4.4. Leg be a continuous function dR” such that < ug <
Cyand
] Cs onB(zg, Ro),
“7 Vo outsideB(zo, 2Ro).

Also, for j € N, we takef; € C(R" x (0,00)) with 0 < f; < C4R; */*~") and

J

4 CuR7?/ ™D onB(aj, Ry) x (t; — 202, t; — 1),
7o outsideB(z;, 2R;) x (t; — 312,1;).

Definef = >°72, f; and
u(a:,t) = GR" (x7t7y70)u0(y) dy + / G]Rn (x7t,y75)f(y73) dde
R™ R™ % (0,00)

Sincep > (n + 2)/n, it follows that

oo

/ f(y,s) dyds = Z/ iy, s) dyds
" x(0,00) j=1 R”™ % (0,00)
o ont2-2p/ (p—1)
<CY R < o0,
j=1

and sou is finite a.e. orR™ x (0, 00). Sincef andV f are bounded ofR™ x (0,7 —¢) fore > 0
andu is a temperature outside the supportfofve see that € C*!((R™ x (0,00)) \ {(0,7)}).
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In order to obtain lower estimates far we use Lemma 4.4 after a suitable translation(zlft)
B(x1,2Ry) x (t1 — 3r}, T], then we have by (4.10), (4.11) and Lemma 4.4

u(, t) > / Gan (2,1, 0)uo(y) dy > CsCl.
B(Z07R0)

If (z,t) € B(xj41,2Rj11) X (tj11 — 3r3,, T for somej € N, then

tj—rz-
u(x,t) > / ' / Gre (2, t;y,5) f3(y, s) dyds

tj—27'J2. B(xzj,Rj) (413)
2 CsCh R/

Z 0304Rj—21)/(1)_1)7,] T g

These and (4.12) imply that(f, t) € B(z;41,2R;j4+1) % (tj+1—3r]2+1,tj+1) for somej € NU{0},
then
flz,t) = fip1(z,t) < 044217/(19—1)3;217/(17*1) < u(x, )P

For (J),t) ¢ U?io B($j+1, 2Rj+1) X (tj+1 — 3T?+1,tj+1), we have
fz,t) =0 <wufz,t)P.

Sinceu is positive, we defin® (x,t) = f(z,t)/u(z,t)P. ThenV € C*((R™ x (0,00))\ {(0,7)})
and0 < V < 1. By definition, is an integral solution of (4.9). Moreover, (4.13) gives

2
.. _2 1\»-1 0304
|| p— . > —
hjmlnf ||| =T u(zx;, T) (3) 16

and

1
L 1 1\ 7130y
lim inf (T —1;)7 T u(0,2;) 2 (80) 16

Thus Theorem 4.3 is proved. O
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