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Abstract
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1 Introduction

During the last three decades, the removability of an isolated singularity and the local behavior
near a nonremovable isolated point have been investigated in detail for positive solutions of elliptic
equations with a source term

—Au =u? (1.1)

and with an absorption term
Ay = uP, (1.2)

whereA is the Laplacian ofR™. The investigations have been done for each equation separately,
because the cage > n/(n — 2) has different conclusions between (1.1) and (1.2). That is, any
isolated point is always removable for every positive solution of (1.2), whereas there exists a positive
solution of (1.1) with an isolated singularity at the origin which behaves|liké=2/*=1 if p >
n/(n—2); ||-|>="(=log ||-|)~ =272 if p = n/(n—2). See Aviles [4], Bézis and \&ron [6], Gidas

and Spruck [12]. Wheh < p < n/(n—2), both of the above equations have positive solutions with

an isolated singularity at the origin which blow up with the same speed as the fundamental solution
| - [|2~™ of the Laplace equation. As the removable singularity theorem, it is known that if a positive
solutionu of (1.1) or (1.2) in the unit ball punctured at the origisatisfies the growth condition

u(z) = o(||z)|*™™) asz — 0, (1.3)

then0 is a removable singularity af. See Lions [19], Vzquez and ®ron [27], \eron [29]. Re-
cently, the above results were extended Bgstéa and Du [7] and Taliaferro [26] to equations or



inequalities with more general nonlinearity. See also the references therein for other literature on
isolated singularities.

We are interested in the removability of higher dimensional singular sets and the existence of
positive solutions of (1.1) or (1.2) with a prescribed singular set. These problems were also investi-
gated in many papers. For instanc&rbvn [28] developed his technique in the study of a removable
isolated singularity to obtain the following result: # is a compactC°°-manifold in a domain
Q C R" of dimensionm < n — 2 and if

n—m

P> (1.4)

P—
then every solution ofAu = |u[P~1u in Q\ E can be extended to the whole @fas its solution.
See Grillot [13] for the extension to the framework of Riemannian geometry. Adams—Pierre [3] and
Baras—Pierre [5] characterized a removable set for equatios- |u|P~u with p satisfying (1.4) as
a set with zero capacity associated with an appropriate Sobolev space. In contrast, the removability
theorem for equation (1.1) with satisfying (1.4) is known to hold at the distribution level, which
means that any solution d\ E satisfies (1.1) if2 in the sense of distributions but is not necessarily
smooth on the whole d® (see Cavila—Ponce [8]). We can know this reason from the following fact:
when
n—m n—m-+2
—— <p< ——,
n—m-—2 n—m-—2
there exist positive smooth functionson 2 \ E satisfying (1.1) inQ2 in the sense of distributions
and
%d(m, E)~2/(=Y < y(x) < Cd(z, B)~Y®-D (1.5)
near E/ for some constanf’ > 1. See Fakhi [10], Mazzeo and Pacard [21gb& [25]. For the
removability for closed sets with dimensien > n — 2, we refer to [15].

The purpose of this note is to give an optimal growth condition corresponding to (1.3) under
which any closed set lying on an-dimensional set with appropriate properties is removable for
solutions of semilinear elliptic equations like (1.1) and (1.2) when the nonlinear expoisesmaller
than(n —m)/(n —m — 2). Such removable sets will be defined in terms of quantitative conditions,
which are satisfied fom-dimensional compact Lipschitz manifolds, and are called Lipschitz sets of
dimensionm > 0 in this note. See Definition 2.1 below. Also, we discuss the best possibility of our
growth condition and the existence of positive solutions with singularities on a prescribed compact
set of semilinear elliptic equations with general nonlinearities conditioned in terms of a certain Kato
class.

Let Q be a bounded domain iR, let E be a compact set withl N Q2 # () and let us consider
semilinear elliptic equations of the form

—Au = F(z,u, Vu), (1.6)

whereA is the Laplacian oilR™ andVwu is the gradient ofi. Assume tha#’ is a Borel function on
Q x R x R" satisfying that for al{z, ¢,£) € Q@ x R x R,

|F (2,1, ) < Cd(x, B)™*(1 + [¢]"), (1.7)

whereC, o andp are some constants addz, F') denotes the distance from a pointo E. By
saying a solution of (1.6) if2, we mean aC'-function on(2 satisfying (1.6) inQ in the sense of
distributions.

Our main result is as follows.

Theorem 1.1. Let () be a bounded domain IiR", wheren > 3, and letE be a compact Lipschitz
set inR"™ of dimensionn < n — 2 such thatE' N # (). Assume thaF" satisfieq1.7)for some

n—m
0<p<

m and a < mln{Q,n—m—p(n—m—Q)} (18)



Letw be a solution 0of1.6)in Q \ E. If u satisfies at each € £ N (2,
u(z) = o(d(z, E)>™"T™) asz —y, (1.9)
thenu can be extended to the wholefofas a solution of1.6)in Q.

Remarkl.2 In Theorem 1.1F need not be contained f although we assume in Theorem 1.3
below thatE C ). Moreover, no assumptions on the signs of solutions and their Laplacian are
imposed. Our result is applicable to several equationsAike= Viu + Va|u[P~tu + V3/(1 +

|[Vul|) + V4, whereV; (i = 1,2, 3, 4) are Borel functions of satisfying|V;(x)| < Cd(z, E)~* for

all x € ©2 and some positive consta@it Thus the special case = 0 gives a generalization of the
removable isolated singularity theorem for (1.1) and (1.2). Also, it is trivial that any subgetsof
removable for solutions satisfying (1.9).

The following theorem shows that condition (1.9) is optimal to obtain Theorem 1.1.

Theorem 1.3. Let Q2 be a bounded”!:'-domain inR™, wheren > 3, and letE be a compact
Lipschitz set i) of dimensionn < n — 2. Suppose that

p>0, a<n—m-—pn—m-—2) and S<p+1.

Letc > 0 (assumed to be small enough whenr= 1 only). If a is a locally Holder continuous
function onf2 such that for allz € 2,

la(z)| < cd(x, E)~%d(x, 89)75,

then there exist positive solutionse C%(Q \ E) of

—Au=au? InQ\E, (1.10)
u=20 on o<}
satisfying
lcl(x, oN)d(z, B>~ < u(x) < Cd(z,00)d(z, E)?~"T™ (2.112)

C
for some constan® > 1 and allz € Q.

For equatiomu = u? + Vu with V' being bounded, it is known that there are positive singular
solutions satisfying (1.5) or (1.11) ne&r when E' is a compact smooth manifold of dimension
m<n—2andl <p< (n—m)/(n—m— 2). See Delan@ [9], Finn—McOwen [11], Grillot [13]
and McOwen [22]. Note that we assume no restriction on the sigkwoin Theorem 1.3. We will
obtain the existence theorem of singular solutions for equatidm + Vu = f(z, u) (see Theorems
4.2 and 4.3 below).

The plan of this note is as follows. In Section 2, we present notation and elementary lemmas
which will be used in the proof of the theorems. The proof of Theorem 1.1 is given in Section 3
by modifying a method used in a parabolic problem [16]. In Section 4, we establish the existence
theorem of singular solutions of semilinear elliptic equations with general nonlinearities conditioned
in terms of a certain Kato class and apply it to prove Theorem 1.3 in Section 5.

2 Preliminaries

A typical point inR™ is denoted byr and its Euclidean norm byz||. We write d(z, E) for the
Euclidean distance from a pointto a setF in R™. Also, forr > 0, we write

E(r):={zeR":d(z,E) <r}.

Then-dimensional Lebesgue measure andrihdimensional Hausdorff measure B of a Borel
setE are denoted byE| andH™(E), respectively. Ifn = 0, then#? is interpreted as the counting



measure. ByB(x,r), we denote the open ball R"™ of centerz and radius- > 0. The symbolC
stands for an absolute positive constant whose value is unimportant and may vary at each occurrence.
If necessary, we writ€';, Cs, ... to specify them.

Definition 2.1. Let F be a set inR™ and let0 < m < n. We say thatF is a Lipschitz set of
dimensionn if E is H™-measurable and there exist positive constan@ndC > 1 such that for
alz e E,0<r <rgandd < R < rg,

%rm <H™(ENB(x,r) <Cr™ (2.1)

and
|[E(r)NB(z,R)| < Cr""™R™. (2.2)

One example is a compact Lipschitz manifoldiifi of dimensionm (1 < m < n — 1) defined
as follows. A subsef’ of R™ is a Lipschitz manifoldof dimensionm if for every z € E there
exist an open neighborhodd of z in R™ and a bi-Lipschitz mapping : U — ¢(U) C R” such
thatgo(E NU) = Ry N ¢(U), whereRy* := {(x1,...,2,) € R™ : Zpppy1 = -+ =z, = 0}.
If E is a compact Lipschitz manifold of dimension, then™(E N B(xz,r)) is comparable to
H™(RE* N ¢(B(x,r))) and the standard finite covering argument yields (2.2).

In what follows, we suppose th& is a bounded domain iR", wheren > 3, and thatF is a
compact Lipschitz set iR of dimensionm < n — 2 such thatE N Q # (. Moreover,ry is the
constant in the definition of a Lipschitz sEt We start with elementary estimates.

Lemma 2.2. The following statements hold:

@) Ifm —n < X <0, then there exists a positive constéhsuch that foralle € E,0 < r < rq
and0 < R < 7o,

/ d(y, E))dy < Cr*tn=mR™, (2.3)
E(r)NB(z,R)

Moreover, we have
/ d(y, E) dy < . (2.4)
Q

(i) There exists a positive constafitsuch that for alle € E,0 < r < rg and0 < R < rg,

1
log ————dy < Cr" ™1 —logr)R™. (2.5)
/E(r)mB(mﬁ) d(y, E) ( )

Proof. Letz € E, 0 < r < rpand0 < R < ry be fixed. Since the functiofy,t) —
t*‘lx{(y7t):d(y7E)§t} (y, t) is nonnegative and measurable with respe¢ttpl)-dimensional Lebesgue
measure oiE(r) N B(z, R)) x (0,r), we obtain, as a consequence of the Fubini-Tonelli theorem,
thatif A < 0, then

/ d(y, E)* dy = r*|E(r) N B(z, R)| — )\/ MY E(t) N B(x, R)| dt,
E(r)NnB(z,R) 0

and if A = 0, then
1 "1
log ———d :/fEtﬂBm,R dt — |E(r)N B(z, R)|logr.
Lo B gy = [ PO 0BG R [B6) 0 B R o
Hence (2.3) and (2.5) follow from (2.2).

Next, we show (2.4). Sinc& is compact, we observe thaXr,/2) is covered by finitely many
balls of radius-y and center lying inE. By (2.3), we have

/ d(y, B)* dy < oo.
E(ro/2)

Sincef? is bounded, we also ha\fgz\E(ro/Q) d(y, E)* dy < co. Thus (2.4) follows. O



Lemma 2.3. Letm — n < A < 0. Then there exists a positive constahsuch that for allz € €,

Cd(z, E)* if A < —2,
1
_ 2—n A < + i J—
/QHw ylI* "d(y, E) dy < C<1+1og d(z,E)) ifA=—2, (2.6)
C ifA > —2,

wherelog ™ t = max{0,logt}.

Proof. Letz € Q \ F and letR := diam (), the diameter of). Then the left hand side of (2.6) is
equal to

R
R2*”/ d(y,E)’\dy+(n—2)/ TH/ d(y, E)* dydr. (2.7)
Q 0 QNB(z,r)

By (2.4), the first integral in (2.7) is finite. f > d(x, E)/2, thenB(z,r) C B(z*,3r) for some
x* € E. Lettingr; := min{ry/3,d(x, E)/2}, we see from Lemma 2.2 (i) that the second integral
in (2.7) is estimated by

1 ro/3
Cd(ac,E))‘/ rdr—i—C’/ A dr + C.
0 1

Computing this yields (2.6). O

We define
p(z) = Cl/ |z —y|* " dH™(y) forxz e R", (2.8)
E

where the constartf; is chosen so that A(Cy| - [|>~") = o (the Dirac measure at the origin) in
the sense of distributions. Sinéeis compactp is superharmonic oR™ and harmonic ofR™ \ E.

Lemma 2.4. There exists a constant > 1 such that for allz € ©,

1

Ed(x,E)27”+m < p(z) < Cd(x, B)>~"tm, (2.9)
Proof. Since(2 is bounded, it suffices to show (2.9) fere E(ro/4) \ E. Takez* € E with
|z* — x| = d(z, E). ThenB(x*,r/2) C B(z,r) forallr > 2d(x, E). Letting R := r + diam FE,
we have by (2.1)

p(z) 2— f 1—
—— =R "Hm(E)+(n—2)/ r T "H™(EN B(x,r))dr
Ch d(z,E)
1 "o l-nqm *
> — r T "HT(ENB(x*,r/2))dr
C Jad(z,p)
1 [

1
> — Tt dr > —d(z, B)2T M
C J2d(a,B) C
On the other hand, we hav&x,r) N E C B(z*,2r) N E forallr > 0, and so
ro/2
P - o

P TP H™(E N B(z*,2r)) dr + C < Cd(z, E)*>~"™,
Ch d(z,E)

Thus the lemma is proved. O

3 Proof of Theorem 1.1

This section presents the proof of Theorem 1.1.(By we denote the Green function for an open
setD and the Laplace operator.



Lemma 3.1. Assumptions are the same as Theorem 1.1.plle as in(2.8). Then there exists a
positive constan€’ such that for allz € €,
Cd(x, B)?=otPC=ntm) jf (2 —n4m) —a < -2,
/ Galz,y)d(y, E) “p(y)? dy < ¢ C 1+1log™ ifp(2—n+m)—a=-2
Q d(:C, E)

C ifp(2—n+m)—a>-2.
(3.1)
Moreover, [, Ga(z,y)d(y, E)~*p(y)? dy is superharmonic of and is aC''-function on2 \ E.

Proof. Since—a + p(2 —n +m) > m —nandGa(z,y) < Ci|jz — y||>~™, we obtain (3.1) from
Lemmas 2.3 and 2.4. Also, the local boundedness of the density furkoR) ~“p(y)? onQ\ E
implies theC*-regularity of the Green potential. See [23, Theorem 6.6 in p. 119]. O

Lemma 3.2. Assumptions are the same as Theorem 1.1.7 & a bounded open set such that
D C . Then there exists a harmonic functibron D such that for alle € D \ E,

u(z) = h(z) + Gp(z,y)F(y,u(y), Vu(y)) dy. (3.2)
D\E

Proof. Lete > 0 be small. Taking a bounded open sesuch thatD C w andw C Q if necessary,
we may assume that is continuous o2 \ E and, by (1.9) and Lemma 2.4, there is a positive
constant-. < 1/2 such that

lu(z)| < ep(x) forallz e (E(r.)NQ)\ E, (3.3)

wherep was defined in (2.8). This is possible because the finite covering argument guarantees the
local uniform convergence of (1.9). In particular, the case 1 implies that

lu(z)] < Cp(x) forallz e 2\ E. (3.4)
Therefore, by (1.7), we find a positive constaitindependent of such that
|F(z,u(x), Vu(x))| < Cad(z, E) “p(x)? forallz € Q\ E. (3.5)

Let
vwrza/kmuymmEr%@V@ forz € O
Q

and consider the function defined by
us(x) :==u(x) + v(z) +ep(x) forzeQ\E.
Thenu, is continuous o) \ F and, by (3.5), we have
—Aue = F(-,u, Vu) + Cod(-, E)"p? >0 iInQ\ E

in the sense of distributions. Therefarge is superharmonic of \ E. Furthermore, (3.3) and the
continuity of u imply thatw,. is bounded below of2 \ E. SinceFE is a polar set by Lemma 2.4,
the classical removability theorem for superharmonic functions implies:ithaés a superharmonic
extensioru, to 2. Then there exists a unique Radon meaguren 2 such that-Awu, = p. in Q

in the sense of distributions. Also, by the Riesz decomposition theorem, we havedfar @b,

m@=%@+é&ﬂ@@ﬂ% (3.6)

whereh, is the greatest harmonic minorantwf on D.



We look for a limit function of each term in (3.6) as— 0. Forallz € (E(r.) N Q) \ E, we
have by (3.3) and Lemma 2.4

lue ()| < Ced(x, B)>™"™ 4+ v(x)
and by Lemma 3.1
Cd(x, B)?>=etpC=ntm) if (2 —n 4+ m) —a < -2,
v(x) < C’(l—l—log+ > if p(2—n+m)—a=-2,

1
d(z, E)
C if p2—n+m)—a>-2.

Let0 < r < min{r.,d(D,00)/2} andz € E N D. ThenB(z,2r) C Q. Take a nonnegative
function¢ € C§°(B(z,2r)) satisfyingg = 1 on B(z,7) and|A¢| < C/r? on B(z,2r). Then, by
Lemma 2.2,

peBE < [ odu= [ (aomdrs uc] da
B(z,2r) B(z,2r) " JB(z,2r)\E

C(er™ 4 rr—otp@=ntm)) jf (2 —pn4+m) —a < -2,
< Q4 Cer™ —rm=2logr) if p2—n+m)—a=-2,
C(er™ +rn=2) if p2—n+m)—a>-2.

By the covering lemma, we find/-points z; in E N D such that{B(z;,r/5)};_, are mutually
disjointandEZ N D C ijzl B(z;,7). Noting N < Cr~™ by (2.2), we obtain

N
pe(END) < pe(B(z,7))
j=1
Cle + Tn—m—a+p(2—n+m)) ifp2—n+m)—a< -2,
<{C(e— p—m—2 logr) if p(2 —n+m)—a=-2,
C(e 4+ r"—m"2) if p2—n+m)—a>-2.

Sincen —m —a+p(2—n+m) >0,n—m — 2> 0andr > 0 is arbitrary, we have
ue(EN D) < Ce.

Letz € D\ E. ThenGp(z,-) is bounded orE N D, and so

Jim, o Gp(z,y) duc(y) = 0.
Also, sinceF (-, u, Vu)+Cad(-, E)~*p? is locally bounded oD\ E andu. = —Aue = F(-,u, Vu)+
Cad(+, E)~*pP in D\ E in the sense of distributions, the uniqueness of such a Radon measure im-
plies
dpe(y) = {F(y, u(y), Vu(y)) + Cod(y, E) “p(y)’}dy onD\ E.

Therefore, forall € D\ E,

lim / Colz,y)du(y) = | Gole,y)Fly, uly), Vuly)) dy + v(z) — b (),
e=0+ Jp D\E
whereh; is a harmonic function o appearing in the Riesz decompositiorwadn D.

By the way, we see from (3.4) that (x) > u(x) > —Cp(z) forallz € D\ Eand—Cpis
subharmonic o). Sinceh,. is the greatest harmonic minorantfon D, it follows thath, > —C)p
on D, and soh. converges decreasingly to a harmonic functigron D ase decreases t0. After
e — 0in (3.6) and cancelling from the both sides, we obtain (3.2) with= hy — h; for all
x€D\E. O



Lemma 3.3. Assumptions are the same as Theorem 1.1.7 & a bounded open set such that
D C Q. Thenu is bounded oD \ E.

Proof. We give the proof only whett < p < (n —m)/(n — m — 2) because the cage< p < 1
follows by the similar way (see Remark 3.4 below). Tilea n—m —a—p(n—m —2) <2 —a.
Let N be the smallest natural number satisfying

2—«

1
Ognfm—ozfp(n—mfZ)

log p

N >

which is equivalent to
v =pN2—n+m)+2—a)pN T+ -+ (2—a)p+2-a>0.

We first consider the casg > 2. Observe thatifV = 2, thenm—n < p(2—n+m)—a < -2,
and thatifN > 3,thenforj =2,...,N —1,

m—-n<p2-n+m)—a«
<pP2-n+m)+2-a)p t+ -+ 2-a)p—a< 2.

In the arguments below, we apply Lemma 2.3 repeatedly to get better estimateJéie bounded
opensetd; (j =1,...,N + 2) so that

51CQ7 bjCDjfl(j:2,...,N+2) and Dyy2=D.

By Lemma 3.2, for eaclj, there is a harmonic functiol; on D; such that for all: € D; \ E,
we) = 1@+ [, @) uty), Vulw) dy
D;\E

Also, as in (3.5), we have forall € D, \ E,
|F(y, u(y), Vu(y))| < Cd(y, B)-*tPE-mtm), 3.7)

Sinceh; is bounded orDs, it follows from Lemma 2.3 that for alk € D5\ E,

‘U(I)| <C+ C/ HCC _ yH2fnd(y’E)foz+P(27n+m) dy < Cvd(imEx)2foz+p(27n+m)7

Dy
and so by (1.7),
|F (2, u(z), V()| < Cd(x, E)~o+ @ 2mntm), (3.8)

Sinceh, is bounded orDs, it follows from (3.8) and Lemma 2.3 that for alle Ds \ E,
()] < Cd(z, B)2-e+C-aptsG-ntm)
and so by (1.7),
|F(z,u(z), Vu(z))| < Cd(z, E)~+@-e)pt@=a)p’+p°2—ntm)
Repeating this proces¥ — 1 times, we obtain foralk € Dy \ E,
|F(, u(x), Vu(x))| < Cd(xz, )N 2,

Again, by the boundedness bf; on D1 and Lemma 2.3, we have for alle Dy 41 \ E,

1
C(1+log™ > if py =0,
lu(x)| < ( 8 dwm)) PN
C ipr>0.

If py > 0, then the lemma follows sinc® C Dyiy. If py = 0, then we takes > 0 with
a+e < 2. The above inequality implies that(z)| < Cd(z, E)~¢/?, and sqF (z, u(z), Vu(z))| <
Cd(z,E)~*<forallz € Dyy1 \ E. Lemma 2.3 concludes thatis bounded oDy 15 = D.
When N = 1, at most twice application of Lemma 2.3 yields the boundedness bécause
p(2—n+m)—a>-2. O



Remark3.4 When0 < p < 1, we can takd < ¢ < (n —m — «)/(n — m — 2) because ofr < 2.
Since is bounded, we havé(z, E) ™" < Cd(z, E)~ % forallz € Qif 0 < v < §, and so (3.7) and
each estimate fdu| and|F'| are valid forg in place ofp. Hence Lemma 3.3 istrue for< p < 1 as
well.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1Let D be a bounded open set such that . Then (1.7) and Lemma 3.3
imply that F'(-, u, Vu) is bounded orD \ E. By the regularity theorem of the Green potential, the
integral in (3.2) is @' -function onD. Define

u(x) forr € D\ E,

h(x) + Gp(z,y)F(y,uly), Vu(y))dy forz € E,
D\E

whereh is a harmonic function o given in Lemma 3.2. Then, for all € D,

(z) = hiz) + /D G (,y)F(y.7(y), Valy)) dy,

and sau is a solution of (1.6) inD. SinceD is arbitrary, this completes the proof. O

4 Positive solutions with a prescribed singular set

We discuss the existence of positive solutions of semilinear elliptic equations with singularities on
a prescribed compact set. Throughout this section, we supposf ihat bounded”!:!-domain

in R™, wheren > 3, and thatF is a compact Lipschitz set if? of dimensionm < n — 2. Let us
consider semilinear elliptic equations of the form

{—Au—l—Vu:f(a:,u) inQ\ E, @1

u=20 onof,

where the equation is understood in the sense of distributions/aadd f are Borel functions
conditioned in terms of the extended Kato cl&%¥$2). A Borel function¢ on (2 is said to belong to
K(Q) if
. d(y,00) )
lim ( su / —— 2 Gqlx, dy | =0.
i, (zeg e o, 90) SO WIS dy

This was introduced by Bagli and Zribi [20]. Note that this condition is weaker né&r than the
original Kato class condition [2] and th&t($?) is strictly bigger tharL9(2) for ¢ > n/2. See their
paper for more concrete examples. It is known that & /C(Q2), then the quantity

dgy’m) Galz,9)|6(v)| dy

bl =202 | 50

e

is finite (see [20, Proposition 2]). We impose the following condition$/osnd f:
(A1) V € K(Q) and||V||x) < 1/(4Cs) for some sufficiently large consta@l > 0,
(A2) fisaBorel function o2 x (0, c0) such thatf(z, ) is continuous ort0, oo) for eachz € (2,

(A3) there exists a nonnegative Borel functigron Q2 x (0, co) such that for eack € Q, ¥ (z, -)
is nondecreasing anfl(z, t) — 0 ast — 0+ and that

|f(z,t)| < typ(x,t) fora.e.(z,t) € 2 x (0,00),

(A4) (-, d(-,00)d(-, EB)?>="tm) € K(Q).



Remark4.1 A constantCs in (Al) is the constant appearing in the 3G inequality and depending
only on the dimension and the characters 6F. for all x, y, z € €,

< . .
See Kalton and Verbitsky [17, Lemma 7.1].
We prove the following theorem.

Theorem 4.2. Suppose that” and f are Borel functions o2 and on2 x (0, c0) respectively
satisfying(Al) — (A4). Then(4.1) has positive solutions € C(Q2 \ E) satisfying(1.11)for some
constantC' > 1 and allz € 2 and satisfying the integral equation

u() = A /E Galz,y) dH™(y) /Q Gl ) (VWuly) - fnu@)}dy  (43)

for some positive constantand allx € Q.

The special caser = 0 generalizes earlier results [18, 20, 24, 31] about the existence of positive
solutions blowing up at one point with the same speed as the fundamental solution of the Laplacian.
We will see in Section 5 that Theorem 1.3 with> 1 is a special case of Theorem 4.2. For the case
0 < p < 1, we need to replace (A3) by

(A3") there exists a nonnegative Borel functignon Q2 x (0, co) such that for each € Q, i (z, )
is nonincreasing and(x,t) — 0 ast — +oo and that

|f(z,t)] < tp(x,t) fora.e.(z,t) € Qx (0,00).

Theorem 4.3. Suppose thal” and f are Borel functions orf2 and onQ2 x (0, co) respectively
satisfying(Al), (A2), (A3’) and (A4). Then(4.1) has positive solutions € C(Q2\ E) satisfying
(1.11)and(4.3) for some positive constans, A and allx € Q.

Theorems 4.2 and 4.3 will be proved by the similar way to [14, 20] using the Schauder fixed point
theorem. But our interest is the existence of solutions with singularitids, ot an isolated singu-
larity, and thus an integral operator we consider is different from [14, 20] and further discussions are
needed. For completeness, we give a proof after preparing several elementary lemmas.

We recall the following lower and upper estimates of the Green function (see [30, 32]): for all

z,y € €,
1 . d(z,00)d(y, 08) 9—m
> - :
Ga(z,y) > Cmm{l, e [l — vl (4.4)

and

(4.5)

Galz,y) < Cmm{l, d(@,09) d(z,0Q)dly,0%) }nx g

lz =yl ” llz—yl?
where the constarif’ > 1 depends only on the charactersb&ind the dimension. Let

pa(z) :z/ Ga(z,y)dH™(y) forax € Q.
E
Note thatp, is positive and harmonic o2\ E and vanishes continuously o2 sinceE is compact
in Q.

Lemma4.4. Letr > 0 be small. Then there exists a positive constéidepending om andH™ (E)
such that for alle € 2\ E(r),
pa(x) < Cd(z,00).

Proof. Letz € 2\ E(r). By (4.5), we have

09) C
pa(z <C/ ”xx dH™ (y) < ——d(z, 0Q)H™ (E),

_y”n 1 rn

as required. O
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Lemma 4.5. There exists a constait > 1 depending ori(E, 9Q?) and H™(E) such that for all
T €,

1
pa(e) = 5d(w,09).
Proof. Since) is bounded, we obtain from (4.4) that for ally € Q,
1

and so )
palx) > 6d(ac,aQ)d(E,GQ)H’"(E),

as required. O

Lemma4.6. Letr > 0 be small. Then there exists a positive constaidepending om andH™ (E)
such that for allz,y € Q \ E(r),

pa(z)paly) < CGa(z,y).

In particular,
pa(y)” < 2] a(z,y)
Proof. This follows from Lemma 4.4 and (4.6). O

Lemma 4.7. Letr > 0 be small. Then there exists a positive constamtepending om, d(E, 9)
andX{™(E) such that for allz, y € Q with ||z — y|| > r,

Ga(r,y) < Cpalr)pa(y).

In particular,
ra(y) 2
< )
pﬂ(x)Gsz(%y) < Cpaly)
Proof. Forz,y € Q with ||z — y|| > r, we haveGq(z,y) < Cd(x, 0Q)d(y, 0Q)/r™ by (4.5). This
lemma follows from Lemma 4.5. O

Lemma 4.8. There exists a constant, > 1 such that for allx € €,

Cid(a;,amd(x,E)?*Mm < polx) < Cad(z, 0)d(z, B)2—"+m.
4

Proof. We may assume without loss of generality that d(F, 012)/2. ThenE(r) is compact in
Q. By the Riesz decomposition, we have forak E(ry),

pa(x) = h(z) + p(x),
whereh is a negative and bounded harmonic functionfm,) andp is given by (2.8). It follows

from Lemma 2.4 that for alt € E(rq/4),

1
Sdlw, ) < po(a) < Cd(x, B

Also, by Lemmas 4.4 and 4.5, we have foralk Q\ E(rq/4),

éd(m,aﬂ) < pol) < Cd(z,09).

Sincef) is bounded, these deduce the required estimate. O

Lemma 4.9. Lety € Q. ThenGq(-,y)/pa € C(Q\ {y}), where the value ofi(-,y)/pa on
E\ {y} is interpreted a9).

11



Proof. Sincepq, is positive and harmonic aft \ E and vanishes continuously @, it follows, as
an application of the boundary Harnack principle, that(-, )/ pq is continuous up to52 (see [1]).
ThereforeGq(-,y)/pa € C(Q\ (E U {y})). Also, the continuity on& \ {y} follows from Lemma
4.8. O

Lemma 4.10. If ¢ € K(Q), then we have for eache Q,

: pa(y) )
lim [ su / Gal(z, dy | =0.
T”0+<meg 0nB(zr) Pa(T) a(z.v)|ow)] dy

Moreover, the quantity

pa(y)
=5 —=Galx, d
ol = sup [ X Gt )o(w)] dy
is finite and satisfie§o|| ., < 2C3(|¢||x (o) with the constans in (4.2).

Proof. Sincepq, is a positive superharmonic function fnthe lemma follows from [20, Proposition
3] O

Lemma 4.11. If ¢ € K(Q2), then we have for smatl > 0,
[ pawPlewldy < .
Q\E(r)

Proof. Letx € Q\ E(r). By Lemma 4.6, we have

/Q\E( )pa(y)2\¢(y)|dy < C/Q\E( ) Zzgi;GQ(x,y)qb(y)my < Clél0:

and thus the lemma follows from Lemma 4.10. O

Lemma 4.12. If ¢ € K(2), then we have for any compact subgebf (2,

/ pa(v)|6(y)| dy < .
K

Proof. Takez; € Q\ E so thatGq(x1,y)/pa(z1) > C > 0forally € K. Then

[ enwiotwldr < [ L2 Gotar oty < Cloln.

Thus the lemma follows from Lemma 4.10. O

The proofs of Theorems 4.2 and 4.3 are similar to each other. We give the proof only for Theorem
4.2. The different parts will be mentioned in Remarks.

Noting from (A1) and Lemma 4.10 th4t|| ., < 1/2, we consider the following function space
and integral operator. For > 0, we let

21— V) 4
Wy = €EC(): ———— U N —— A
» {w 4 P w174

and define the operatdp, on W) by

Tow(e) = A — [ C28 Y vy aly) — g wwpa)dy forzeq.  (47)
Q /)Q(x)

For simplicity, we write

$(y) = [V (y)| + (. d(y, 0)d(y, E)* ™).
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Then¢ € K(£2) by (A1) and (A4). Moreover, il < XA < (3 —2[|V,,)/(4C4) with C4 being the
constant in Lemma 4.8, then we see from (A3) and Lemma 4.8 that ferallVy, the integrand in
(4.7) is bounded by

4\ po(y) AN
T3V ool®) GQ($7y){|V(y)| +(y, 3—2||V||mpﬂ(y))}

< Zzg Galz,y)d(y)-

By Lemma 4.107, is well-defined for such\ at least.
Remark4.13 If f satisfies (A3’) instead of (A3), then the integrand in (4.7) is bounded by

(4.8)

4A PQ(y) (2 74||V||Psz))‘
3= 2[[Vlq 'pn(x)GQ(z’y){V(y) *“/’(yvg_gnvnmm(y))}
4\ pa(y)
< 3_ 2||V||pg ) po() Ga(z,y)9(y),

wheneven\ > Cy(3 = 2[[Vll50)/(2 = 4V q)-

In the arguments below, we suppose that A < (3 —2||V||,,)/(4C4). We denotely (W) :=
{Thw:w e Wy}

Lemma 4.14. Ty (W, ) is equicontinuous ofe.

Proof. Lete > 0 andz € Q. By Lemma 4.10, there exists a positive constansuch that for all
O<r<r,,

sup / pﬂgi; Ga(z,y)o(y) dy < e.

z€Q JQNB(z,r) I49)
Let0 < r < r, be small enough and let, x2 € B(z,7/2) N Q). Then

B Go(z1,y)  Gal(z2,y)
Tywlen) - Tus(eg) <2+ [ ) Caltn ‘Psz(yW(y)dy
Ga(z1,y) 09(95273/)‘ d
+/Q\(E(T)UB(Z,7'))’ pa(x1) pa(T2) paly)9ly) dy

SinceGq(z,y)/pa(z) is bounded fofz, y) € (B(z,7/2) NQ) x (E(r)\ B(z,1)), it follows from
Lemmas 4.9, 4.12 and the Lebesgue convergence theorem that the first integral tends to zero as
|z1 — z2|| — 0. Also, by Lemma 4.7, we have for alle Q\ B(z,r),

GQ z1,Y GQ 2,y
[Golew) _ Goten)| ¢ gy,
pa(r1) pa(rs)
and so Lemmas 4.9, 4.11 and the Lebesgue convergence theorem imply that the second integral tends
to zero ag|z; — z2|| — 0. ThusTw is continuous at uniformly forw € W. O

Lemma 4.15. There exists a positive constaxt < (3 — 2||V|,,)/(4C4) such that ifd < A < X,
thenTy (Wy) C W,. FurthermoreTy (W, ) is relatively compact i€’ (Q).

Proof. Letw € Wy. For0 < n < 1, we define

paly

W)= [ L2 Goe vty npa(w) dy forw
o pa(r)

The same arguments as in the proof of Lemma 4.14 show%that C(€2). Also, (A3) and Lemma

4.10 imply that¥,, converges decreasingly to zero function{@ras decreases t0. By the Dini

theorem, the convergence is uniform @n Therefore there exists a positive constagisuch that

forall0 < A < Ao,
1-2|V]||,
sup W/ (3-2)|v||,,) (%) < % (4.9)
€
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By (4.7) and (4.8), we have

4\
Tyw(@) — A < —— Ve + T sa
[Tyw(w) |*3—2Hv\|m{” lpe + Car/@-2)vil,) (@)}
L2Vl
3 =2([Vlpq

This andThw € C(Q) conclude thafl),(W,) C Wy. The relatively compactness follows from
Lemma 4.14 and the Ascoli-Arzetheorem. O

Remarkd.16 If f satisfies (A3’) instead of (A3), then (4.9) is replaced by

12V
SUD W V)02V ) () S =5
e

forall A > Ao > Cu(3 = 2[[V]| )/ (2 = 4[[V[| s, )-

A

Lemma 4.17.1f 0 < A < Ag, thenT), is continuous oV

Proof. Let {w;} be a sequence i’y converging tow € W) with respect to the uniform norm
on C(Q). By (A2) and Lemma 4.147\w,; converges pointwisely t@\w on Q. The relatively
compactness df (W, ) implies the uniform convergence. O

Proof of Theorem 4.2Let0 < A < Ag. Observe from Lemmas 4.15 and 4.17 tHat is a nonempty
bounded closed convex subset®f2) and T} is a continuous mapping froi¥,, into itself such
thatT), (W) is relatively compact ir€'(Q2). By the Schauder fixed point theorem, therevie Wy
such thatlhw = w. Letu := pqw. Thenu € C(Q\ E) andu satisfies (1.11) by Lemma 4.8, and
sowu vanishes continuously a¥2. Also, by the definition ofl’y, we have for alk: € Q,

u() = Apa(z) - /Q G, ) (V(y)uly) — f(y,u(y))} dy.

Sincepg is harmonic oM} \ E, we see that; satisfies—Au + Vu = f(z,u) in Q\ E in the sense
of distributions. This completes the proof. O

5 Proof of Theorem 1.3

We apply Theorems 4.2 and 4.3 to prove Theorem 1.3.
Proof of Theorem 1.3For simplicity, we writey :=n —m — a + p(2 — n + m). Let
b(x) := d(z, E)'"2d(2,0Q)P 17 forz € Q.

Taking Theorems 4.2 and 4.3 into account, it suffices to shhow C(2). Let0 < r < 7y :=
d(E,09Q)/4 and let

o d(y,00)
B(r,r) = /B g Gl ) dy

_/ d(y, E)*2d(y, 9P~ P
B(z,r)NQ

i0r.09) Go(z,y) dy.

We consider several cases separately.
Case 1:2r < min{d(z, E), d(z, 9Q)}. We have for ally € B(z,r),

S, B) < d(y, E) < 2d(z, E),

5, 09) < dly, 09) < 2d(x, 09),
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and so
®(z,7) < Cd(z, E)Y~2d(z, 00)P P~ 12,

If d(z, E) < rq, thenr; < d(z,99Q) < diam Q. Therefore

Cr? ify—2>0,
CrY ify—-2<0.

O(x,r) < Cd(z, E)*r* < {

If d(z, E) > 1, then

Cr? fp—5—-12>0,
Crr=B+l ifp—B—-1<0.

®(z,r) < Cd(z, 0Q)P P12 < {

Case 2:d(x,09) < 2r < d(z, E). We note that for ally € B(z,r),

d(y,00)

<
d(y,E) >

d(z,09) + ||z — y|| < 3r,
d(E,00) — d(z,0Q) — ||z — y|| > 1.
Let0 < e < min{l,p — 8+ 1}. We see from (4.5) that

d(x,0Q)d(y, ON)1 ¢

[l —yl"==

Ga(z,y) < C
Therefore
O(z,r) <C d(y, OQ)P~PHI=¢ ||z — y||F " dy < CrP=FHL,
B(z,r)

Case 3:d(z, FE) < 2r < d(z,00). We note that for aly € B(x,r),
d(y,E) <3r and 2d(z,00) > d(y,00) > r1.

Therefore we have by Lemma 2.2

B(z,r) < C / d(y, Y|z — y|> " dy
B(z,r)

< C<7'2"/ d(y, E)7~2 dy+(n—2)/ tl’"/ d(y, E)72 dydt>
B(z,r) 0 B(z,t)

< Cr7.

Note that the casmax{d(z, E), d(x,092)} < 2r does not occur by our choice of. Hence we
obtain

lim (sup CID(x7r)> =0,

r—0+4 EQ
and thusp € K£(Q).
Finally, we apply Theorems 4.2 or 4.3 to complete the proof.
Case 1:p # 1. SinceV = 0 and f (z, t) = a(z)t? fulfill (A1), (A2), (A4) and either (A3) or (A3),
there are positive solutionse C(Q2 \ E) of (1.10) satisfying (1.11) and

u(z) = Apa(z) + /Q Galz,y)aly)u(y)? dy forz c Q.

Then it follows from [23, Theorem 6.6 in p. 119] thate C?(Q2\ E) and (1.10) is satisfied in the
classical sense.

Case 2:p = 1. Since0 < ||@llx) < oo, we havellalx) < 1/(4C3) wheneverd < ¢ <
1/(4Cs]|¢[lk (). Therefore we can apply Theorem 4.2 with= —a and f = 0 to obtain the
result. O
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