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Abstract

We study time-global positive solutions of semilinear heat equations of thedprmAu =
f(x,u) inabounded Lipschitz domain in R™. In particular, we show the existence of a positive
solution with a time-independent singularity at a boundary pooft2 which converges to a pos-
itive solution, with the behavior like the Martin kernel&@tof the corresponding elliptic equation
at time infinity. A nonlinear terny is conditioned in terms of a certain Lipschitz continuity with
respect to the second variable and a generalized Kato class associated with the Martin Kernel at
and admits not only usual oré(z)u? (log(1 + u))?, but also one with variable exponents.
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1 Introduction

During the last few decades, the existence and the asymptotic behavior of time-global positive solu-
tions, with a time-independent singularity or a time-dependent singularity, of the heat equation with a
nonlinear reaction term in the whole spa’&or in a bounded domain iR"™ have been studied exten-
sively. Now, let2 be a domain ifR™ (n > 3) containing the origiti), and consider the initial-boundary
value problem

up — Au=V(x)uP in(Q\ {0}) x (0,00),

u=0 on 9N x (0, 00), (1.1)

u(z,0) = up(x) forall z € Q.

Here,u = u(x,t), A is the Laplacian with respect toe R", u; = du/0t, V' is a nonnegative Borel
measurable function off, p > 1, ug iS a nonnegative continuous function &n and the equation

uy — Au = V(z)uP is understood in the sense of distributions. In [15], Sato proved that, in the case
whereQ? = R", V(z) =1 and
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the problem (1.1) has atime-global positive solutiomith a time-independent singularity at the origin
such that for each > 0, ||z||*/(P~Vu(z, ) converges to some constahdepending only op andn

asz — 0, and for each: € R™ \ {0}, u(z,t) converges to the singular steady-state:||~2/?~1 as

t — oo, whenever the initial valueo(x) is not greater thad'||z||~2/(»~1) for some constant’ > 0.

Also, Sato and Yanagida [16, 17] investigated, fandV” being the same as above, the existence of
time-local and time-global positive solutions with a prescribed time-dependent singulaiityand

some properties including a comparison principle, whgrbehaves like the above singular steady-
state. In contrast, wheki(x) vanishes continuously at the originbk p < n/(n — 2), one can get a
singular solution with the different behavior from the above singular steady-state. Before their works,
Zhang and Zhao [18] proved the existence of a time-global positive solution, with a time-independent
singularity at the origin, of the problem (1.1) in a bounded Lipschitz donfaivhich converges

to a singular solution, with the behavior like the fundamental solution of Laplace’s equation, of the
corresponding elliptic problem at time infinity. It is noteworthy that their arguments from the point of
view of potential theory enable us to treat a general potehtiahd a nonsmooth domain. Later,

Riahi [14] generalized a potential class and refined their arguments to give a simpler proof. Also, in the
recent papers due to Kan and Takahashi [10, 11], the existence and the behavior of positive solutions
of u; — Au = wP having a prescribed time-dependent singularity in the tasep < n/(n — 2) are
studied. We refer to Karch and Zheng [12] for the Navier-Stokes system.

As far as | know, there is no result concerning the existence of time-global positive solutions with
singularities on the boundary. This problem requires more delicate estimates in our analysis, because a
singularity is influenced by the shape of a domain, and is more difficult than the problem of an interior
singularity. The purpose of this paper is to show the existence of a positive salution(x, t) with
a time-independent singularity &te 052, the boundary of?, of the initial-boundary value problem
for the following semilinear heat equation:

up — Au = f(x,u) inQ x(0,00),
w=0 on (92, {€}) x (0, 00). (1.2)
u(z,0) = up(z) forall z € Q,

wheref is a nonnegative Borel measurable functionfbi [0, co) satisfying weak conditions stated
below, and the equatiom, — Au = f(x,u) is understood in the sense of distributions. L&t (-, &)

be the Martin (Poisson) kernel aawith pole at{ and let/C¢(2) denote the generalized Kato class
associated with1q (-, &) (see Section 2.1 and Definition 2.12 below for their definitions). We assume

(A1) fisnonnegative and Borel measurablefdrx [0, o),
(A2) there is a nonnegative Borel measurable functiam €2 x [0, o) such that
e for eachz € Q, ¢(z, ) is nondecreasing 00, co) andul_if&w(:v, u) =0,
o (-, Ma(-,€)) € Ke(9),
e wheneve < u; < us, we have
|f(z,u1) — f(z,u2)| < Y(x,uz)|u; —ug| forallz e Q.
Our main result is as follows.

Theorem 1.1. LetQ2 be a bounded Lipschitz domainRRi* (n > 2) and let{ € 0Q2. Assume thaf
satisfieAl) and (A2). Then there exists a constaky > 0 such that the following statements hold
for each\ € (0, \ol:



(i) for any nonnegative continuous functiap satisfyingug(z) < AMgq(x,¢) for all z € Q, the
problem(1.2) has a positive continuous solutiarsatisfying

u(z,t) < 3AMq(z,€&) forall (z,t) € Q2 x (0,00)

and (2.1
u\xr
——~_ =) foreacht > 0,

(ii) forthe solutionu in (i), there exists a positive continuous solutiag of the elliptic problem

—Aug = f(T,u0) INQ,
(1.3)
Uso =0 ondQ \ {¢},
satisfying
AMa(z,€) < uso(x) < 3AMq(x,&) forall z € (1.4)
and ()
. Uso(T)
P o) 49
such that
i B Ueo(@) ey fors € 0. (1.6)

t—oo Mq(x, &) B Mq(z,§)

Remarkl.2 SinceMg(-,¢) is bounded o2 \ B(¢,r), it follows from (1.6) that for each > 0,

tli)m u(z,t) = uso(x) uniformly forxz € Q\ B(&,r).
Remarkl.3. When() is a bounded smooth domain, we have the following examplé dfet v be a
real number and lei(x) andV (x) be nonnegative Borel measurable functiongosuch that

1—
1 < p(x) <esssupp(z) < ntl-on

< -
ssu — and V(z) < Céq(x)

for a.e.x € {2 and some constait > 0, wheredq () is the distance from to 092. Thenf(z,u) =
V (z)uP®) satisfies (A1) and (A2). Whefl is a bounded Lipschitz domain, the range0f) depends
on the boundary decay rate of the Green function for the Laplacian (see Example 4.2 below).

In Section 2, we collect some notation, known results and basic lemmas. A proof of Theorem 1.1
is given in Section 3. Examples gfare presented in Section 4.

2 Preliminary materials

In what follows, we suppose th&is a bounded Lipschitz domain R™ (n > 2) and we fix¢ € 09
andzy € Q. The notation||z|| stands for the Euclidean norm of a poinon R™. The Euclidean
distance frome to the boundary2 of 2 is denoted by (x). By B(z, ) we denote the open ball of
centerr and radius: > 0. Also, the symbol” denotes an absolute positive constant whose value may
vary at each occurrence. If necessary, wedsg’s, ... to specify them. Writing® = C(a,b,...)
stands for the dependences @b, ... of a constant”. If C depends on the diameter 6f, the
Lipschitz characters df2 anddqa(xo), then we writeC' = C(Q2) simply. Also, we use the notations

a A'b=min{a,b} anda V b = max{a, b}.



2.1 Green function and Matrtin kernel for the Laplacian

By G we denote the (Dirichlet) Green function éhfor the LaplacianA. Let us recall two-sided
global estimates fofz, from [6]. Since the boundary decay rate(®§, varies at each boundary point,
we need an auxiliary set to control the boundary behavig¥@f Forz, y € Q, we define

— 1
o) = {0 Bs Qb= ol b= yl) < o ol < Cudal®) .

Here the subscript” stands for “elliptic”. We see that there (s, = C(n,2) > 1 such thai3.(z, y)
is nonempty for any pair, y € Q and thatB.(z,y) C Q except for the case = y € 9Q. Let

g(x) = Ga(x,z9) N 1.
Note that there exist = C'(n,2) > 1 andg < 1 < « (both depend only on andf2) such that

é%@WSM@SC%@mewIGQ 2.1)

Whenof) is smooth, we can take = 5 = 1.
Lemma 2.1. There exist&’ = C'(n,2) > 1 such that for allz,y € Q andb € B.(z,y),

1 g(z)g(y) 9(z)g(y)
GWN(%?J) < Ga(z,y) < CWN(% )
where 50(2) A Saly)
oot olx) Noqly) . " —
Nag =4 T oy T 2.2)
l —yl>™ ifn > 3.

Also, the following estimates are helpful. See [6, Lemma 3.3] and [7, Lemma 2.4] for (i) and (ii).
The third one follows immediately from (2.1) and the definitior3f

Lemma 2.2. The following statements hold:

(i) if z,y € Q satisfy||z — y|| < k(éa(x) A dq(y)) for somek > 0, then there exist§) =
C(k,n,Q) > 0 such thatg(x) < Cg(y),

(i) there exist€” = C(n, ) > 0 such thay(z) VvV g(y) < Cg(b) forall z,y € Qandb € B.(z,y),

(iii) there exist€” = C(n, ) > 0 such thaty(b) > Cdn(b)® > Cllx — y||* for all z,y € Q and
b e B.(x,y), whereaw > 1is asin(2.1).

Next, we recall the Martin kernel a2 with pole até € 9Q2. Owing to Hunt—Wheeden’s work [9]
(see also Aikawa [1]), it is known that there exists a unique positive harmonic functi@rvanishing
continuously o2 \ {¢} and taking the valué at the pointzy. Such a harmonic function is called
the Martin kernelat¢ and is denoted by/q (-, ). Actually, this can be obtained by

Malr.8) = % Golwo, )

The following estimate is found in [6, Lemma 4.2].

forx € Q. (2.3)

Lemma 2.3. There exist& = C'(n,2) > 1 such that for alle € Q andb € Be(z, §),

1 g(a) - o) .
& ol P < Mol €) < € F e — €l

In particular, g(x) < CMgq(x,§) forall x € Q.



2.2 Green function and kernel function for the heat operator

Let I'p denote the (Dirichlet) Green function ¢ x R for the heat operator (in other words, the
Dirichlet heat kernel of2). This is invariant under translation in time: for ally € 2 ands, t, 7 € R,

Lao(z,t+7;y,5s +7) = Ta(z, t;y, s), (2.4)

and has the reproducing property: forally € Q ands < 7 < t,

Fn(wﬂf;yﬁ)Z/Fn(x,t;z,T)FQ(z,T;y,S) dz. (2.5)
Q
Also, the following connection with the Green functiéh, for the Laplacian is known: for alt, y €

Q,
Gale,y) = / To(z, 7 y,0) dr. (2.6)
0

Then the change of variables= t — s, together with (2.4) and (2.6), gives

t t
Galz,y) > / To(e, 73y,0) dr — / Ta(e, iy, s) ds. (2.7)
0 0

We need a sharp estimatelaf near the boundary. The boundary behavior gfin large time is well
known by virtue of Davies’ work [4, Theorem 4.2.5]: there exist- 0 andC' = C'(n, ) > 1 such
that forallz,y € Q andt > T,

1

59(@)g(y)e™ " < To(w, t:y,0) < Cy(w)g(y)e™ ™, (2.8)

whereCs > 0 is the first eigenvalue of the minus Laplaciaik. The boundary behavior in small time
is more delicate. Let us recall two-sided estimates obtained recently in [8][" LetD be as above.
Then there exist€’s = C'(Q,T) > 1 such that for any: € Q and0 < t < T, the set

1
By(z,t) = {b €N: aHb —z|| <Vt < C’35Q(b)}
3

is nonempty (see [8, Lemma 2.1]). Here the subscriptstands for “parabolic”. For simplicity, we

write )
Yo(z,t) = iexp N
’ tn/2 ct )’

Lemma 2.4. There exist& = C(n,2,T) > 1 such thatforallx,y € Qand0 < s <t < T,

9(x)g(y) 9(x)g(y)
g(bz)g(by) g(bz)g(by)

whenever we choose auxiliary points frome B, (z,t — s) andb, € B,(y,t — s).

Vé(x—y,t—S)SFQ(x,t;y,S)S P)/C(w_yat_SL

This is just for reference that the paitr)g(y)/9(b.)g(b,) can be estimated as follows:

1 ( do() >< Sa(y) ) 9(@)g(y) < Sa(x) >ﬂ< Sa(y) >ﬁ

— A1 A1 < <C A1 —= A1

C<\/t—3 Vt—s = g(bz)g(by) — Vt—s Vt—s ’
wherea andg are the constants appearing in (2.1) (see [8, Corollary 1.2 and Section 4]). The follow-
ing estimates of will be used later (see [8, Lemmas 2.3 and 4.2]).




Lemma 2.5. There exist& = C(n, 2, 7)) > 1 with the following properties:
(i) g(xz) < Cg(b)forall (z,t) € 2 x (0,T) andb € By(x,1),

(i) g(b) > C (b)) > C~t*/? forall (z,t) € Q x (0,T) andb € B,(z,t), wherea > 1is as
in (2.1).

Next, let us recall a kernel function with pole at the pdiait0) for the heat equation. Owing to
Kemper’s work [13], it is known that there exists a unique nonnegative solution of the heat equation
in 2 x R vanishing continuously o0 x R) \ {(£,0)} and taking the valué at the point(zo, T').

This solution is denoted bi(x,t;£,0). As shown in [8, Lemma 5.1], this can be obtained by

Ko(z,t€,0) = lim To(@.t4,0)

for (x,t) € 2 x R. 2.9
y—¢ La(xo, T3 y,0) (1) (29)

From (2.8), we can see the large time behavioKef there exist€" = C'(n, ) > 1 such that
ag(x)e_CQ(t_T) < Ko(x,t,€,0) < Cg(z)e= 2T forallz € Qandt > T.

The following estimate of(q in small time is found in [8, Theorem 5.2].

Lemma 2.6. There exist& = C(n,2,T") > 1 such that for all(x, t) € Q x (0,7,

g9(z) , 9(z)
77%(55 - fat) < Kﬂ(xvta§70) < m’}@(x - §7t)7

whenever we choose auxiliary points frome B, (x,t) andbe € B, (&, ).
Also, Kq has the following connection with the Martin kernel.

Lemma 2.7. For all z € 2, we have
MQ(IE){) = 04/ KQ(:U7T;£7O) dT?
0

whereCy~! = [ Ko(xo,7:&,0) dr

Proof. Letz,y € Q. By (2.6), we have
Gﬂ(xvy) :/oo FQI’Ty, / FQ x077y7 )d’T
Ga(zo,y) Jo Talzo,T5y,0 Lo(xo,T;y,0)
As y — &, we get the required equality from (2.3), (2.9) and Lebesgue’s dominated convergence

theorem. This is possible by virtue of (2.8) and Lemma 2.4. In fact, & € is fixed, then using
Lemma 2.5 we see that for alle Q \ B(zx,dq(x)/2),

C Sa(x)?\ .
Lo(z,73y,0) < ) oo exp<— or ifo<7<T,
oo, T9,0) = | go—cor if r > T,

The right hand side is integrable forc (0, c0). Thus Lebesgue’s dominated convergence theorem is
applicable. O



Lemma 2.8. For all z € Q and¢ > 0, we have
/ Pa(s, £y, 0) Ma(y, €) dy < Mo(s,£).
Q

Proof. By Lemma 2.7, Fubini—Tonelli's theorem and (2.4), we have

/ To(x, t;y,0)Ma(y, €) dy = Cy / / To(z,t + 59, 8) Koy, s: £,0) dyds.
Q 0 Q

Also, Fatou’s lemma, together with (2.5) and (2.9), yields
/ Fﬂ(xa t+ S3Y, S)KQ(yv S 57 O) dy < KQ(xa t+ S5 57 0)
Q

SinceCy fooo Ko(x,t + 5;£,0)ds < Cy fooo Kq(x,s;€,0)ds = Mq(x,§), we obtain the required
inequality. O

Lemma 2.9. Lett > 0. Then the following statements hold:

@) 1131 / Ca(x, t;y,0)Mq(y, &) dy = 0 for eachn € 992,
.. 1
i) lim ——— [ To(z, t;y,0)Ma(y, ) dy = 0.
@) i 5 [ Tolet9.0)Ma(. ) dy
Proof. Letn € 9 and lett > 0 be fixed. By Lemmas 2.2-2.5 and:(z — y,t) < Ct~"™/2, we have

g(x) g(y) i xTr — _ 2—n
g(b(x’t))g(b(y,t))<9(by§)> oz =y, Oy =<

< C(t)g(z)lly — &P (2.10)

La(x,t;y,0)Ma(y,&) < C

forall z,y € Q, whereb, ) € B,(x,1), b4 € Bp(y,t) andbye € Be(y,§). Therefore

/Q Ta(z,ty,0)Ma(y,€) dy < C(8)g(x) = 0 (z = 1),

and thus (i) holds.
Next, letz € €, lett > 0 and letb,¢ € Be(z,£). Then, by Lemma 2.3 and (2.10),

Mq(z,§)

< C(t)g(bag)*llx = €lI" 2y — €| forally € Q,

and so X
- - T'a(x,t;y,0) M ,E) dy < C(t)g(by 2\l — gln2.
Mn(ﬂ:,f)/g a(z,t;y,0)Ma(y,§) dy < C(t)g(bze)”|lz — |

Since g(bye) < Coa(bue)?® < Cllbae — €]° < Cllz — €]1° by (2.1), we obtain (ii) (even when

n =2). O

Lemma 2.10. For eacht > 0, the functionz — fot Kq(z,7;€,0)dr /Mgq(z, ) is continuous orf)
and has a continuous extension® Moreover, for eacltty > 0,
Jo Ka(z,7:€,0)dr

1
lim = — uniformly fort > tq, 2.11
z—E MQ(.CE,{) Cy y =" ( )

where(Cy is the constant in Lemma 2.7, and the family of such extended functions with parameter
t > to is equicontinuous ofv.



Proof. Lett > 0 be fixed. It is easy to see, using Lebesgue’s dominated convergence theorem, that
the functionz — fg Kq(z,7;€,0)dr/Mq(x, &) is continuous at each point in. We have to prove
the continuity at a boundary point. Since

f(f Ko(x,7;€,0)dr 1 ftoo Kq(x,1;€,0)dr
Mg (z, §) e Mg(z, ) ’
it suffices to show the continuity of the right hand side. het 90Q \ {¢{} and letx;,z0 € QN
B(n,[ln = &]//2). Then
ftoo Kqo(x1,7;€,0)dr B ftoo Kqo(x9,7;€,0)dr

Mq(z1,§) Maq(x2,§)

Mo(r1,€)  Mo(a2,€) ar.
12)

Note from Athanasopoulos—Caffarelli-Salsa’s result [2, Corollary 1]Mate, 7;&,0) /Mq(z, ) has
afinite limit asz — 7. Since we have by Lemmas 2.3, 2.5 and 2.6 thatferQ andb,e € Be(z,§),

2
xp<—M> ifo<7T<T,

</°° Kq(x1,7;,6,0)  Kq(xe,7;&,0)
—Jo

Ka(,736,0) _ ) Cglbug)*llz = &["

7(n/2)+a Cr (2.13)
Maq(z,€) Cy(bae)?||z — £||"2e~C2(=T) if 7 >T,
C lz — €I
- T(n/2)+a exp<—c'7_ fo<7< T,
CeC2(7=T) ifr>T,

it follows from Lebesgue’s dominated convergence theorem that the right hand side of (2.12) tends to
zero asl|z; — x| — 0. Hence the function: — [ Kq(xz,7;¢,0) dr/Mq(z,€) has a continuous
extension td} \ {¢} and the continuity is uniform fot > 0.

Next, we show the continuity & Lett > ¢, > 0. Write p = ||z — £||. Then, by (2.13) and
(n/2) +a—2>0,

[ Ko(z,7:€,0)dr o o [T 1 p? (i
< n L 2(7—T)
Mo(.6) < Cy(bge)p /to e P\ T on dr —|—/T e dr

2 n—2
< Cyg(bge)p [Wﬁ{e){p<_CT> _exp<_Cto + ol
0

The right hand side goes to zero@s= ||z — &|| — 0. Hence we obtain (2.11). Thus the lemma is
proved. O

Remark2.11 SinceMq(+, &) vanishes continuously a2 \ {£}, we see from Lemma 2.10 that for
eacht > 0, the functionz — fg Kq(xz,T,&,0)dr vanishes continuously a9 \ {¢}.

2.3 Generalized Kato class associated with the Martin kernel af

In this subsection, we recall the definition of an admissible function class for the elliptic problem (1.3)
introduced in [5] and give some elementary properties used later.

Definition 2.12. A Borel measurable functiop on 2 is said to belong to thgeneralized Kato class
K¢ (€2) associated withMq (-, §) if the following two conditions are satisfied:

. Ma(y,&)Ga(z,y) > _



Forp € K¢(£2), we write

_ Mo(y,§)Ga(z, y)
L s = rr e OIS

Here we append a little explanation &iz(€2). The classical Kato clags(f2) in higher dimen-
sions, often adopted in the study of potential theory for the stationary8iciger operatoA + ¢, is
the set of all Borel measurable functiop®on 2 satisfying

lim (sup/ % dy) = 0.
r=0\ze JOnB(z,r) ”x _yHn

The Newton kernellz — y||>~" is independent of the shape of a domgirnd this fact restricts the
growth order of functions irC(£2) nearof2. By Cranston—Fabes—Zhao [3, Theorem 3.1], we know
that there i = C'(n, Q) > 0 such that

Ma(y,§)Ga(z, y)
MQ(:C7 f)
Moreover, ifz € Q is fixed, thenMq(y, §)Ga(z,y)/Ma(z, &) vanishes continuously as— 9% \
{¢}. Thus we find the inclusion relationshipi .(R™) C K£(Q) C K¢(2) for anyq > n/2.
We need simple estimates dfq (y, {)Ga(x, y)/Ma(z, £) to obtain properties ofts (€2).

<Cllz—yl|*" +lly €7} forallz,y e Q.

Lemma 2.13. LetC5 > 0. Then there exist§' = C(C5,n,2) > 0 such that
9(bay) < Cg(bae) for byy € Be(w,y) andbye € Be(x,§),
whenever:, y € Q satisfy||lz — y|| < Cs|lz — €.
Proof. Let C; be the constant in the definition Bf. If ||z — £||/2C) < ||z — y|| < Cs|lz — €|, then

1y = brell < [lbay — 2|l + [l = bael| < Cr(llz =yl + [lz = £]])
< Cllz =yl Az = €ll) < C(da(bay) A da(ba))-

Therefore, by Lemma 2.2b.,) andg(b,¢) are comparable in this case. Consider the dasey|| <
|z —&||/2C1. Then

1
lz = &l < llz = bayl| + llbey — &l < Cullz =yl + [lbay — &€ll < S llz = €l + [[bay — €Il
and so||z — ¢|| < 2||byy — &||. Moreover,
[bay — &Il < [lbay — 2| + [lz = &]] < Cille —yl| + [z — &]| < 2[]z =]
We takeb € Be(bsy, ). Then

1o = bagll < 1Ib— €Il + 1€ — bugll < Ci(llbay — €]l + [z — £

< O(llbay — &l Al = £]) < C(da(b) A da(bee))-
It then follows from Lemma 2.2 tha(b,,) < Cg(b) < Cg(bye). Thus the lemmais proved. [
Lemma 2.14. Leta > 1 be as in(2.1). Then there exist§' = C'(n,2) > 0 such that

) C Ma(y,§)Ga(z,y)
Ma(y,§)” < E _5Hn—2+20‘ Mq(z,€) 7

whenever, y € Q satisfy||z — y|| < ||z —£]|/2.



Proof. We give a proof in the case > 3, because the case= 2 is similar. It suffices to show that if
|z —y| < ||z — €]|/2, then

Ma(z,&)Ma(y,§) _ C

Goley) = Jo_ g2 (2.18)

By Lemmas 2.1, 2.3 and 2.13, we get

Ma(z, §)Ma(y,§) g(bzy)  \° lz — g n—2
Ga(z,y) gc(g(wg(byg)) (Hw—ﬁHHy—f!)

< O (el )
= o \Te— £y —&l)

whereb,, € Be(z,y), by € Be(x,€) andbye € Be(y,€). Sincellz — &[|/2 < ||y — &|| < 2|z — €],

we have .
( |z —yl| > < C -
Jz = &|l[ly — €l |z — &

andg(bye) > Clly = £||* > Cllz — £||* by Lemma 2.2. Thus (2.16) follows. O

Lemma 2.15. Leta > 1 be as in(2.1). Then there exist§' = C(n, ) > 0 such that

Moy, §)Gal,y) _ CN(z,y)
Moz, Jlz -yl

where the functiolV (z, y) is given by(2.2).

Mq(y,€)? forall z,y € Q,

Proof. By Lemmas 2.1 and 2.3, we get

Gal(z,y) 9(bze)g(bye)

since is boundedg < 1 andg(b.,) > C||z — y[|* by Lemma 2.2. Thus the lemma follows. [

’ n—2 CN(z,y)
—&llly - N
) (Il = &lllly = &l)™ "N(z,y) < P

Using Lemmas 2.14 and 2.15, we can obtain the following three lemmas by the same way as in the
case wheré) is smooth (see [5, Lemmas 5.6, 5.7 and 5.8]). For reader’s convenience, we give proofs.

Lemma 2.16. If p € K¢(£2), then

/ Moz, €)?|@(x)|dr < oo for eachr > 0. (2.17)
QN\B(&r)

Moreover,|[¢| k() < co.

Proof. Let0 < 6 < r/2 be small enough. Coverir@ \ B(¢, r) by finitely many ballsB(z;, §) with
xzj € Q\ B(&,r), we can obtain from Lemma 2.14 and (2.14) that

¢ Ma(y.)Ga(z;,y)
Foien Mot Pl < e 3 | S ety

Thus (2.17) follows. Also, this and Lemma 2.15 give

SUP/ Malw.&)Galz, v) lp(y)ldy < C(5,m, Q)/ Ma(y,€)?l(y)| dy < oo.
eQ Jo\(B@ouBEs) — Mal(w,§) O\B(£,5)
This, together with (2.14) and (2.15), yieIhj@H,C{(Q) < 00. O
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Lemma 2.17.1f p € K¢(£2), then

r—=0\ zeQ

. Ma(y,§)Ga(z,y) 9
lim sup/ y)|dy | =0 foreachz € (.
< QNB(z,r) MQ(.Z',&) |SD( )|

Proof. Let z € Q. From (2.14), (2.15) and Lemma 2.15, we see that for each0 there is§ > 0
such that for allz € 2 andr > 0,

e(y)ldy <e+ e(y)| dy
/mB(z ny Mo(x,8) o) QNBr\(Bx.o)uBEs) — Ma(w,§) (W)
<c+Clsan) [ Moy, €)2lp(y)| dy.
N B(= )\ B(.5)

The right hand side is independentzofin view of Lemma 2.16, we obtain the required propertyl
Lemma 2.18. Lety € K¢(©2). Then the function

MngGﬂl‘y)
Mq(x,€)

p(y)dy forz e Q

is continuous o2 and has a continuous extension(o Moreover,lin% o(x) =0.
T—r

Proof. Lete > 0, letz € O\ {¢} and letry, 22 € QN B(z,6/2). If § > 0 is small enough, then we
have by Lemma 2.17
GQ(xlvy) GQ(QTQ, )

) —d
[®(@1) = ®(w2)| < H/sz\(B(z,a)LJB(g,é)) Mo(w1,§)  Ma(2,€)

Note thatGq(x,y)/Mq(x, &) has a finite limit asc — =z (see Aikawa [1]). Since the integrand is
bounded byC' (6, o, n) Mq(y, €)?|¢(y)| by virtue of Lemma 2.15, it follows from Lemma 2.16 and
Lebesgue’s dominated convergence theorem that the above integral tends to|zare-as;|| — 0.
Thus® is continuous at € Q \ {¢}.

Also, we have

Ma(y, §)|e(y)| dy.

MQ(ya g)GQ(wv y)
e@iset [ S oy

and, using Lemmas 2.1 and 2.3, we observe thatr,y)/Mq(z,£) — 0 asz — £. By the same

reasoning as above, the integral tends to zeto-as¢. Henced is continuous orf) andliné O(x) =
rT—r
0.

3 Proof of Theorem 1.1

Let0 < A < Ao, where)g > 0 is chosen later. Assume that< ug(x) < AMq(x, &) for all x € Q.
Letv(z,t) = [, Talx, t;y,0)uo(y) dy be a solution of the heat equation with the initial value

= Av in ©Q x (0, 00),
v=0 on o x (0,00),
v(z,0) =up(x) forallz e Q.

Note from Lemmas 2.8 and 2.9 that

0 <wv(z,t) < AMq(z,&) forall (z,t) € Q x (0,00), (3.1)

11



and
lim v(z,t)

—7 2 =( foreacht > 0. 3.2

Also, for simplicity, we write
t
h(z,t) = C4/ Kq(z,7;€,0)dr  for (x,t) € Q x (0,00),
0

where() is the constant in Lemma 2.7. It is easy to see from the definitioig@and Lemma 2.7
thath is a positive solution of the heat equation

hy = Ah in Q x (0, 00),
h=0 on (92 {¢}) x (0,00),
h(z,0) =0 forallx € Q,
satisfying
0 < h(z,t) < Mq(z,&) forall (z,t) € Q x (0,00). (3.3)

Therefore, in order to prove the existence of a positive solution of (1.2), it is enough to show that there
is a positive continuous solutianin 2 x (0, co) of the integral equation

u(z,t) = Ah(z,t) +v(x,t) + /t /Q Ca(x,t;y,s)f(y,u(y, s)) dyds. (3.4)
0

To this end, for\ € (0, 1/3], we let

0 < w(x,t) < 3Xforall (z,t) € Q x (0,00) and
Wy = wECb(QX(0,00)) : ,

lim w(x,t) exists for eachr € Q

t—o00

whereCy (€2 x (0, 00)) denotes the space of all bounded continuous functiori$ »ri0, co) endowed
with the uniform norm| - ||, and consider the operat® on W, defined by

Ah(z,t) + v(z,t)

Th\[w](x,t) = Moz, €)

+ Dw](x,t) for (z,t) € Q x (0, 00),
where
Mul(e.t) = g | [ Toltin. )10 w(y. 9)Maln.9) dyds.

It is easy to see thal/) is closed in the Banach spa€g(2 x (0,00)). We will show thatT) has a
fixed point in/y by using Banach'’s fixed point theorem. In the arguments below, we note from (A2)
with u; = 0 andus = w(y, s)Mq(y, ) that if w € Wy, then

fy,w(y, s)Ma(y,€)) < 3A\Mq(y, &)Y (y, 3AMq(y, £)) (3.5)
< Ma(y, &) (y, Ma(y, §)) (3.6)

forall (y,s) € 2 x (0, 00).
Claim 1. There exists\; € (0,1/3] such that whenevex € (0, ;] andw € W), we have

0 < Th[w](z,t) <3\ forall (z,t) € Q x (0,00).
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Proof. Consider the famil{ ') : 0 < A < 1} of functions defined by

MﬂnyQxy)
Mq(z,§)

P(y, A\Mq(y,&))dy forz € Q.

Sincey (-, A\Mq(-,€)) € ICg(Q), it follows from Lemma 2.18 tha¥ , has a continuous extension, say
U,, to Q. Also, the functiom\ — ¥, () is nondecreasing and tends to zero\as: 0+ by (A2). We
then see from Dini's theorem th@tA(x) — 0 uniformly for z € Q asA — 04; namely,

Jim ([0 AMa(, €))llk @) = 0. (3.7)
Therefore it follows from (2.7), (3.5) and (3.7) that
0 < Dlw|(z,t) < 3A[[¢ (-, 3AMa(-, )k @) <A forall (z,t) € Q x (0,00),

whenever\ > 0 is sufficiently small. This, together with (3.1) and (3.3), concludes the claim.[]
Claim 2. For w € W, with A € (0,1/3], we have

() IT[w]lloo < (- Ma(-, &)l (e) < o0

(i) T'[w] is continuous o2 x (0, co),

(iii) for eacht > 0, T'[w](-,t) has a continuous extension, sai](-, ), to 2, and

lim I'[w](x,t) = 0, (3.8)

r—E

(iv) {T[w](-,t) : t > 0} is equicontinuous of,
(V) tlim [[w](x,t) exists for each: € Q.
— 00

Proof. For simplicity, we writep(y) = 1 (y, Ma(y,€)) € Ke(2). By (2.7) and (3.6), we have for alll
(x,t) € Q x (0,00),

Mlulet) < | Mo(y,)Ga(z,y)

< .
; Mo (. €) e(y) dy < |lellie @) < o

Thus (i) holds.
Next, we show that for each> 0, T'[w](-, ) has a continuous extensionand the continuity
is uniform for¢ > 0. Letz € Q\ {¢} and lets > 0. By Lemma 2.17, there exists> 0 such that

Mq(y,§)Gal(z,y) .

21618 /QOB(Z ) Mq(x,§) p(y) dy <e, (3.9)
d ‘ 3.10

vt /QmB(g,T) Meo(z,€) p(y)dy <e (3.10)

Letxy,zo € QN B(z,r/2) andt > 0. By (3.6), (2.4) and the change of variabtes- ¢t — s, we have

T[] (21,1) — Dol (2, 1)] < /</

La(xy,ty,s)  Tal(xe,t;y,s)

ds) Ma(y, €)¢(y) dy

MQ($17§) MQ(.’EQ,{)
19 FQ(ZL‘l,T;y,O) B FQ([L‘2’T;y’ O) >
= /Q</0 ‘ Mq(21,€) Mq(z2,€) dr | Moy, )¢(y) dy
=0 + I+ I3,
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wherel; = me(”) ody, I = me(&T) ... dyandlz = fQ\(B(z,r)UB(E,r)) ... dy. If one proves
that these integrals are bounded®y, then we can conclude thBfw] is continuous at uniformly

for ¢ > 0. From (2.6), (3.9) and (3.10), we gét < 2¢ andl, < 2¢. Consider/s. Since we know
from [2, Corollary 1] thatl'o(-, 7;y,0)/Mgq(-,£) has a continuous extension ¥\ {¢}, we have
only to estimatd’o(x, 7;y,0)/Mq(z, £) by a function independent of. Letx € QN B(z,r/2) and

y € Q\ (B(z,r)UB(,)). If 0 <7 < T, then by Lemmas 2.3-2.5 we have fgf ;) € By(z,7)

andb(, -y € By(y,7),

Lo(z, 739, 0) g9(x)g(y) C |z — y|?
Mo(w,6)~ 9(0(an)9lbiym) 772 eXp<—cT>/Mﬂ(w,£)

C r?
< v P\ o | Maly, ) (3.11)

If - > T, then Lemma 2.3 and (2.8) give

—Cor

Po(z,759,0) _ ~9(@)g(y)e
Mqo(z,€) — Mq(w,€)

whereCy > 0. Now, letp(y, 7) be defined by the right hand sides of (3.11) and (3.12). Since

< CMq(y,&)e ", (3.12)

/ | et Maetyardy <€ | Mol €Pel0)dy
O\(B(z,r)UB(&,r)) /0 Q\B(&r)

and the right hand side is finite by Lemma 2.16, it follows from Lebesgue’s dominated convergence
theorem thatls < ¢ whenever|z; — xs|| is sufficiently small. Therefor&|w](-,¢) is continuous at

z € Q\ {¢}. Moreover, we have by Lemma 2.18

ul(e) < [ HRBEEUED 000y 0 o),

Hencel'[w](-,t) has a continuous extension®and the continuity is uniform for > 0. Thus (ii)
and (iv) hold.

Next, we show thal'[w] is continuous afz1,t1) € 2 x (0, 00). If ||z — || is small enough, then
by the above we have for all> 0,

Tl 1) — Tlwl(e, )] < [Tl £) — Tl (@1, )] + U]z, £) — D)@, 1)
<e+ |Dwl(xy,t) — Tw](x1,t1)].

By (2.4), the change of variables= ¢t — s, (A2) and (3.6), we have

Pw](x1,t) — lw] (21, 1))

1
= M9<x1,§>/g

t1
- /0 L1, 755,0)f (g, wly, 1 — 7)Ma(y,€)) dr

t
/0 Lo (1,739, 0)f(y, w(y, t — 7)Ma(y,€)) dr

dy

f . MQ(yv‘S)
</ ( [ taterm 0t = 1)~ wn - 1) dT)MQ(M)@(y) dy

o : Ma(y,¢)
+/Q</t/\t1 La(z1,75y,0) dT) mg@(y} dy, (3.13)
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where we assumed for convenience thég, s) = 0 for s < 0. By Lebesgue’s dominated convergence
theorem, both of the integrals of the right hand side converge to zereag,. Thereforel'[w] is
continuous atz1,t1). Thus (ii) holds.

Finally, we show (v). LeD < ¢; < ty andx € 2. By the same way as (3.13), we have

[Plw] (@, t1) = Tw](z, ta))|

< [( [ Taterin 0ot - 1) - wlo.te - Dldr ) 2D o) dy

+ /Q </: Lo(z,739,0) dT) ]\]\/.{;zgi: giw(y) dy.

Sincew(y, t) has a finite limit ag — oo, the right hand side becomes smallerifs bigger. Therefore
I'[w](z,t) has a finite limit ag — oo. O

The above two claims show th@&}, is a mapping froni¥y, into Wy, wheneved < A < A;.
Claim 3. There exists\o > 0 such that whenevex € (0, o],
1
HT,\[wl] — T)\[w2”|oo = HF[wﬂ — F[UJQ]HOO < inl — ’LUQHOO for all wi, W € W.
Moreover, there is a unique positive functien € W, such thatl, [w.] = w..

Proof. Note from (3.7) that there i§y € (0, A1] such that

Let0 < A < A and letwy, wy € W). Then, by (A2),

forall A € (0, Ag].

N |

|f(y, wi(y, s)Ma(y,§)) — f(y, wa(y, s)Ma(y, &) < ¥(y,3AMa(y, §)) Ma(y, §)[|wi — w2 ||,
and so
[Ta[w1] = Ta[wa]|loo = [IT[wr] = Twa]llee < [[1(-; 3AMa(+, &) llxce (@) w1 — walloo
< %le — Wa|co-

SincelV), is closed in the Banach spa€g(f2 x (0, c0)), the existence af, in the claim follows from
Banach'’s fixed point theorem. Sineg = T [w.] > Ah/Mq(-,§), wy iS positive on. O
Claim 4. Letw, be as in Claim 3. Thew,(-,t) converges uniformly of ast — co. Moreover, the
limit function, sayw.., satisfies

Woo(®) = A+ MQ(lw /Q Go (0, 9)f (g woo(y) Ma(y, ) dy forallze Q. (3.14)

Proof. Note that

Ah(z,t) + v(z,t)
Mq(x,§)

By Lemmas 2.7, 2.10 and Dini’s theorem,

wy(z,t) = Th[w](z,t) =

+ Iwy](x,t) for (z,t) € 2 x (0,00).  (3.15)

lim Iz, 1)

im e 1 uniformly forz € Q. (3.16)
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Also, since

2
oMoy €) < O ZL) Jy =€ < Cly =€ forally € Qandhe € 5,(0.6)
Y

by Lemmas 2.2 and 2.3, we hayg g(y) Mq(y, &) dy < oo, and so by (2.8)

t
0 < sup v(z,t)

— < C'e_CQt/ U dy — 0 ast — oo. 3.17
S (. 6) = Qg(y) o(y) dy (3.17)

Claim 2 and Ascoli—-Arzél’'s theorem imply thaF [w.](-, t) converges uniformly of ast — co. All
of the above conclude that. (-, t) converges uniformly of? ast — oc.
Moreover, using Lebesgue’s dominated convergence theorem and the continf(ity of we get

1
Jim Tw.](z,) = Vo@.d) /Q Go(z,y) f(y, weo(y)Ma(y,£)) dy forz e Q.
This, together with (3.15)—(3.17), yields (3.14). O

Proof of Theorem 1.1Let0 < X\ < \g and letw, be as in Claim 3. Define

Thenu is a positive continuous solution of (3.4), and so of (1.2), satisfyifxg t) < 3\Mgq(x, &) for
all (z,t) € Q x (0,00). Moreover, we obtain from (3.2), (3.8), (3.15) and Lemma 2.10 that for each
e (@.) A, )
. u\x, . . X,
2 Mae,§) a0 = A Mo, —
Thus the first assertion of Theorem 1.1 is proved.
To show the second assertion, we defing(x) = Mq(z, §)ws (x) With w, being as in Claim 4.
Thenuo (z) < 3AMgq(x,€) for all z € Q andu,, is continuous o2 \ {¢}, vanishes o \ {¢},

and satisfies
@) = N2 €) + [ Goliry) (3 ul0)) dy forallz €
Q

by Claim 4. The last equality gives.,(x) > AMq(z, &) for all z € 2, and so (1.4) holds. Also,
(1.6) follows from Claim 4. Lemma 2.18 implies thit Ga(z,y) f (y, uso (y)) dy/Ma(z,£) — 0 as

x — &, and so (1.5) holds. Henag,, is a positive solution of (1.3) with the required properties. This
completes the proof. O

4 Examples

Lemma4.1. Let5 < 1 < a be asin(2.1), and letp(y) and~(y) be Borel measurable functions on
Q) such thaip(y) > 1 and

ezsesgp{p(y)(n —24a)+aly(y) -1}V ezsesgp{p(y)(n —2+4+8)+B((y) — D} <n

Theng(y) "™ Mq(y, &)W~ € Ke(Q).
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Proof. We give a proof fom > 3, because the case= 2 is simpler. Write

e(y) = g(y) " Mq(y, &PV -1.

Before a proof, let us remark the following. 4 () < v2(y), theng(y)~"® < g(y)~72®), so that
9(y) 72 Mo (y, £)PW~1 € Ke() impliesg(y) ™71 W) M (y, £)P@~1 € K¢(2). Moreover,
n+a—ply)(n—2+a)

p(y) < s equivalentto 1 — p(y) < . 4.1)
n—2 o

Therefore, by considering
. n
YY)V A=) Tply) < —,
Yo(y) = _ n
>
7(y) ifp(y) =2 —.

we may assume thaty) > 1 — p(y) on the set wherg(y) < n/(n — 2). Note from (4.1) that for all
y € Q satisfyingp(y) > n/(n — 2),
n+ B — n—2+ n+a— n—24+«
) < B p(yg( B p(y)( )
(6
and thaty(y) < 2/a < 2 for all y € Q2 because op(y) > 1. These will be used tacitly below. Let

z,y € Q and takeb,e € Be(x,§), bye € Be(y,&) andb,y € B.(x,y). By Lemmas 2.1 and 2.3, we
have

_ Gole,y)Mo(y, &

Mo(x,€)g(y) W)

PO Ot (L )"2 @.2)
= gy N\ —yllly—ep@)

Now, we fixz € Q andr > 0. Put

By =90 Bla,n) \ BE 3o — €,
By =00 Bla,r) N BE e — ).

Lety € E;. We first show that
G(bge) < Cg(bye)- (4.3)
If |l —&|l/2 < |ly — €& < 2C ||z — &]] with C; being the constant in the definition Bf, then

16z = byell < llbag = &Il + 1€ = byell < Cr(llz = €[l + lly = €I
< C(llz =&l Ally = €ll) < C0albae) A dalbye)),

and sog(b.e) < Cg(bye) by Lemma 2.2, fly — £|| > 20y ||z — €|, then
162 — yll < [Ibae — €l + 1€ — yll < Culle — &l + 1€ —yll < 2[ly — €],
e — 1 2 Il — €11~ llbwg — €1 > 1y — &1l = Culle — €1 > Ly — €1,
Therefore, folb € B.(b.¢,y), we have

16 = byell < 116 =yl + Iy = byell < Ci(llbae = yll + lly — €I
< CO(llbze =yl A lly = €l < C(3a(b) A da(bye)),
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and sog(b,e) < Cg(b) < Cg(bye) by Lemma 2.2. Hence (4.3) holds.

Also, g(y) < C(g(bay) A g(bye)) and|lz — y|| < [lz — &Il + [[€ — yll < 3[ly — &]|. Therefore, if
v(y) > 0 (this does not occur foy satisfyingp(y) > n/(n — 2)), then we usgy(b,e)? < Cg(bye)?,
g(y)p(y)—l < Cg(byf)P(y)—l andg(y)Q—V(y) < Cg(bw)Q—V(y) to get

W)+1-7(y) 2
gy g(bae)” ¢ < c :
G(bye)PWg(byy)?  ~ g(bye)PW=1g(byy)YW) ~ |z — y||a@E)=1+1w)

if v(y) < 0, then we usgy(y)*@~1=7W) < Cg(bye)PW 177, g(y)? < Cy(byy)? andg(bee)? <
Cg(bye)? to get

C i n
GO W g(b,e)? C < ) llz =yl =1+G) Try) < =5
g(bye)PWyg(byy)? = glbyepW =11 = ¢ if p(y) > —
ly — €Poem-1rG) P =Ty

Here the last inequality in the casly) > n/(n—2) follows by g(bye) < Cdq(bye)? < C|lbye—€|° <
C|ly — €||. Hence, we obtain from (4.2) that forc E; satisfyingp(y) < n/(n — 2),

Mo, ) PW S T e mraram-1a’

and fory € E; satisfyingp(y) > n/(n — 2),

Mo (y,§)Galz,y) C

Maq(x,§) Ply) = |z — yl|"=2||ly — &|| P -1 (n—2+8)+Bv(y)
C .
[z = gpom—zraw-p I PW) — =248+ 5(y) >0,
< o |
Tz —yl2 if (p(y) —1)(n—248)+ By(y) <0.

Lety € E,. Sincel|lz — £]|/2 < ||z — y|| < 2|z — €], we have

1bzg = byl < [lbag — @[l + |z = bay || < Cr([lz = £l + [z = wl])
< O(llz =&l A llz = yll) < C0albag) A da(bay)),

and sog(bze) < Cg(bsy) by Lemma 2.2. Sincg(y) + 1 — v(y) > 0 andg(y) < Cg(bye), it follows
from (4.2) that

Ma(y,§)Galz,y) ) < o
Mo(,6)  *WV'= Glbye @ -19W)[yy — €[[p)n-2)
C y .
_ ) Ty~ gpot—2arae-ne ply) <,

- ¢ it ply) > —
ly — €P@—2tA+0w-ns " PW =5y

Here we usedly — £[|%/C < da(bye)*/C < g(bye) < Cda(bye)? < Clly — &||%, which follows from
(2.1) and the definition oB.. Note thatE, # () implies thatFy C B(&,r). Using estimates above,
we easily see thap satisfies (2.14). Also, (2.15) is shown by using (2.14). Indeed, since we get from
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(4.2),9(bay) = lz = yl|*/C, g(bsg) < Cllz — €17 and|ly — €]|*/C < g(bye) < Clly — €|1° that

Moy, §)Go(x,y) C_ gl (  e-g "7
Va6 S G, g, ><ux—y||uy g )

Cllz —g||*—>+2° . n
- - - if p(y) < :
_ |z — y||n—2+2e||y — &P (n—2+a)+(v(y) - e -2
B Cllz —g||"~>+2° - n
- — - if p(y) > ,
| — y||n—2+2a|y — £||p@) (n—2+8)+(v(y)-1)8 n—2
it follows that for sufficiently smalb > 0,
Ma(y,§)Galz, y) / ( )Gn(af,y)
ply)dy <e+ ©(y) dy
/mB(g ) Mq(z,§) (@) QNB(&,m)\B(z,8) a(z,§) )
n—m(a) n
c r ifp(y) < —,
S €+ 5n—2+2a X 8) n
n—m 1 >
r ifp(y) 2 —,
wherem(a) = esssup,cq{p(y)(n — 2+ a) + (v(y) — 1)a}. Hencep € K¢(Q2). O

For a Borel measurable functigifz) on 2, we let

pT = esssup p(z).
€

Example4.2.Letg < 1 < abeasin (2.1), and let(z), ¢(x) andy(z) be Borel measurable functions
on ) such that all of the™, ¢+, v+ are finite and

esssup{p(r)(n 2+ ) + a(y(x) = 1} V esssup(p(a)(n — 2+ B) + B((x) ~ 1)} <.

Moreover, we assume one of the following:

(i) p(z) > 1andg(z) >0,

(i) p(x) > 1 andg(z) > 0.
If V(x) is a nonnegative Borel measurable functiontbsuch that

V() < Cg(a)"*) (log(1 + Ma(x,€)) ")
for almost every: € Q and some constant > 0, thenf(z,u) = V(x)uP® (log(1 + u))?*) satisfies
(A1) and (A2).
Proof. Because (Al) is trivial, we have only to check (A2). Let
Y(a,u) = (pF + ¢ ")V (2)u! D (log(1 + u)) 7).

Theny is nonnegative and Borel measurabledr [0, co). Also, it is easy to see that for eache (2,
¥ (z, ) isincreasing off0, co) andulir&mm, u) = 0. Observe from Lemma 4.1 tha{-, Mq(-,&)) €
KCe(€2). To show the Lipschitz type continuity, we note that

() (log (1 + u))a()
14+u

) < b(au),

since(1+u)log(1+u) > u. Let0 < u; < ug andz € Q. Then, by the mean value theorem, we find
6 € [u1,ug] such that

[f (2, u1) = f(z,u2)| = fulz, 0)lur — ua| < (2, up)ur — usl.
Hencef satisfies (A2). O

0 < fulz,u) =V(x) <p($)up(x)_1(log(1 +u))?®) 4 g(z)uP
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