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Abstract

This note presents sharp upper and lower bound estimates of the heat kernel in a bounded
Lipschitz domain. To this end, we introduce an auxiliary set which is different from Bogdan’s set
used in the study of the Green function for the Laplace operator. Also, we give global estimates
of kernel functions with pole at parabolic boundary points.
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1 Introduction

Let (z,¢) denote a typical point ifR™ x R, wherex € R™ and¢ € R, and lety(z, t) stand for the
fundamental solution of the heat equation given by

1exp{—|x”2} ift>0
v(x,t) = ¢ (dmt)n/? 4t ’ (1.1)
0 if t <O.

Let Q be a domain iR™. We denote by’ the Green function fof2 x R and the heat operator. If
(y,s) € Q x Ris fixed, then it is represented as

D(x,t;y,s) = y(x —y,t —s) — hey o (x,t) forall (z,t) € Q xR,

whereh, ) is the greatest thermic minorant f- — y,- — s) onQ x R (see [19]). In the case

s = 0, the Green functioi'(-, -; y, 0) is also referred to as the heat kernel far It is well known

thatT'(z, t;y,0) < v(x—y,t) forall (z,t) € Q x R, and moreover that if andy are apart from the
boundaryd$2 and if they are close to each other, tH&@, ¢; y, 0) > (Ct) /2 exp(—C/||z — y||2/t)

for some constant’ > 1 (see [4, Theorem 8] for instance). But the global behavior, particularly the
boundary behavior, is not well known because it is influenced by the shape of a domain. For the last
few decades, many researchers have studied two sided global estimates of heat kernels. The large
time behavior of the heat kernel on a bounded Lipschitz dorfaimas established by Davies [8,
Theorem 4.2.5]: for any > 0, there existd” > 0 such that for allz,y € Q andt > T,

(1 —e)g(x)p(y)e” P < T(a,t;y,0) < (L+e)p(z)p(y)e ™,

where¢ is the eigenfunction corresponding to the first eigenvaluef the minus Laplacian-A.
The small time behavior is more delicate. For simplicity, we use the notations = min{a, b},

aVb=max{a,b} and
vol(z,t) = iexp — il
@i tn/2 ct |




The symbolC' stands for an absolute positive constant whose value is unimportant and may vary at
each occurrence. Writing'(a, b, . .. ) means that a consta6tdepends only om, b, .. .. By §(z),

we denote the Euclidean distanceRf from a pointx to the boundary)(). Davies [7, Theorem 3]
proved that if2 is a bounded Lipschitz domain, then there exists C'(n,Q2,T") > 1 such that for
allz,y e Qando <t < T,

P(x)P(y
%’VC’(‘I - y7t)7 (12)
wherea > 1 is a constant satisfying(x) > Cd(x)® for all x € Q and some” > 0. If 9Q is
smooth, then we can take = 1. In this case, the following sharper estimate was obtained by Hui
[12, Lemma 1.3] (upper estimate) and Zhang [21, Theorem 1.1] (lower estimate):

D(xz,t;9,0) <

I(x,t:9,0) < <5<ﬂ> A 1) ((5% A 1)%@ ), (1.3)
T(xz,t;y,0) > (5\(}? A 1) (5\([? A 1>7é (x —y,t). (1.4)

Also, Cho [6] obtained these estimates in a boundéd domain with0 < a < 1.

The purpose of this note is to establish lower and upper bound estimates sharper than (1.2) when
Q is a bounded Lipschitz domain. To this end, we introduce an auxiliary sek ket andT > 0.
Forz € Qand0 < t < T, we define

By(z,t) = {b €Q: %Hbfo <Vt< Hé(b)}.

Here the subscriptp” means “parabolic” in order to distinguish from the elliptic case. This set is
nonempty ifx > «(Q,T) (see Lemma 2.1). We fix some= (2, T) in arguments below. Let,
be a fixed point if2 (which is away from)(2) and letG(«x, y) denote the Green function fér and

the Laplace operator. Instead of the eigenfunctipwe use the truncated Green function
g(x) = G(z,x0) A L.
The main result is as follows.

Theorem 1.1. Let(2 be a bounded Lipschitz domainlk¥ (» > 2) and letT’ > 0. Then there exists
C=C(n,Q,T) > 1suchthatforalk,y € Qand0 <t < T,

. 9(x)g(y)

F(337t7ya 0) < m’}@(m - yvt)v (1.5)
. 9(2)g(y)

Iz, t;y,0) > o)) (z —y,1), (1.6)

whereb, € B,(z,t) andb, € B,(y,1).
Estimates of this kind in the elliptic case were given by Aikawa [1, Section 3] and Bogdan [5].
For each pair of points, y € €2, we let

Bulo) = {b €@ 2=l VI =) < o - vl < 50) . @

Here the subscript¢” means “elliptic”. This definition is slightly different from theirs, but is es-
sentially the same (see [11]). Then there exists: C'(n,{2) > 1 such that for each,y € 2 and
b e Be (‘,I:7 y):

50(w.0) < Gla,y) < CGl,y), 19)
where 0@al) (| s 0@ AW
B (1+1ee SPEGP) wn=2
9= g<i>g<y>” . R
W T—y n > 3.



Herelog™ f = (log f) v 0. Note that the auxiliary sets are quite different between the elliptic and
parabolic cases, becauBg(x, y) is determined by two points, y € €, whereas3,(z,t) by only

one point(z, t) € Q x (0, 7).

Remarkl.2 Recently, Gyrya and Saloff-Coste [16] obtained two sided estimates of heat kernels in
“unbounded” inner uniform domains. They used the quantity

/ h(z)? dz/ h(z)?dz
B(z,V/t)NQ B(y,/t)NQ

with a harmonic profileh instead of ourt”/Qg(bx)g(by). Also, this quantity is comparable to
t"/2nh(b,)h(b,), whereB,(z,t) is defined with respect to the internal metric. (see [16, pp. 103—
104]). Our proof is based merely on the so-called local comparison principle for temperatures and
the boundary Harnack principle for harmonic functions, and is simpler than theirs.

As a consequence of Theorem 1.1, we obtain the following improvement of (1.2).

Corollary 1.3. LetQ be a bounded Lipschitz domainit¥" (n > 2) and letT" > 0. Then there exist
C=Cn,QT)>1a=anN) >0ands = F(n,N) > 0with 5 < 1 < « such that for all
z,y € Qand0 <t < T,

I(x,t;y,0) < (5\([? A 1)6 <5\%) A 1) Byc(x —y,t), (1.9)
et > (B 00) (42 01) s oot 19

Moreover, if(2 is a Liapunov-Dini domain, we can take= 5 = 1.

Remarkl.4. See Widman [20] for the definition of Liapunov-Dini domains. Note that bouricfet]
domains with) < a < 1 are Liapunov-Dini domains.

This note is organized as follows. Section 2 collects some elementary lemmas concerning the
setB,(x, t) and the functiory. Proofs of Theorem 1.1 and Corollary 1.3 are given in Sections 3 and
4, respectively. As a consequence of Theorem 1.1, we establish upper and lower bound estimates of
kernel functions with pole at parabolic boundary points in Section 5.

2 Preliminaries

A bounded domairf2 in R™ is called aLipschitz domairwith localization radiusry > 0 and
Lipschitz constant, > 0 if for each¢ € 0N there exist a local Cartesian coordinate system
(v1,...,2,) = (2',2,) and a function) : R"~! — R satisfying the Lipschitz conditiop)(z’) —
(y')| < L|la’ — y/|| such that

QN B o) ={(2,2n) : 2 > Y(2')} N B(&,10).

Then we see that for eache 09, there is a point € R™ such that the truncated circular cone
{x : Zzéz < O,||lz — &|| < 7o} is contained in(2, wheref = arctan(1/L). Therefore, if
0 < r < ro/2, then the point, denoted k., in the intersection of the axis€ anddB(¢,7) N Q
satisfies)(&,) > rsin 6. Also, the notatiorC'(€2) (which has already used in the introduction) means
C(L,ro,diam ).

In the rest of this note, we suppose thats a bounded Lipschitz domain R™ (n > 2) with
localization radius:g > 0 and Lipschitz constant > 0 and thaté(xq) > ro/2. Also,T > 0 is
fixed. We start with some elementary lemmas.

Lemma 2.1. Let§ = arctan(1/L). If & > (ro/VT) V (2v/T/rosin ), then the seB,(z,t) is
nonempty for any paix € Q and0 < t < T.



Proof. Letz € Q and0 < t < T. Putr = (ro/2)\/t/T. If §(z) > r, thenz € B,(z,t) whenever
k> 2¢/T /r. Consider the casgz) < r < ro/2. Let¢ € 99 be a point such thalt — z| = 6(x).
As mentioned above, we firgl € 0B(&,r) N §2 such that(£,.) > rsind. Then

16 = zll < 1& — &l + 1€ — = < 2r.
Therefore, ifk > (ro/V'T) V (2V/T /rg sin ), thené,. € B,(x, ). O

For two positive functiong; and f, we write f; = f5 if there is a constanf’ > 1 such that
f1/C < fo < Cf1. Then the constant is called the constant of comparison. The next lemma
follows from the Harnack inequality for the Green functi@r(see [11, Lemma 3.3)).

Lemma 2.2. Let\ > 0. If 2,y € Q satisfy||x — y|| < \(6(x) Ad(y)), then

where the constant of comparison depends only,onand 2.

Lemma2.3. LetA > 0. If z € Qand0 < t < T satisfyd(x) > A\/1, then
g(b) = g(z) forallbe By(z,t),

where the constant of comparison depends only,on 2 andT.

Proof. Letb € B,(x,t). The assumption and the definition®8f(z, t) imply that
1
10— | < KVt < K,(li Y >\> (6(b) A 6(x)).

Hence the conclusion follows from Lemma 2.2. O
The following three lemmas will be used in Section 5.
Lemma 2.4. There exist&® = C'(n,2,T) > 0 such thatifd < ¢ < T, then
g(b) > C forall b e By(xzo,1t).
Proof. Letb € B,(xo,t). Then

5. 2diam
\/7

16— o] < ( ><6<b> Ad(0)).

o
and sog(b) =~ g(z9) = 1 by Lemma 2.2. O
Lemma 2.5. There exist€ = C(n,2,T) > 0 such thatifz € Q and0 < ¢ < T, then

g(b) > C forallbe B,(x, T +1—1t).
Proof. This follows fromd(b) > /T + 1 —t/x > 1/ and the Harnack inequality. O
Lemma 2.6. Letx € Qand0 < ¢ < 7. Then

g(b1) = g(ba) forall by, by € By(x,1),
where the constant of comparison depends only,dgn and 7.

Proof. Since||b; — ba|| < ||b1 — || + ||z — ba|| < 26Vt < 262(5(b1) A 3(b2)), the conclusion
follows from Lemma 2.2. O



3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. A solution of the heat equation on a domain
D c R is called atemperatureon D. The following lemma is a consequence of the parabolic
Harnack inequality established by Moser [15].

Lemma 3.1. Let A > 0. Then there exist§’ = C(\,n,) > 0 such that ifu is a nonnegative
temperature o) x (0, c0), then

u(.1/2) < Cu(y. 1) exp{”t‘y'Q} 3.1)

for anyx,y € Q andt > 0 satisfyingd(x) A §(y) > A\t

Proof. Fort > 0, we writer = A\V/Z. Letz,y € Q satisfyd(z) A d(y) > r. If |z —y|| < r/2,
then (3.1) holds by the parabolic Harnack inequality. Consider the |pasey| > r/2. Since
Q is Lipschitz, we find a Harnack chaipB(z;,r/C)}7., in  such thatxy = =, 2, = y and
zj—1 € B(z;,7/2C) (j =1,--- ,m), whereC' = C(2) > 2. Moreover, the number. satisfies

< Cllz =l
r

for someC = C(12). Lett; = (¢t/2) + (jt/2m). Then, by the parabolic Harnack inequality, there is
C =C(A\n,Q) > 0such that

uw(zj_1,tj—1) < CMu(z;,t;) forj=1,--- ,m.
Therefore . ,
etf2) < O utt) < Cultyexp{ TELEL,
Thus the lemma is proved. O

The following lemma is elementary and well known.
Lemma 3.2. Let A > 0. Then there exist§' = C(\, n,2) > 1 such that ifr € Q andt > 0 satisfy
§(x) > \/t, then

1

Proof. For the convenience sake of the reader, we give a proof.zLet Q andt > 0 satisfy
§(x) > M\/t, and letg be a continuous function dR™ such that < ¢ < 1 and

4= 1 onB(z,\W1/3),
|0 onR™\ B(z, \VE/2).

Consider the function defined o) x R by

[ TGy Doy ifs>e
u(z,8) =< Ja
1 if s <t/2.
Observe that, o3 (x, \v/1/3) x R, it is continuous and satisfies the parabolic mean value equality,
and sou is a nonnegative temperature on there (see [18, Theorem 15]). The parabolic Harnack

inequality gives
1 =u(z,t/2) < Cu(z,t).

Also, the adjoint version of the parabolic Harnack inequality gives

D(z,t;y,t/2) < CT(x,t;2,0) forally € B(z, \Vt/2).



Hence

1 < Cu(z,t) < C/ D(x, t;y,t/2)dy < Ct"/QF(x,t;;L‘,O),
Bz, ME/2)

and so (3.2) follows. O

Lemma 3.3. Let A > 0. Then there exist§’ = C(\,n,Q) > 1 such that ifx,y € Q andt > 0
satisfyd(x) A 6(y) > AV, then

Yo (@ —y,t) <T(x,t59,0) < (e —y,t).
Proof. The upper bound estimate always holds. The lower bound estimate follows from Lemmas

3.1and 3.2:

1 a2
P(e,19,0) = AT (1, t/2y,0) exp {_C”xty”}

ol Cle—ul?
= Ctn/? t ’
O
In what follows, we let
1 To
A= —(1AN—]. 3.3
5o< Aﬁ) 53

By Lemmas 2.3 and 3.3, we see that (1.5) and (1.6) hold whenevee 2 and0 < t < T satisfy

§(z) Aé(y) > A\v/'t. To complete the proof of Theorem 1.1, we consider the aspA 6(y) < A\t

in the rest of this section. We use the following local comparison estimate (see Fabes et al. [9,
Theorem 1.6]). Fog € 912, s € R andr > 0, let

U, (& s) = {(a,1) € QxR [lz — &l <[t — 5] <72},
A€ s)={(z,t) €IUXR: |lx —€&|| <, |t — 5] <r?).
Lemma 3.4 (Local comparison estimate)et{ € 99, s > 0 and0 < r < ry/2. Suppose that

u1 andug are positive temperatures oby,. (¢, s) vanishing continuously oA.,.(¢, s). Then there
existsC' = C(n,Q) > 1 such that

u (z,t) < uy (&, 5+ 212)
ug(x,t) = wua(&, s —2r2)

where¢,. is the point stated in the first paragraph of Section 2.

forall (z,t) € ¥, 5(&, s),

Also, we recall the boundary Harnack principle for harmonic functions (see [2]).

Lemma 3.5 (Boundary Harnack principle)Let¢ € 9Q and0 < r < r¢/2. Suppose thak; and
hs are positive harmonic functions dhN B(&, 2r) vanishing continuously o2 N B(¢, 2r). Then
there exists” = C(n,2) > 1 such that

hy(x) hi(y)
ha(@) = < haly)

Lemma 3.6. There exists a constadt = C(n,Q2,T) > 1 such thatifr,y € Qand0 <t < T
satisfys(z) A §(y) < A\Vt, then the upper bound estimgte5) holds.

forall z,y € QN B(&, r).

Proof. Sincel'(z,t;y,0) = I'(y,t;x,0), we may assume thafr) < §(y). Letr = 8\v/t. Then

r < 19/6 andt — 4r? > 0. Let¢ € 99 be a point such thdt¢ — z|| = §(z) < r/8. Since the
functionv(z,t) = v(x) = G(z,&s,) is a positive temperature oby,. (¢, ¢) vanishing continuously
on As,.(&, ), it follows from Lemmas 3.4 and 3.5 that

Pty,0) . v@t) _ ,G@&)  9(@)

~ . 34
TGt 1 2%y,0) = Colent—2%)  C Qe )~ 9(6) 34




Letb, € B,(x,t). Then
1€ = ball < 1€ — 2] + [lz = bal] < Cr < C(6(&) A 6(ba)),

and so Lemma 2.2 gives

9(&r) = g(bz). (3.5)
By (3.4) and (3.5), we have
[(z,t;y,0) < ng((li))r(fmt +2r2%:9,0). (3.6)

We consider two cases(y) > r/16 andd(y) < r/16.
Case 1:6(y) > r/16. Letd, € B,(y,t). Then, by Lemma 2.3,

g(by) =~ g(y).

Since
€= ol > Slle = ol ~ & — o1 > Fllo — I - C,
we have
T (€t +2r%y,0) < ! exp{llﬁryllz}
fan(+ 2217 P i+ 20

O eyl
= g2 O Ct '

These, together with (3.6), yields (1.5).

Case 2:6(y) < r/16. Letn € 9 be a point such thdtn — y|| = d(y) and letb, € B,(y,t).
Applying the adjoint version of the local comparison estimat& ., t + 2r2;-,-) andG(na,, -),
we have by the same reasoning as for (3.6) that

L(&,t+2r%;y,0) co Gy o 9y)  9)

T+ 2% 172177 = Cliarteys) ~ 90ns2) ~ 9(by) &)
Since
€ = o2l = Slle =P = e — 2 +y —mopall® 2 iz~ yl? - C,
we have . T
(&t + 2% 77, 9, —12/2) < tn/zexp{—Ct}. (3.8)
Hence (1.5) follows from (3.6), (3.7) and (3.8). Thus Lemma 3.6 is proved. O

Lemma 3.7. There exist®® = C(n,Q,T) > 1 such that ifz,y € Q and0 < ¢t < T satisfy
§(z) A d(y) < AW, then the lower bound estimate.6) holds.

Proof. The proof is almost the same as that of Lemma 3.6, and we will use the same notations.
Replacing the position of = G(, £3,-) andT'(+, ; y, 0) in (3.4), we have

Uz, 69,00 1 G(,&,)  9(2)
P(frvt_Qrz;:%O) B CG(&T;&&‘) g(bm)7

whereb, € B,(z,t). If 6(y) > r/16, theng(b,) ~ g(y) for b, € B,(y,t). Since||¢, — y||* <
2|z — y||? + Ct, we obtain (1.6) from (3.9) and Lemma 3.3.

If 6(y) < r/16, then we can apply the adjoint version of the local comparison estimate to
L(¢.,t —2r% -, ) andG(ns,, -) because — 2r% > r2. Letb, € B,(y,t). Then

L&t =2r%y,0) 1 Glgry)  9(y) (3.10)

F(grat_2r2;nr/27r2/2) o CG(nfirvnr/Q) g(by)

Sincel'(§,,t — 27’2;77T/2,7'2/2) =Tt — 57”2/2;7%/2,0) and||¢, — nr/2|\2 < 2|z —y||* + Ct,
we obtain (1.6) from (3.9), (3.10) and Lemma 3.3. O

(3.9)




Proof of Theorem 1.1Let A be as in (3.3). As mentioned above, Lemmas 2.3 and 3.3 show that
(1.5) and (1.6) hold whe#i(z) A 6(y) > A\v/t. Another case was discussed in Lemmas 3.6 and 3.7.
Thus the proof is complete. O

Sincel'(z, t;y,s) = I'(z,t — s;y,0), we obtain the following corollary.

Corollary 3.8. There exist® = C(n,,T) > 1 such that the following lower and upper bound
estimates hold foratk,y € Qand0 < s <t < T~

. 9(7)g(y)

F(J?,t, Y, S) S g(bx)g(by)rm(x - yvt - 8)7
_ 9(@)g(y)

F(xat7 Y, S) > g(bx)g(by)71 (LI? - y7t - 8)7

whereb, € B,(z,t — s) andb, € B,(y,t — s).

4 Proof of Corollary 1.3

As stated in Section 2, we observe that for eqch 02 there are circular condg, and V5 with
vertex¢ and aperturd andw — 6, respectively, such that

1% ﬂB(f,ro) - QQB(S,To) C Vs.

The both ofV; and V; have the same axis. It is well known that there exists a unique positive
harmonic functionk; on V; with pole atoo which vanishes continuously a"; andh;(¢;) = 1,
where¢,. is the point in the intersection of the axis Bf andoB(&, ) N . This function has the
form

hi(z) = [l — &[I™ fi(€ + i:“’c”) forall z € V;, (4.1)

where f; is a positive function o®B(&, 1) N V; satisfying f;(z) ~ dist(z,0V;) andr; > 0 is a
constant depending only #handn. Note that, < 1 < 7. Itis well known that

éé(m)” <g(z) <Cé(x)™ forallz € Q,

and so
Lo@)™ _ gle) _ ,8()"

Coly)= ~ gly) = oym

Properties ofr; and the above estimate gfcan be found in [14]. We need the following sharper
estimate, which is also known as a consequence of the boundary Harnack principle.

forall z,y € Q.

Lemma 4.1. Leté € 9Q and0 < r < ry/6. Thenthere exist! = C(n, Q) > 1, o = a(n, Q) >0
andg = 3(n,Q) > 0withms < 8 <1 < a <7 such that

a B
(1]<i) <z((§3 <C<;) forall 0 <t <.

Proof. For the convenience sake of the reader, we give a proof. We use a reduced function of a
nonnegative superharmonic functiaron D relative to a sefs C D defined by

PR} (z) = inf{v()},

where the infimum is taken over all nonnegative superharmonic functiemsD such thaty > u
on E. Note that’RZ < v on D. See [3, Section 5.3] for details.



Let¢ € 9Q and0 < r < 19/6. Now, we adoptD = Vi N B(&,rg), E = B(&s,7sinf) and
u = g/g(&.). ThenPRE is a positive harmonic function oP \ E vanishing continuously oD
such tha’RE (¢,) ~ 1. The boundary Harnack principle implies that

m(&) _ P REE)
hl(gr) - DRE(&“)
Using (4.1), we can estimate the left hand side from below by a constant multipdérgf:. Thus
the lower bound estimate follows.
To prove the upper bound estimate, we substifite Q N B(&, ) andu = ha/h2 (&) in the
above. Then the boundary Harnack principle gives

g(&) _PRE(E,)
o) = “PRE(,)

Thus the lemma is proved. O

< CPRE(¢) < Cu(&) forallo <t <r.

< OPRE(g,) < Culg,) < C(t)ﬁ.

r

Remarkd.2 If Q is a Liapunov-Dini domain, then we can take= 5 = 1 in Lemma 4.1. Indeed,
we know from [17] that the Poisson kernel satisfies

P(z,§) = ”5(%” forall z € Q and¢ € 99.
_

Letx € Q and let¢ € 99 be a point such thdlf — z|| = §(x). Sinceg(z)P(z, &) ~ §(x)?~" (see
[10, Theorems 1.3 and 1.6]), we have

g(x) = o(x) forallz e Q.

Hence we can takea = g = 1. Also, when( is a bounded Lipschitz domain, there may exist
noncircular cone§l’; andW, with vertex¢, whose shapes are independeng,afuch that

ViNB(&,ro) CWiNB(E,1m0) CQNB(Er0) C Wan B(§,70) C Va.
Therefore we may take < =, andg > 5.

Lemma 4.3. Let« and 8 be as in Lemma 4.1. Then there exiSts= C'(n,2,T) > 1 such that if
r € Qand0 < t < T satisfyd(z) < v/, then

1 6<x>)a 9(x) (6@))6
—(22) <L <o) 4.2
:(37) <5 =e( “2
whereb € B, (x,t). Moreover, there exists' = C(n, ) > 1 such that
%5(:}:)0‘ <g(x) <Co(x)? forallz e Q. (4.3)

Proof. Letr = v/t andb € B,(z,t). Thens(b) > r/k. Take¢ € 9Q with ||¢ — z|| = &(z) < 7.
If » < r/6, then we have by Lemma 4.1

(%) <y =e(*P)-

1€ = bll < [I& = &Il + 1€ = =l + [l= = bl < Cr < C(6(&,) A 6(D)),

it follows from Lemma 2.2 thag(&,.) =~ g(b). Thus (4.2) holds in this case.
If §(x) < ro/6 < r, then Lemma 4.1 gives

Since

1 9(z)
—(z)* < < O(z)P.
&= e =W
Sinced(b) > ro/6k, we havey(,, /6) = 1 =~ g(b), and so (4.2) follows.
If 5(x) > ro/6, theng(z) ~ 1 ~ g(b). Therefore we can obtain (4.2) easily.
Also, the similar consideration to the last two cases yields (4.3). Thus the lemma is praved.



Proof of Corollary 1.3.Let x,y € Q and0 < ¢ < T. Consider four casesi(z) V §(y) < V1,
§(z) <Vt < 8(y); d(y) < Vit < 6(x); 6(x) Ad(y) > v/t Then (1.9) and (1.10) follows from
Theorem 1.1 and Lemmas 2.3 and 4.3. O

5 Global estimates for kernel functions with pole at boundary
points

This section presents global estimates of kernel functions with pole at parabolic boundary points.
We writeQr = Q x (0,T) andd,Qr = (09 x [0,T)) U (© x {0}) the parabolic boundary étr.

Let (y,s) € 0,80«. We say that a nonnegative functidf\-, -; y, s) on ., is akernel functiorat

(y, s) normalized afx, 1) if the following conditions are fulfilled:

() K(-,-y,s)istemperature ofd..;
(“) for eaCh(Z7 Q) € aPQOO \ {(ya S)},

lim K(z,t;y,s) =0;
Qoo d(z,t)—(2,9) ( y )

(i) K(zo,To;y,s) =1.

In arguments below, we 18y = T'+1. As shown in [9, 13], there exists a unique kernel function
at each point 0,97 if 2 is a bounded Lipschitz domain. Also, in these papers, the kernel function
was obtained by considering quotients of caloric measures. The following lemma shows that the
kernel function can be obtained as a limit function of quotients of the Green functions.

Lemma5.1. Lety € 92 and0 < s < T'. Then there exists a sequenigg } in Q2 converging toy
such that

. T F(a:,t;yj,s)

K(z,ty,5) = glggo I(zo0,To;yj,8)
Proof. Lety € 9Q and0 < s < T. In view of [19, Theorem 6], we find a sequengg } in Q
converging toy such that the ratid'(z, t; y;, s) /T (zo, To; y;, s) converges to a nonnegative temper-
atureh(z,t) in Qo With h(zg, Tp) = 1. If t < s, thenh(z,t) = 0 for all x € Q. We show thah
vanishes continuously dt, ¢) € 9,9 \ {(y,s)}, whereq > s. Letr > 0 be sufficiently small
such that(z, q) & ¥10,(y,s) and let(z, t) € ¥, (z, ¢). The adjoint version of the local comparison
estimate implies that for sufficiently large

(5.1)

F(:(:,t;yj,s) <C F(x,t;yhg — 21"2)
F(x(),T();yj,S) N ]‘—\(xo?TO;yT7S+2T2)

Letting j — oo, we have

].—‘(IL‘7 tYr, S — 2T2)
h(z,t) <C
(m, ) o F(anTO;y7'7S+2T2)
If (z,t) — (2,q), thenl'(z, t;y,-, s—2r?) — 0, and soh(x, t) — 0. Thereforeh is a kernel function
at (y, s) normalized a{x,Ty). The uniqueness implies that= K (-, -;y, s). Thus the lemma is
proved. O

As a consequence of Corollary 3.8, we obtain the following estimates.

Theorem 5.2. There exist€' = C(n,Q,T) > 1 such that for all(y, s) € 9,Q7r and(z,t) € Qrp
witht > s,

_ 9(x)
, 9(x)

whereb, € By,(z,t — s) andb, € By(y,t — s).
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Proof. We show (5.2) only, because the proof of (5.3) is similar. We first consider the,cas#?

and0 < s < T. Let(z,t) € Qp witht > s and let{y; } be a sequence @ converging toy such
that (5.1) holds. Observe from Corollary 3.8 that the r&itie, ¢; y;, s) /T (zo, To; y;, ) is bounded
above by

9(x) g(bo) 9O (To—s\"* [ Jz—yl* | Cllao — ;1
9(62) 9(zo) o < ) ep{ Cli—s) T Ty—s }
o — g1

(
= O a)a(by) (t— 5y eXp{ Clt—s) }

whereb, € B, (x,t—s), by € By(20,To — 5), b9 € By(y;, To — s) andb; € By (y;,t —s). Here the
last inequality follows by Lemmas 2.4, 2.5 affdy — y;|| < diam . Since there is a subsequence
of {b;} converging to someé, € B,(y,t — s), we obtain from (5.1) that

o g(x) L eyl
K(z,t;y, )ch(b;v)g(by) (tfs)ﬂ/Q p{ C(t—S)}.

Note from Lemma 2.6 that this inequality is valid for alfye B,(y,t — s). Hence (5.2) holds when
yedand) <s<T.IfyeQands =0, then

I'(z,t;y,0)

K xZ, t, ,0 = = )
(0500 = Ny, Tor 4. 0)
and so (5.2) follows from Theorem 1.1. O

Corollary 5.3. There exist€' = C(n,Q,T) > 1 such that for all(y, s) € 9,1 and(z,t) € Qr
witht > s,

. o) 1 .
K(z,t;y,s) < (m/U) OV i=s)e /tfs)a%*(l“—y,t—é’%

. d(x) : 1 o
K(x,t,y7s)>(\/m/\l> WV%@ yit—s),

wherea and 3 are the constants given in Lemma 4.1. Moreové, i§ a Liapunov-Dini domain, we
cantakex = 5 = 1.

Proof. Let (y,s) € 0,02 and let(x,t) € Qp with ¢ > s. Letb, € B,(z,t — s). By Lemma 2.3

and (4.2), we have 5
1( 6(x) ¢ _ glx) 6(x)
(B ) < ) <o) o

Letd, € B,(y,t — s). If y € 09, then

3(by) < [lby —yll < 5Vt —s < K%8(by),

and so (4.3) gives
8(by)™ < g(by) < C6(b,)" < C(t —s)P/2.
Consider the casg € Q. Thens = 0. If (y) < /%, then

LV 3(by) < 0() + lly = byl < (1 + VR

and so .
5#"/2 < g(b,) < CtP/2.
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If 6(y) > V/t, theng(b,) ~ g(y) by Lemma 2.3, and so

S00)° < g(by) < CS()°.

Therefore, combining all cases gives

1

W)V VE—s)* <g(by) < Co(y) v vVt —s)”. (5.5)
Hence the corollary follows from Theorem 5.2, (5.4) and (5.5). O
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