

^{第4講} 電子フェルミ気体

~~ 自由度の失われた世界 ~~

広島大学 井野明洋

居室:理D205、放射光セ408

2 電子の気体 •電気伝導 •熱伝導 電 陽イオン 由 + + + +++ + + + ╋ +++ ++╋ ++

電子比熱 $C_v^{\text{el}} = \frac{3}{2} N k_{\text{B}}$ は、一体、どこへ???

あるはずだ!

・エネルギー等分配則

・ウィーデマン=フランツ則 の導出に成功

検出されない?

実験で観測されるのは、
 ほぼフォノン比熱

・金属でも絶縁体でも、 高温で $C_v = 3Nk_B$

金属中の 伝導電子の自由度 は、 一体、どこへ行ってしまったのか?

自由度喪失の

パウリの排他律

電子は、他の電子と同じ状態をとれない。

意地を

通せば

窮屈だ

Wolfgang Ernst Pauli 1900 — 1958

固体中の電子気体は、 とりわけ密度が高い

古典統計、Maxwell-Boltzmann (MB) 分布 ↓ 量子統計、Fermi-Dirac (FD) 分布

2. 古典統計、Maxwell-Boltzmann (MB) 分布。

$$f_{\rm MB}(\varepsilon) = e^{-(\varepsilon-\mu)/\kappa_{\rm B}T}$$

方針

量子統計を用いて

ドルーデ模型を改訂

- Pauliの排他律
- •Sommerfeld模型

状態密度

各種フェルミ変数の計算値											
k	F =	$\left(3\pi^2n\right)^1$	/3	\mathcal{U}	$v_{\rm F} = \frac{\hbar k_{\rm F}}{m}$ 光速の 0.5 % 程度						
元素	Ζ	<i>n</i> (/nm ³)	k _F (/Å)	$\lambda_{ m F}$ (Å)	v VF (km/s)	E _F (eV)	<i>T</i> _F (10 ³ K)	$D(E_{\rm F})/V$ (/nm ³ eV)			
29Cu	1	84.7	1.36	4.62	1573	7.03	81.6	18.1			
47Ag	1	58.6	1.20	5.23	1391	5.50	63.8	16.0			
79Au	1	59.0	1.20	5.22	1394	5.53	64.1	16.0			
13Al	3	181	1.75	3.59	2025	11.7	135	23.3			
格子定数と同程度 室温の数百倍											
	$\lambda_{\rm F} \stackrel{\rm def.}{=} \frac{2\pi}{k_{\rm F}}$ $T_{\rm F} \stackrel{\rm def.}{=} \frac{E_{\rm F}}{k_{\rm B}}$										

温度の効果

Cuの低温比熱

印は、電子比熱係数γの実験値と理論値。

Cuの格子比熱と電子比熱

▶ フェル三縮退

- ・電子がすしづめ
- ・身動き取れない
- ・深さ $E_{\rm F} \gg 4k_{\rm B}T$
- ・高々、薄皮一枚

深い電子を取り出すには、 数万度の熱エネルギーが必要

▶ 自由度の凍結

γの実験値と理論値

元素	価数 Z	実験值γ _{exp} (mJ/mol K ²)	理論值γ _{th} (mJ/mol K ²)	比 Y _{exp} /Y _{th}		元素	価数 Z	実験值γ _{exp} (mJ/mol K ²)	理論值γ _{th} (mJ/mol K ²)	比 Y _{exp} /Y _{th}
Li	1	1.65	0.75	2.2		Al	3	1.35	0.91	1.5
Na	1	1.38	1.12	1.2		In	3	1.66	1.23	1.3
Κ	1	2.08	1.73	1.2		T1	3	1.47	1.31	1.1
Rb	1	2.63	1.99	1.3	ダイ・ モン	τ C ^a	4	0	0.49	0
Cu	1	0.69	0.50	1.4		Si	4	0	1.14	0
Ag	1	0.64	0.64	1.0		Sn	4	1.78	1.38	1.3
Au	1	0.69	0.64	1.1		Pb	4	2.99	1.50	2.0
Be	2	0.171	0.49	0.35		As	5	0.191	1.29	0.15
Mg	2	1.26	0.99	1.3		Sb	5	0.119	1.61	0.07
Ca	2	2.73	1.50	1.8		Bi	5	0.0085	1.79	0.005
Zn	2	0.64	0.75	0.85		<u> </u>				
Cd	2	0.69	0.95	0.73	У Л	絶縁体	本(C	, Si)の γ_{e}	_{xp} は、ゼ	\Box_{\circ}

絶縁体 (C, Si) の Y_{exp} は、ゼロ。 半金属 (As, Sb, Bi) の Y_{exp} は、微小。 典型金属は、それなりに合う。

自由度の凍結

電子比熱の謎が、解決した。

伝導現象は、どうなるのか?

・電場 E によるフェルミ面のシフト ・散乱 1/τ による原点への引き戻し → つりあって定常へ シフト量 $\Delta \mathbf{p} = -e\mathbf{E} \cdot \tau$ $-\frac{e\mathbf{E}\,\tau}{2}$ 流動速度 $v_d =$ M 電流密度 $\mathbf{j} = -ne\,\mathbf{v}_{\mathrm{d}} = e^2 \frac{n\tau}{--} \mathbf{E}$

フェル三気体の熱伝導率

ウィーデマン=フランツ則 室温での実験値 古典気体 $\kappa = \frac{3k_B^2T}{2}\frac{n\tau}{m}$ $\frac{\kappa}{\sigma T} \sim 2.3 \times 10^{-8} \text{ W}\Omega/\text{K}^2$ $\frac{\kappa}{\sigma T} = \frac{3 k_{\rm B}^2}{2 \rho^2} \simeq 1.11 \times 10^{-8} \ {\rm W}\Omega/{\rm K}^2$ 400 T = 273 KCu Au $\kappa (W/m \cdot K)$ 300 Be Ăl 熱伝導率, _ フェルミ気体 $\kappa = \frac{\pi^2 k_B^2 T}{2} \frac{n\tau}{m\tau}$ ∕∙Mg Na $\frac{\kappa}{\sigma T} = \frac{\pi^2 k_{\rm B}^2}{3 e^2} \simeq 2.44 \times 10^{-8} \text{ W}\Omega/\text{K}^2$ 100 0.7 0.1 0.2 0.3 0.6 0.4 0.5 電気伝導率, σ (10⁸/Ωm) 約2倍になって、実験とほぼ一致。

29

まとめ ~~ ゾンマーフェルト模型 ~~

電子の密度が高く、 $T \ll T_F \propto \sqrt[3]{n}$ のとき、フェルミ縮退が起きる。大部分の電子の自由度が凍結し、フェルミ面の薄皮一枚の電子たちが、金属の物性を支配する。

・電子比熱の式
$$C_v^{\text{el}} = \frac{\pi^2 k_B^2}{3} D(E_F) T$$
 が導出され、電子比熱の謎が解けた。

・ドルーデの式
$$\sigma = e^2 \frac{n\tau}{m}$$
は不変だが、 τ の意味が微修正された。

・伝導電子の速度が、 $\sqrt{\langle v^2 \rangle} = 117 \sqrt{\frac{T}{300}} \text{ km/s}$ から $v_F^{\text{Cu}} = 1570 \text{ km/s}$ に修正された。

・熱伝導率の式が
$$\kappa = \frac{\pi^2 k_B^2 T}{3} \frac{n\tau}{m}$$
 に修正され、**ローレンツ数の謎が解けた**。

・平均自由行程が $\ell = v_F \tau$ に修正され、散乱源の謎が 一部 解けた (残留抵抗)。

深まる謎

lの推定値がますます長く

なぜ、電子は、

数Åおきに並んでいる原子に **散乱されず** に、 数万Åから数十万Åも走り続けることができるのか?

固体の中では、一体、何が起きているのか?

量子ビームを打て

そして、電子くんは、結晶格子に出会う

