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Abstract

Important results in prediction theory dealing with missing values have been obtained traditionally tisoudt di
techniques based on duality in Hilbert spaces of analytic functions (Nakazi, 1984; Miamee and Pourahmadi, 1988).
We obtain and unify these results using a simple finite-dimensional duality lemma which is essentially an abstraction
of a regression property of a multivariate normal random vector (Rao, 1973, p. 524) or its inverse covariance matrix.
The approach reveals the roles of duality and biorthogonality of random vectors in dealing with infinite-dimensional
and dificult prediction problems. A novelty of this approach is its reliance on the explicit representation of the
prediction error in terms of the data rather than the predictor itself as in the traditional techniques. In particular, we
find a new and explicit formula for the dual of the semi-finite prodesg < n} for a fixedn, which does not seem to

be possible using the existing techniques.
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1. Introduction

Irregular observations, missing values and outliers are common in time series data (Box and Tiao, 1975, Brubacher
and Wilson, 1976). A framework for dealing with such anomalies is that ef { X}z being a mean-zero, weakly
stationary stochastic process with the autocovariance fungtiotyy}kez and the spectral density functidn where
the problem can be formulated as that of predicting or approximating an unknownXghssed on the observed
values{X;;t € S} for a given index se§ c Z \ {0} and the knowledge of the autocovariance of the process. Such a
problem is quite important to applications in business, economics, engineering, physical and natural sciences, and be-
longs to the area of prediction theory of stationary stochastic processes developed by Wiener (1949) and Kolmogorov
(1941). By restricting attention to linear predictors and using the least-squares criterion to assess the goodness of
predictors, a successful solution seeks to address the following two goals:

(Py) Express the linear least-squares predictoX@fdenoted byXo(S), and the prediction errdty — Xo(S) in terms
of the observablgX;;t € S}.

(P,) Express the prediction error variang&(S) = o%(f, S) := E[Xo — Xo(S)[? in terms off.

The focus in prediction theory has been more on the gogl éd the celebrated Sziegkolmogorov—Wiener
theorem gives the variance of the one-step ahead prediction error basedrdimitegast or for the “half-line” index
setSp :={...,—-2,-1} by

a?(f,So) = exp(% I: log f(/l)d/l) >0 (1)
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if log f is integrable, and otherwise?(Sy) = 0. However, when the first consecutive integers are removed fr&g
or forthe index se§_, :={...,—-n—-2,—n-1}, n > 0, the formula for ther{+ 1)-step prediction error variance (Wold,
1954, Kolmogorov, 1941) is

a?(f,S_n) = |bol? + [baf? + - - - + |bnl?, n=0,1,..., (2)

where({b;}, the moving average (MA) cdiécients of the process, is related to the Fourierfibcients of logf and
Ibol? = 0%(So) (see Nakazi and Takahashi, 1980, and Pourahmadi, 1984; see also Section 3 below).

A result similar to (1) for the interpolation of a single missing value corresponding to the ind8x setZ \ {0}
was obtained by Kolmogorov (1941). Specifically, the interpolation error variance is given by

T -1
az(f,Sw)z(% f f(/l)‘ld/l) >0 3)

if f~1eL!:=LY[-n,n],da/(27)), and otherwise-?(S,,) = 0. The corresponding prediction problem for the smaller
index setS,, :={...,n—=1,n}\ {0}, n > 0, was stated as open in Rozanov (1967, p. 107) and is perhaps one of the most
challenging problems in prediction theory next to (1). The indexSgas, indeed, of special interest as it forms a
bridge connectingy andS.; it reduces td5, whenn = 0 and tends t&., asn — . In a remarkable paper, Nakazi
(1984) using delicate, but complicated analytical techniques (and assumirfgtrat.!) showed that

-1
o?(f,Sn) = (laof +aaf + - +la) ., n=0,1,..., @)

where{a;} is related to the autoregressive (AR) parameters of the process (see Section 3 below). Comparing (2) and
(4), it is natural to ask why there is such an “inverse-dual” relationship between them.

Concerning the question above, it is worth noting that Nakazi's technique, if viewed properly, reduces the com-
putation ofo?(f, S,) to that of the  + 1)-step prediction error variance of another stationary propgssvith the
spectral density functiofi-!, which we call thedual of {X;} (see Definition 1 and Section 4.3). His result and tech-
nigue have spawned considerable research in this area in the last two decades; see Miamee and Pourahmadi (1988),
Miamee (1993), Chenet al.(1998), Frank and Klotz (2002), Klotz and Riedel (2002) and Bondon (2002). A unifying
feature of most of the known results thus far seems to be a fundamental duality principle of the form

o2(f,8) - (1,89 =1, (5)

whereS¢ is the complement o8 in Z \ {0} and f~! € L!; see Chengt al.(1998) and Urbanik (2000).

The first occurrence of (5) seems to be in the 1949 Russian version of Yaglom (1963) for the case of deleting
finitely many points fronS,,. Proof of (5), in general, like those of the main results in Nakazi (1984), Miamee and
Pourahmadi (1988), Chemgal.(1998), and Urbanik (2000), is long, unintuitive and relies on duality techniques from
functional and harmonic analysis and requife$ € L' which is not natural for the index s&,. Surprisingly, an
implicit version of (5) had been developed in Grenander and Rosenblatt (1954, Theorem 1) as the limit of a quadratic
form involving Sze@’s orthogonal polynomials on the unit circle; see also Simon (2005, p. 165). However, it had
remained dormant and not used in the context of prediction theory, except in Pourahmadi (1993).

In this paper, we establish a finite-dimensional duality principle (Lemma 1) which involves the notion of dual of a
random vector, and show that some prediction problems, including the above and some new ones, which are related to
removing a finite number of indices froB}y, andS,,, can be solved in a unified manner. In Section 2, we present the
main lemma, some auxiliary facts about dual of a random vector and their consequences for computing the prediction
error variances and predictors. In Section 3, using the lemma we first solve three finite prediction problEgms for
based on the knowledge @X;;t € K} with K = {-m,...,n} \ (M U {0}), m,n > 0, whereM, the index set of the
missing values, is relatively small. Then, we obtain the solutions of Kolmogorov, Nakazi, and Yaglom’s prediction
problems in a unified manner by studying the limit of the solutions by letting> oo, followed byn — . As a
consequence, we find a new and explicit formula for the dual of the random pfogess n} for a fixedn, which
does not seem to be possible using the technique of Urbanik (2000), Klotz and Riedel (2002) and Frank and Klotz
(2002). This is particularly useful in developing series representations for predictors and interpolators, and sheds light
on the approaches of Bondon (2002) and Salehi (1979). In Section 5, we close the paper with some discussions.
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2. Afinite-dimensional duality principle

In this section, we introduce dual of a random vector, study its properties and state a finite-dimensional duality
lemma related to it. The lemma will be used in Section 3 to obtain an explicit formula for the dual of the process
{X; : t < n} for a fixedn, and to solve and unify various challenging prediction problems through the limits of the
solutions of their finite past counterparts. _

Let H be the class of random variables with zero-mean and finite variance with the inner prodiyc E[YZ]
and norm(|Y|| := E[|Y|!]*/2. For a finite index sel, we putHy := {X = (Xj)jen : Xj € H, j € N}.

Definition 1. A random vectolY € Hy is called thedual of Xe Hy if it satisfies the following conditions:
() The componenty], j € N, belong to spXi; k € N}.
(i) X andY arebiorthogonal (X, Y;) = 6;j fori, j € N, or Cov(X,Y) = I.

ForX € Hy, | € N andK c N, we write X,(K) for the linear least squares predictorfbased orfX; k € K},
i.e., the orthogonal projection & onto sgXy; k € K}.

From the two representations in Proposition 3 (2), (3) in the Appendix for the \uak find the following
representation for the standardized interpolation error is immediate:

Xi — Xi(N;)

1%~ R(NDIZ Do X with Ni= N i),

In particular,y = 1/||X; — Xi(N)|I2. Notice that these equalities hold evetifs not a Toeplitz matrix or wheX is
not a segment of a stationary process. For some statiptigaical interpretations of the entriesIof* = ('yi’j)i’jeN,
the inverse of a stationary covariance matrix, see Bhansali (1990) and references therein.

Now, we are ready to state the main duality lemma.

Lemma 1. Let N be a finite index set. Assume tha& Xy has the dual Ye Hy and that K, M and a singletofi}
partition N, i.e., N= K U {I} U M (disjoint union).

() It holds that X — X(K) = =YW
Vi = Yi(M)|12
(b) It holds that||X; — X(K)|| = _r
Vi = Yi(M)]|
(c) LetT = (yi)i.jen be the covariance matrix of X and wrife® = (y")); jen. Then
X = X(K) = ZieMu{I] aiYi, ©
1% = X(K)IP = of, (7)

where(a|)iemuy) is the solution to the following system of linear equations:
VN H
Do @Y =8 jeMuUl. 8)
In particular, the prediction error variancelz(K) = |IX — X (K)|12 is given by
o2(K) = the(l,1)-entry of the inverse df/)); jemuy» 9)
and the predictor coficientsay in Xi(K) = Yk axX are given by

_ 70K
@k = ZieMu{l;a'y ’ keK, (10)

)A(I(K) = ZkeK (ZieMu{I] a/i”yi,k) Xk' (11)
3
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Proor. SinceX andY are minimal and biorthogonaX; — X(K) andY; - Y;(M) are nonzero and belong to the same one-
dimensional space, that is, the orthogonal complement{efjspe K} & spYj; j € M} in spXj; j € N}. Therefore,
one is a multiple of the other; for sonees C, X, — X/(K) = c{Y; = Y;(M)}/IlY; = Y;(M)||. But, sincec is equal to

o (Y= ¥iM), ¥ - Yi(m)) _ (Y = Yi(M), Y0)

i - = (X = X(K),Y) = (X.Y) = 1,
1Y — (M)~ v sy - O8O = 0630

we get the assertions in (a) and (b). A
Next, we prove the assertions in (c). Singés are linearly independent, (a) shows tiat- X (K) is uniquely
expressed in the form (6). Therj = ||Y| — Y,(M)[|72, which, in view of (b), is equal t¢X — X(K)|?, and (7) holds.
From (%, Y;) = & and (v;, Y;) = y"J, it follows that the predictor cdBcientsay in X(K) = Yk axX satisfy
aic = (R(K). Yi) = (X' - ZieMu{O] a‘/Yi’Yk) - ZieMu[O] afy'.

Thus (10), whence (11). Similarly, fgre M U {I}, we have )&(K),Yj) =0and
ZieMU{I} ai/yi!j - ZieMu{I] ai,(Yi’Yj) = (X - )A('(K)’Yj) = 0ij.

Therefore, (8) follows. Finally, we obtain (9) from (7) and (8).

3. Applications to prediction problems

In this section, we illustrate the role of the Lemma 1(c) in unifying diverse prediction problems and finding an
explicit formula for the dual of the random procé3s;t < n} for a fixedn.

Throughout this section we assume théf};cz is a mean zero, purely nondeterministic stationary process, so it
admits the MA representation (Wold decomposition)

Xj = Zi:_w bj_k&ks jeZ, 12)
where{g;}jez is the normalized innovation ¢X;}jcz defined by
g = X = XL =2 - IIX = XL j - 20 =1L ez

and{by},’ , is the MA codficients given by := (Xo, £_k). We define a sequence of complex numldeg§? , by

i .
Zk:o braj-k = doj, j=0. (13)

If the seriesy, (2, ajX_j is mean-convergent, then (12) can be inverted as

j .
gj= Zk:—oo aj—kxk, ] € Z. (14)

This is essentially the same as the AR representation (see Pourahmadi, 2001), andaygtbel/AR codficients of
{Xj}jez. As suggested in (2) and (4), theigg} and{a,} play important roles in prediction theory.

3.1. Finite prediction problems with missing values

Let M be a finite set of integers that does not contain zero. Throughout this section, it represents the index
set of missing (unknown) values when predictidg For givenM, we take the integersy,n > 0 so large that
M c N:={-m,...,n}, and putk = N\ (M U {0}), which represents the index set of the observed values, then we
have the partitiolN = KU {0} U M as in Lemma 1. We start with the prediction problem for a finite indeXs&dnce
the problem is solved for suchkg, the solutions for infinite index se&, \ M andS., \ M are obtained by taking the
limit of the solutions, first asn — o, and them — .
4



Traditionally, the predictor cdBcients ey in Xo(K) = Sk axXk and the prediction error varianeg?(K) =
IXo — Xo(K)I|? are computed fromy ;)i jekuioy by solving the normal equations:

ZkeK aKYk,j = Y0, j €K, O'2(K) =700 — ZKEK QKYk,0- (15)

However, the results so obtained are not convenient for studying the asymptotic behaviors of the finite prediction
error variance and the predictor d¢heients asn — oo andor n — co. The problem is made much simpler by using
the Lemma 1 and some basic facts about the finite MA and AR representations, see (19)—(21) below.

For the (future) segmenX; ¥20 of a stationary process, define its normalized innova{t;ixw}‘l?‘;o using the Gram—
Schmidt method: Sefyo := Xo/|IXoll and

gi0:= X = X;({0,..., j = /X = X;({0,..., j = I, j>1

Then{X;} and{gjo} admit the following finite MA and AR representations:

j j .
X = Zk:o bj-k jKo, gjo = Zk:o ajk,j Xk, j=0.

Here{bk,j}lj(zo is defined b}bk,j = (Xj,sj,w) and{ak,j}lizo by le<:i b,-,k,jak,i,k = 5”‘ or le(:i aj,k,,-bk,i,k = (5”' fori < ]
These finite MA and AR cdécients converge to their infinite counterparts:

lim by j = by, lim ayj = ay. (16)
00 J—00

If we consider{Xj}‘J?‘;_m instead of{Xj}‘J?‘;O, then by stationarity, it follows that
i j .
Xj = Zkz_m Dj—km+j€k-m,  Ej-m= Zkz_m aj—km+j Xk jz-m (17)

the normalized innovation ¢X;}?__, is defined in the usual manner. Note that

where{gj _m} =

oo
j=m"

g = r!jan Ej,-m» j €Z, (18)

so that the representations in (17) reduce to (12) and (1dh)-aSco.

Now, we present the key ingredients for applying the Lemma 1 to some prediction problems. Reddll-that
{-m,...,n} and X is the vector X;)jen With covariance matriX’ = (yi-)ijen. From Proposition 3 (3), its duaf
is given byY = I''1X. Let e be the normalized innovation vector Xf i.e., & = (gj-m)jen. Then from (17) we
haveX = Be ande = AX, whereA andB are the lower triangular matrices with [)-entriesa;_jm. andbi_jmi for
-m< j <i<n, respectively. Sinc& = B! andI’ = BB, we havel ! = A*AandY = A‘s. Thus, thei( j)-entryy"]
of ! and thej-th entryY; of Y have the representations

.. n _ n _
Y= Zkzivj Qi mik - jmks Yj = Zkzj A j,mkEk,—m (19)

which we show are suitable for studying their limits as first> oo and them — oo; see (16) and (18).
Now, we are ready to express the predickg(K), the prediction erroX, — Xo(K) and its variancer?(K) using
Lemma 1 (c). In particular, it follows from (6), (9) and (19) that

0'2(K) = the (Q 0)-entry of the inverse O(ZZ_M @,i,m+kak,,—,mk)_ o (20)
= i,je

and
Xo — Xo(K) = ZieMU[O} o (ZE:i 5k—i,m+k8k,—m), (21)

whereqa]’s are as in Lemma 1 (c) with= 0.



3.2. Examples of finite prediction problems

In this section, we highlight some important consequences of (20) and (21) by presenting a few special cases
corresponding to the classical prediction problems of Kolmogorov (1941), Yaglom (1963) and Nakazi (1984). These
are listed as examples next according to the cardinality of the indeM s#tthe missing values. They are useful
in illustrating the procedure for obtaining prediction-theoretic results for the two infinite inde$setS, \ M and
S = S, \ M from their finite-dimensional counterparts.

Since most classic prediction results and conditions are stated in terms of the spectral density function, it is
instructive to connect the time-domain results in (12)—-(14) on the MA and ARicieats to the spectral density of
the process. To this end, we recall that whify ez is purely nondeterministic, it has the spectral density function
with log f € L. Thus, there exists an outer functibin the Hardy clas$i? such thatf = |h|> andh(0) > 0, and we
have 1

h(z) = ZH b2, W~ 2o a® (22)

in the unit disc. In particular, this shows thiat* € L! if and only if {a} is square summable, see Pourahmadi (2001,
Chap. 8).

Example 1 (The Finite Kolmogorov—Nakazi Problem). This finite interpolation problem correspondsib = ¢
(the empty set) an& = {-m,...,n} \ {0}, so that the solution of (8) is given hyj, = 1/y*0. Consequently, from
(19)—(21), we have .
N -
#(K) = (Yo k) (23)
and
n

Xo = )ZO(K) = (Z::O |ak,m+k|2)_l k=0 ak,m+k¢‘5k,—m- (24)

Next, we show that (23) and (24) are, indeed, precursors of some important results in prediction theory due
to Kolmogorov (1941), Masani (1960), and Nakazi (1984). First, the result in (4) for the infinite ind&y, set
{...,n—=1,n}\ {0} which is due to Nakazi (1984) was obtained using tedious duality arguments from functional and
harmonic analyses and under a very restrictive condition. Here we obtain it simply by taking the limit of (23) as
m — oo (without assuming ~* € L1). Indeed, from (16) and (23) it is immediate that

n -1
o280 = (Y plad?) (25)
Furthermore, in view of (18), it follows from (24) that
~ n 1on
Xo = Xo(Sn) = (Y0 ola?) Dy A (26)

which provides an explicit formula for the dual of the semi-finite pro¢&sd < n} for a fixedn.

The solution (3) of the Kolmogorov (1941) interpolation problem with = Z \ {0} also follows from (25) by
simply taking the limit asm — oo, provided thafay} is square summable. Thus, as in Kolmogorov (1941), assuming
that{X;} is minimal orf~1 € L1, we obtain

o2 (Sw) = (Z‘:O |ak|2)_l = (% f f(/l)‘ld/l)

Under the same minimality condition, the limit of (26) s> oo, leads to

-1

Xo - %o(S.) = (Y0 ) Y A

which is Masani’s representation of the two-sided innovatiof)gf at time 0 (Masani, 1960), which is a moving
average of the future innovations.
In fact, the origin of above moving average representation can be traced to (19) and (26). A version of (26) seems
to have appeared first in Box and Tiao (1975) in the context of intervention analysis; see Pourahmadi (1989, and 2001,
Sect. 8.4) for a more rigorous derivation, detailed discussion and connection with outlier detection.
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Our second example correspondsMohaving one element and hence involves inversion gf2matrices, no
matter how larg is.

Example 2 (The Finite Past with a Single Missing Value).This problem corresponds to> 0,n =0,
K={-m....,-1}\{-u}, M = {-u},
where 1< u < m, so thatX_, from the finite past of lengtmis missing. From (19), the 2 2 matrix for solving (8) is

( yuu y—u,O ):( ZE:Q'aU—k’m—kF 8o,maum )
yo*‘” yo’o Aom Aum |aO,m|2

Hence, using the subscriptto emphasize the dependencemarwe have

, 1 u 2 ;o aomaym
a’Qm - A_m Zkzo |au—k,m—k| 5 a-u)m - = Am 5
whereAn = lagml? k-1 1au-km-kl?. Thus, from (20) and (21),
Yo [Bukm«l® 5 , = , T
O-Z(K) = |a0m||2(20571 |aum__k m—k|2 > XO - XO(K) = a’O,maO,m‘SO,—m + a’-u,m k=0 au—k,m—kg—k,—m, (27)
and, taking the limit asn — co,
Yk Iakl2
02(So \ {~u}) = [bol? =0 0 — Xo(So \ {~U}) = ajapeo + @’ au KE—ks (28)
Yo

whereaO anda’ , are the limits ofy;, anda_u m» @SM — oo, respectively. The expressions in (28) were obtained first
in Pourahmadi (1992) see also Pourahmadl and Soofi (2000) and Pourahmadi (2001, Section 8.3). However, those in
(27) are new and have not appeared before.

Forn > 0, slightly more general calculations leading to analogues of (27) and (28) can be used to show in a
more rigorous manner that the inverse autocorrelation functi¢X;pat lagu is the negative of the partial correlation
betweenX, and X, after elimination of the #ects ofX;, t # 0,u, as shown formally in Kanto (1984) for processes
with strictly positive spectral density functions.

Example 3 (The Finite Yaglom Problem). There are many situations where the cardinalitiiaf two or more; see
Pourahmadet al. (2007), Box and Tiao (1975), Brubacher and Wilson (1976), Damsleth (1980), Abraham (1981),
and there are several ad hoc methods for interpolating the missing values. For example, Brubacher and Wilson (1976)
minimizesZTmsJ2 = ZEm(Z,‘(z_D0 aj_kXk)? with respect to the unknowX;, j € M U {0}, and then study the solution

of the normal equations ag, n — oo. Budinsky (1989) has shown that this approach under some conditions gives
the same result as the more rigorous approach of Yaglom (1963). In applying Lemma 1 (c) to this problem, we first
note that, due to the large cardinality i, handling (20) and (21) via (8) does not lead to simple explicit formulas

as in (27) and (28). Nevertheless, the limits of the expressions in (20) and (21) as firsto, and then as — o«
(assumingf~* € L') have simple forms in terms of the AR parameters:

Xo-%o(S)= Y iy &ise  o¥(S) = the (Q0)-entry of the inverse o(Z

8y Ay J) - (29)
ieMu{0} k=i

k=iv] i,jeMuU{o}

Using (22) and writing the entries of the above matrix, in terms of the Fouridficieats off 1, it follows that (29)
reduces to the results in Yaglom (1963); see also Salehi (1979).

4. Applications to Series Representations

The Wold decomposition (12) expresses predictors and prediction errors in terms of the innovation{pfpcess
This works well for achieving the goal §Pin Section 1, but since the innovatieqnis not directly observable the
resulting predictor formulas are not suitable for computation. To get around thisully, one must express the
innovations or the predictors in terms of the past observations. In this section, we obtain series representations for
predictors and interpolators in terms of the observed values.
7



4.1. The Infinite past and the Wold decomposition

An alternative method of solving prediction problems$« S, \ M is to reduce them to a slightlyfiierent class
of finite prediction problems than those in Section 3.2, using the Wold decomposition of a purely nondeterministic
stationary process.

As in Section 3.1, writdN = {-m,...,n} andN = K U {0} U M (disjoint union), so that

S=S,\M={..,-m-2,—-m-1} UK (disjoint union)

Forj > —m, let )2] be the linear least-squares predictoiXptbased on the infinite pagy; k < —m}. Then, by (12),
we haveX; — )2] = Z,J(?m bj_xek, j = —m, which are orthogonal tep{X;j; j < —m}, and it follows that

SPXji ] € S) = spiXj — X1 ] € K} @SpXj: j < -m).

This equality plays the key role in finding the predicton@fand its prediction error variance, based{; j € S}.
In fact, by using it, we only have to solve the problem of predickgg Xo based o X; - Xj; j € K}. More precisely,
we consider the vecto’ := (X; - )Zj)jeN with the covariance matri§ = (g; j)i jen, Whereg; ; := ZLA:j_m bi_kEj_k (see
Pourahmadi, 2001, p. 273). Then, writiXg = Xy + (Xo — Xo), we get

Ro(S) =Ko+ Y, =X a¥(S) = [0 -Ro) = D, e R (30)

where Y« (X« — Xi) is the predictor ofXy — Xo based or{X, — X; k € K}, and the predictor cdcientse, and
prediction error variance?(S) are usually obtained using (15) with; replaced byg; ;. Here we apply Lemma 1 (c)
to the above finite prediction problem f¥f. In so doing, the following representations of thejf-entryg-! of G*
and thej-th entryY; of the dualY of X" are available:

. n _ n —
g = Zkzivj Uit Vi = Zk=j Bepc .

In fact, these are obtained from using (13) and Proposition 3 (3) or by latting oo in (19). These explicit
representations turn out to be crucial for finding series representations for certain predictors and interpolators discussed
in the next two subsections.

4.2. Series representation of the predictors based on incomplete infinite past

In this section, we obtain series representations for the predictors in terms of the observed values from an incom-
plete past. A novelty of our approach is its reliance on the representation of the prediction error in terms of the dual
of the random vectoy in (31), hence the solution of the problem)for S = S, \ M is more direct and simpler than
the procedures of Bondon (2002, Theorem 3.1) and Nikfar (2006).

Let fjy := - Zikzo bi-iaj.i be the co#icients of the K + 1)-step ahead predictor based on the infinite Bast
{...,—2,-1}, i.e., Xk(So) = Z‘j";l fiX_j fork =0,1,.... Then, assuming thdX;};cz has the mean-convergent AR
representation (14), it follows from (30) wih={...,-m-2,—-m— 1} U K that

Xo(S) = ZkeK X + Zil (fj’m - ZkeK @k fj’””k) Xom-j-
On the other hand, from (6) and (31), we have

Xo(S) = Xo - ZieMU{O: @ (Z::i ak‘isk)’

where replacing in fogy from (14) and after some algebra, we get the following alternative series representation for
the predictor ofXy based on the incomplete past:

Ro(8) = - ZJES (ZiEMU{O} @ ZE:ivj E_‘k‘iak‘j) X;- (32)

8



Then, the prediction error has the following representation:

Xo-Ro(8) = D" oo (D Acia), (33)

ieMuio) |

in terms of the dua¥ in (31). Furthermore, it follows that the sequer@{:j ak_jgk}?z_oo spansspiX;; j < n}, the
infinite past up tan of the proces$X;}.

The formulas (32) and (33) were obtained initially by Bondon (2002, Theorem 3.2) without using the notion of
duality.

4.3. Series representation of the interpolators

Series representation for the interpolatorXgfbased on the observed values from the indexSsetS,, \ M =
Z \ (M U {0}) was obtained by Salehi (1979). Here we obtain such representation using the idea of the dual process.
Assumingf~t e L! or 20 [aj]> < oo, the process; := Yiej &-j& | € Z, is well-defined in the sense of mean-
square convergence. The procgg$ has already appeared in prediction theory and time series analysis, and is called
thestandardized two-sided innovatigklasani, 1960) or th@wverse procesgCleveland, 1972) ofX}tez.

From (12), (13), and the above results, we have the following:

0] (Xi,fj) = 0jj fori, j € Z.
(i) & = {Xj = X{@Z \ (D/IIX} = X[ (Z\ (j})II? for j € Z.
(i) {&j; ] € Z) spans the spa@®X;; j € Z}.

(V) {&;] € Z} is a stationary process with the autocovariance funcgion= (27)2 f_’; elf()tda, j e Z, ie.,
& &) =77 = Xy aian- fori, j € Z.
Now, for solving the interpolation problem with = Z\ (M U{0}), we need to show th&§;; j € M U{0}} spans the
orthogonal complement &p(X;; j € S} in SP(X;; j € Z}. Then, it turns out that there is UniqLMjIngu{O’ satisfying

Xo = Xo(S) = ZiEMUIOI aigi = ZieMU{O} o (Z:; 5‘(“8")

(see (21) and (33)), and that(S) = a. Since Ko, &) — Siemuio (&, €)) = ()?o(S),gj) =0for je Mu{0}, we can
compute §)iemuio; by solving the following system of linear equations;cmug @y'™ = djo, | € M U {0}. As for
the interpolator, ify2_, ¥'X_j is mean-convergent, thetJjcz admits the series representatign= 332, ¥ X;,

j:—oo

i € Z, and we havéo(S) = — Sies (ZieMU[O] aiy‘*i) X;j, which is the two-sided version of the formula (32).

5. Discussion and future work

We have established the central role of a basic property of the inverse of the covariance matrix of a random vector
in providing a time-domain, geometric and finite-dimensional approach to a class of prediction problems for stationary
stochastic processes. It brings considerable clarity and simplicity to this area of prediction theory as compared to the
classical spectral-domain approach based on analytic function theory and duality in the infinite-dimensional spaces.
Since our duality lemma is not confined to stationary processes or Toeplitz matrices, it has the potential of being
useful in solving similar prediction problems for nonstationary processes, particularly those with low displacement
ranks (Kailath and Sayed, 1995). However, the present form of the lemma does not seem to be useful for predicting
infinite-variance- olLP-processes (Cambanis and Soltani, 1984; Cletrad), 1998).

From application point of view, we note that the two simple formulas (2) and (4) and their extensions provide
explicit and informative expressions for the prediction error variances. Like their predecessors (1) and (3), they serve
as yardsticks to assess the impact (worth) of observations in predigingien they are added to or deleted from
the infinite past and highlight the role of the autoregressive and moving-average parameters for this purpose; see
Pourahmadi and Soofi (2000). In fact, Bondon (2002, Theorem 3.3, and 2005) show that a finite number of missing
values do notfliect the prediction 0Ky if and only if the AR parameters corresponding to the indices of those missing
values are zero. Furthermore, the examples in Section 3 indicate how the interpolators of the missing values can be
computed rigorously without resorting to formal derivations (Box and Tiao, 1975, Brubacher and Wilson, 1976, and
Budinsky, 1989).

9



A. Dual of a random vector

For the sake of completeness and ease of reference, in the next two propositions, we summarize the characteri-
zation, interpretation and other basic information about the dual of a random vector in terms of its covariance matrix
and certain prediction errors. L&t Hy and X (K) for X € Hy, | € N andK c N be as in Section 3.

Proposition 2. For any Xe Hy, the following conditions are equivalent:
(1) The components;Xj € N, of X are linearly independent.
(2) The covariance matrik = (y; j)i jen Of X Withy; j = (X, X;) is nonsingular.
(3) Xis minimal: X ¢ spiX;;i € N, i # j}for j € N.
(4) X has a dual.

Proor. Clearly, (1)—(3) are equivalent. Assume (3) and defire (Y;)jen € Hy by Yj = (X, = X;(N}))/IX; = X (N)I1%,
whereN; := N\ {j}. ThenY; belongs to sfX; k € N}, and X, Yj) = d;; holds:
(X} X} = Xi(N;) _Xi- Xi(Nj), Xj = Xi(N))) _1

Xp,Yy) = = > = 5
1Xj = Xj(Nj)II X = Xj(Nj)II

i

and fori # J, (X, Yj) = (X, X; —)?j(Nj)/||Xj —)A(,-(N,-)||2 = 0. ThusY is a dual ofX, and hence (4). Conversely, assume
(4) and letY be a dual ofX. If X is not minimal, then there exisfse N such thatX; € sp(X;;i € N, i # j}, that is,

Xj = Yizj G X for somec; € C, and, sinceX;, Y;) = 0 fori # j, we have Xj, Yj) = ¥, Ci(X,Y;) = 0. However, this
contradicts Xj, Yj) = 1. Thus,X is minimal, and (3) follows.

The proof above reveals the importance of the “standardized” interpolation errors of compon¢imsdefining
its dual. More explicit representations and other properties of the dual are given next.

Proposition 3. Let X € Hy, with the covariance matrik, have a dual Y. Then, the following assertions hold:
(1) The dual Y is unique.
(2) The dual Y is given by;¥= (X; — Xj(N)))/IIX; — X;(N;)I? with Nj := N\ {j} for j € N.
(3) The dual Y is also given by ¥ T-1X or Y; = ¥ iy ¥ X;, i € N, wherel ™ = (")) jen.
(4) The covariance matrix of Y is equalTo?.
(5) The dual of Y is X.
(6) spiXj;j € N} =spYj; j e N}

Proor. First, we prove (1). LeZ be another dual of andj € N be fixed. ThenX;, Yj—Z;) = Ofor alli € N. However,
sinceY; — Z; € spX; k € N}, it follows thatY; = Z; and hence (1). (2) follows from the proof of Proposition 2. To
prove (3) and (4), we pu¥ = I"*X. ThenY; € sp{Xi; k € N}. Sincel'! is Hermitian, we have

Cov(X,Y) = Cov(X, X)I 1 =TTt =1, Cov(Y,Y) =T Cov(X, X)rt=rrrt=r21

Thus (3) and (4) follow. Finally, we obtain (5) and (6) from (3) and (4).
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