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Abstract

Important results in prediction theory dealing with missing values have been obtained traditionally using difficult
techniques based on duality in Hilbert spaces of analytic functions (Nakazi, 1984; Miamee and Pourahmadi, 1988).
We obtain and unify these results using a simple finite-dimensional duality lemma which is essentially an abstraction
of a regression property of a multivariate normal random vector (Rao, 1973, p. 524) or its inverse covariance matrix.
The approach reveals the roles of duality and biorthogonality of random vectors in dealing with infinite-dimensional
and difficult prediction problems. A novelty of this approach is its reliance on the explicit representation of the
prediction error in terms of the data rather than the predictor itself as in the traditional techniques. In particular, we
find a new and explicit formula for the dual of the semi-finite process{Xt; t ≤ n} for a fixedn, which does not seem to
be possible using the existing techniques.
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1. Introduction

Irregular observations, missing values and outliers are common in time series data (Box and Tiao, 1975, Brubacher
and Wilson, 1976). A framework for dealing with such anomalies is that ofX = {Xt}t∈Z being a mean-zero, weakly
stationary stochastic process with the autocovariance functionγ = {γk}k∈Z and the spectral density functionf , where
the problem can be formulated as that of predicting or approximating an unknown valueX0 based on the observed
values{Xt; t ∈ S} for a given index setS ⊂ Z \ {0} and the knowledge of the autocovariance of the process. Such a
problem is quite important to applications in business, economics, engineering, physical and natural sciences, and be-
longs to the area of prediction theory of stationary stochastic processes developed by Wiener (1949) and Kolmogorov
(1941). By restricting attention to linear predictors and using the least-squares criterion to assess the goodness of
predictors, a successful solution seeks to address the following two goals:

(P1) Express the linear least-squares predictor ofX0, denoted byX̂0(S), and the prediction errorX0 − X̂0(S) in terms
of the observable{Xt; t ∈ S}.

(P2) Express the prediction error varianceσ2(S) = σ2( f ,S) := E|X0 − X̂0(S)|2 in terms of f .

The focus in prediction theory has been more on the goal (P2), and the celebrated Szegö–Kolmogorov–Wiener
theorem gives the variance of the one-step ahead prediction error based on theinfinitepast or for the “half-line” index
setS0 := {. . . ,−2,−1} by

σ2( f ,S0) = exp

(
1
2π

∫ π

−π
log f (λ)dλ

)
> 0 (1)
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if log f is integrable, and otherwiseσ2(S0) = 0. However, when the firstn consecutive integers are removed fromS0

or for the index setS−n := {. . . ,−n−2,−n−1}, n ≥ 0, the formula for the (n+1)-step prediction error variance (Wold,
1954, Kolmogorov, 1941) is

σ2( f ,S−n) = |b0|2 + |b1|2 + · · · + |bn|2, n = 0,1, . . . , (2)

where{b j}, the moving average (MA) coefficients of the process, is related to the Fourier coefficients of logf and
|b0|2 = σ2(S0) (see Nakazi and Takahashi, 1980, and Pourahmadi, 1984; see also Section 3 below).

A result similar to (1) for the interpolation of a single missing value corresponding to the index setS∞ := Z \ {0}
was obtained by Kolmogorov (1941). Specifically, the interpolation error variance is given by

σ2( f ,S∞) =

(
1
2π

∫ π

−π
f (λ)−1dλ

)−1

> 0 (3)

if f −1 ∈ L1 := L1([−π, π],dλ/(2π)), and otherwiseσ2(S∞) = 0. The corresponding prediction problem for the smaller
index setSn := {. . . , n−1,n} \ {0}, n ≥ 0, was stated as open in Rozanov (1967, p. 107) and is perhaps one of the most
challenging problems in prediction theory next to (1). The index setSn is, indeed, of special interest as it forms a
bridge connectingS0 andS∞; it reduces toS0 whenn = 0 and tends toS∞ asn→ ∞. In a remarkable paper, Nakazi
(1984) using delicate, but complicated analytical techniques (and assuming thatf −1 ∈ L1) showed that

σ2( f ,Sn) =
(
|a0|2 + |a1|2 + · · · + |an|2

)−1
, n = 0,1, . . . , (4)

where{a j} is related to the autoregressive (AR) parameters of the process (see Section 3 below). Comparing (2) and
(4), it is natural to ask why there is such an “inverse-dual” relationship between them.

Concerning the question above, it is worth noting that Nakazi’s technique, if viewed properly, reduces the com-
putation ofσ2( f ,Sn) to that of the (n + 1)-step prediction error variance of another stationary process{Yt} with the
spectral density functionf −1, which we call thedual of {Xt} (see Definition 1 and Section 4.3). His result and tech-
nique have spawned considerable research in this area in the last two decades; see Miamee and Pourahmadi (1988),
Miamee (1993), Chenget al.(1998), Frank and Klotz (2002), Klotz and Riedel (2002) and Bondon (2002). A unifying
feature of most of the known results thus far seems to be a fundamental duality principle of the form

σ2( f ,S) · σ2( f −1,Sc) = 1, (5)

whereSc is the complement ofS in Z \ {0} and f −1 ∈ L1; see Chenget al. (1998) and Urbanik (2000).
The first occurrence of (5) seems to be in the 1949 Russian version of Yaglom (1963) for the case of deleting

finitely many points fromS∞. Proof of (5), in general, like those of the main results in Nakazi (1984), Miamee and
Pourahmadi (1988), Chenget al.(1998), and Urbanik (2000), is long, unintuitive and relies on duality techniques from
functional and harmonic analysis and requiresf −1 ∈ L1 which is not natural for the index setSn. Surprisingly, an
implicit version of (5) had been developed in Grenander and Rosenblatt (1954, Theorem 1) as the limit of a quadratic
form involving Szeg̈o’s orthogonal polynomials on the unit circle; see also Simon (2005, p. 165). However, it had
remained dormant and not used in the context of prediction theory, except in Pourahmadi (1993).

In this paper, we establish a finite-dimensional duality principle (Lemma 1) which involves the notion of dual of a
random vector, and show that some prediction problems, including the above and some new ones, which are related to
removing a finite number of indices fromSn andS∞, can be solved in a unified manner. In Section 2, we present the
main lemma, some auxiliary facts about dual of a random vector and their consequences for computing the prediction
error variances and predictors. In Section 3, using the lemma we first solve three finite prediction problems forX0

based on the knowledge of{Xt; t ∈ K} with K = {−m, . . . , n} \ (M ∪ {0}), m,n ≥ 0, whereM, the index set of the
missing values, is relatively small. Then, we obtain the solutions of Kolmogorov, Nakazi, and Yaglom’s prediction
problems in a unified manner by studying the limit of the solutions by lettingm → ∞, followed byn → ∞. As a
consequence, we find a new and explicit formula for the dual of the random process{Xt; t ≤ n} for a fixedn, which
does not seem to be possible using the technique of Urbanik (2000), Klotz and Riedel (2002) and Frank and Klotz
(2002). This is particularly useful in developing series representations for predictors and interpolators, and sheds light
on the approaches of Bondon (2002) and Salehi (1979). In Section 5, we close the paper with some discussions.
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2. A finite-dimensional duality principle

In this section, we introduce dual of a random vector, study its properties and state a finite-dimensional duality
lemma related to it. The lemma will be used in Section 3 to obtain an explicit formula for the dual of the process
{Xt : t ≤ n} for a fixedn, and to solve and unify various challenging prediction problems through the limits of the
solutions of their finite past counterparts.

Let H be the class of random variables with zero-mean and finite variance with the inner product (Y,Z) := E[YZ̄]
and norm∥Y∥ := E[|Y|2]1/2. For a finite index setN, we putHN := {X = (X j) j∈N : X j ∈ H, j ∈ N}.

Definition 1. A random vectorY ∈ HN is called thedual of X∈ HN if it satisfies the following conditions:

(i) The componentsYj , j ∈ N, belong to sp{Xk; k ∈ N}.

(ii) X andY arebiorthogonal: (Xi ,Yj) = δi j for i, j ∈ N, or Cov(X,Y) = I .

For X ∈ HN, l ∈ N andK ⊂ N, we write X̂l(K) for the linear least squares predictor ofXl based on{Xk; k ∈ K},
i.e., the orthogonal projection ofXl onto sp{Xk; k ∈ K}.

From the two representations in Proposition 3 (2), (3) in the Appendix for the dualY, we find the following
representation for the standardized interpolation error is immediate:

Xi − X̂i(Ni)

∥Xi − X̂i(Ni)∥2
=

∑
j∈N
γi, jX j with Ni = N \ {i}.

In particular,γi,i = 1/∥Xi − X̂i(Ni)∥2. Notice that these equalities hold even ifΓ is not a Toeplitz matrix or whenX is
not a segment of a stationary process. For some statistical/physical interpretations of the entries ofΓ−1 = (γi, j)i, j∈N,
the inverse of a stationary covariance matrix, see Bhansali (1990) and references therein.

Now, we are ready to state the main duality lemma.

Lemma 1. Let N be a finite index set. Assume that X∈ HN has the dual Y∈ HN and that K, M and a singleton{l}
partition N, i.e., N= K ∪ {l} ∪ M (disjoint union).

(a) It holds that Xl − X̂l(K) =
Yl − Ŷl(M)

∥Yl − Ŷl(M)∥2
.

(b) It holds that∥Xl − X̂l(K)∥ = 1

∥Yl − Ŷl(M)∥
.

(c) LetΓ = (γi, j)i, j∈N be the covariance matrix of X and writeΓ−1 = (γi, j)i, j∈N. Then

Xl − X̂l(K) =
∑

i∈M∪{l}
α′i Yi , (6)

∥Xl − X̂l(K)∥2 = α′l , (7)

where(α′i )i∈M∪{l} is the solution to the following system of linear equations:∑
i∈M∪{l}

α′iγ
i, j = δl j , j ∈ M ∪ {l}. (8)

In particular, the prediction error varianceσ2
l (K) = ∥Xl − X̂l(K)∥2 is given by

σ2
l (K) = the(l, l)-entry of the inverse of(γi, j)i, j∈M∪{l}, (9)

and the predictor coefficientsαk in X̂l(K) =
∑

k∈K αkXk are given by

αk = −
∑

i∈M∪{l}
α′iγ

i,k, k ∈ K, (10)

whence we have
X̂l(K) = −

∑
k∈K

(∑
i∈M∪{l}

α′iγ
i,k
)

Xk. (11)
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Proof. SinceX andY are minimal and biorthogonal,Xl−X̂l(K) andYl−Ŷl(M) are nonzero and belong to the same one-
dimensional space, that is, the orthogonal complement of sp{X j ; j ∈ K} ⊕ sp{Yj ; j ∈ M} in sp{X j ; j ∈ N}. Therefore,
one is a multiple of the other; for somec ∈ C, Xl − X̂l(K) = c{Yl − Ŷl(M)}/∥Yl − Ŷl(M)∥2. But, sincec is equal to

c
(Yl − Ŷl(M),Yl − Ŷl(M))

∥Yl − Ŷl(M)∥2
= c

(Yl − Ŷl(M),Yl)

∥Yl − Ŷl(M)∥2
= (Xl − X̂l(K),Yl) = (Xl ,Yl) = 1,

we get the assertions in (a) and (b).
Next, we prove the assertions in (c). SinceYj ’s are linearly independent, (a) shows thatXl − X̂l(K) is uniquely

expressed in the form (6). Thenα′l = ∥Yl − Ŷl(M)∥−2, which, in view of (b), is equal to∥Xl − X̂l(K)∥2, and (7) holds.
From (Xi ,Yj) = δi j and (Yi ,Yj) = γi, j , it follows that the predictor coefficientsαk in X̂l(K) =

∑
k∈K αkXk satisfy

αk = (X̂l(K),Yk) =
(
Xl −

∑
i∈M∪{0}

α′i Yi ,Yk

)
= −

∑
i∈M∪{0}

α′iγ
i,k.

Thus (10), whence (11). Similarly, forj ∈ M ∪ {l}, we have (̂Xl(K),Yj) = 0 and∑
i∈M∪{l}

α′iγ
i, j =

∑
i∈M∪{l}

α′i (Yi ,Yj) = (Xl − X̂l(K),Yj) = δl j .

Therefore, (8) follows. Finally, we obtain (9) from (7) and (8).

3. Applications to prediction problems

In this section, we illustrate the role of the Lemma 1(c) in unifying diverse prediction problems and finding an
explicit formula for the dual of the random process{Xt; t ≤ n} for a fixedn.

Throughout this section we assume that{X j} j∈Z is a mean zero, purely nondeterministic stationary process, so it
admits the MA representation (Wold decomposition)

X j =
∑ j

k=−∞
b j−kεk, j ∈ Z, (12)

where{ε j} j∈Z is the normalized innovation of{X j} j∈Z defined by

ε j := {X j − X̂ j({. . . , j − 2, , j − 1})}/∥X j − X̂ j({. . . , j − 2, , j − 1})∥, j ∈ Z,

and{bk}∞k=0 is the MA coefficients given bybk := (X0, ε−k). We define a sequence of complex numbers{ak}∞k=0 by∑ j

k=0
bka j−k = δ0 j , j ≥ 0. (13)

If the series
∑∞

j=0 a jX− j is mean-convergent, then (12) can be inverted as

ε j =
∑ j

k=−∞
a j−kXk, j ∈ Z. (14)

This is essentially the same as the AR representation (see Pourahmadi, 2001), and we call{ak} the AR coefficients of
{X j} j∈Z. As suggested in (2) and (4), these{bk} and{ak} play important roles in prediction theory.

3.1. Finite prediction problems with missing values

Let M be a finite set of integers that does not contain zero. Throughout this section, it represents the index
set of missing (unknown) values when predictingX0. For givenM, we take the integersm,n ≥ 0 so large that
M ⊂ N := {−m, . . . , n}, and putK = N \ (M ∪ {0}), which represents the index set of the observed values, then we
have the partitionN = K ∪{0}∪M as in Lemma 1. We start with the prediction problem for a finite index setK. Once
the problem is solved for such aK, the solutions for infinite index setsSn \ M andS∞ \ M are obtained by taking the
limit of the solutions, first asm→ ∞, and thenn→ ∞.
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Traditionally, the predictor coefficientsαk in X̂0(K) =
∑

k∈K αkXk and the prediction error varianceσ2(K) =
∥X0 − X̂0(K)∥2 are computed from (γi, j)i, j∈K∪{0} by solving the normal equations:∑

k∈K
αkγk, j = γ0, j , j ∈ K, σ2(K) = γ0,0 −

∑
k∈K
αkγk,0. (15)

However, the results so obtained are not convenient for studying the asymptotic behaviors of the finite prediction
error variance and the predictor coefficients asm→ ∞ and/or n→ ∞. The problem is made much simpler by using
the Lemma 1 and some basic facts about the finite MA and AR representations, see (19)–(21) below.

For the (future) segment{X j}∞j=0 of a stationary process, define its normalized innovation{ε j,0}∞j=0 using the Gram–
Schmidt method: Setε0,0 := X0/∥X0∥ and

ε j,0 := {X j − X̂ j({0, . . . , j − 1})/∥X j − X̂ j({0, . . . , j − 1})∥, j ≥ 1.

Then{X j} and{ε j,0} admit the following finite MA and AR representations:

X j =
∑ j

k=0
b j−k, jεk,0, ε j,0 =

∑ j

k=0
a j−k, jXk, j ≥ 0.

Here{bk, j} jk=0 is defined bybk, j := (X j , ε j−k,0) and{ak, j} jk=0 by
∑ j

k=i b j−k, jak−i,k = δi j or
∑ j

k=i a j−k, jbk−i,k = δi j for i ≤ j.
These finite MA and AR coefficients converge to their infinite counterparts:

lim
j→∞

bk, j = bk, lim
j→∞

ak, j = ak. (16)

If we consider{X j}∞j=−m instead of{X j}∞j=0, then by stationarity, it follows that

X j =
∑ j

k=−m
b j−k,m+ jεk,−m, ε j,−m =

∑ j

k=−m
a j−k,m+ jXk, j ≥ −m, (17)

where{ε j,−m}∞j=−m , the normalized innovation of{X j}∞j=−m, is defined in the usual manner. Note that

ε j = lim
m→∞
ε j,−m, j ∈ Z, (18)

so that the representations in (17) reduce to (12) and (14) asm→ ∞.
Now, we present the key ingredients for applying the Lemma 1 to some prediction problems. Recall thatN =

{−m, . . . ,n} and X is the vector (X j) j∈N with covariance matrixΓ = (γi− j)i, j∈N. From Proposition 3 (3), its dualY
is given byY = Γ−1X. Let ε be the normalized innovation vector ofX, i.e., ε := (ε j,−m) j∈N. Then from (17) we
haveX = Bε andε = AX, whereA andB are the lower triangular matrices with (i, j)-entriesai− j,m+i andbi− j,m+i for
−m≤ j ≤ i ≤ n, respectively. SinceA = B−1 andΓ = BB∗, we haveΓ−1 = A∗A andY = A∗ε. Thus, the (i, j)-entryγi, j

of Γ−1 and thej-th entryYj of Y have the representations

γi, j =
∑n

k=i∨ j
āk−i,m+kak− j,m+k, Yj =

∑n

k= j
āk− j,m+kεk,−m, (19)

which we show are suitable for studying their limits as firstm→ ∞ and thenn→ ∞; see (16) and (18).
Now, we are ready to express the predictorX̂0(K), the prediction errorX0 − X̂0(K) and its varianceσ2(K) using

Lemma 1 (c). In particular, it follows from (6), (9) and (19) that

σ2(K) = the (0,0)-entry of the inverse of
(∑n

k=i∨ j
āk−i,m+kak− j,m+k

)
i, j∈M∪{0}

(20)

and
X0 − X̂0(K) =

∑
i∈M∪{0}

α′i
(∑n

k=i
āk−i,m+kεk,−m

)
, (21)

whereα′i ’s are as in Lemma 1 (c) withl = 0.
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3.2. Examples of finite prediction problems
In this section, we highlight some important consequences of (20) and (21) by presenting a few special cases

corresponding to the classical prediction problems of Kolmogorov (1941), Yaglom (1963) and Nakazi (1984). These
are listed as examples next according to the cardinality of the index setM of the missing values. They are useful
in illustrating the procedure for obtaining prediction-theoretic results for the two infinite index setsS = Sn \ M and
S = S∞ \ M from their finite-dimensional counterparts.

Since most classic prediction results and conditions are stated in terms of the spectral density function, it is
instructive to connect the time-domain results in (12)–(14) on the MA and AR coefficients to the spectral density of
the process. To this end, we recall that when{X j} j∈Z is purely nondeterministic, it has the spectral density functionf
with log f ∈ L1. Thus, there exists an outer functionh in the Hardy classH2 such thatf = |h|2 andh(0) > 0, and we
have

h(z) =
∑∞

k=0
bkz

k,
1

h(z)
=

∑∞

k=0
akz

k (22)

in the unit disc. In particular, this shows thatf −1 ∈ L1 if and only if {ak} is square summable, see Pourahmadi (2001,
Chap. 8).

Example 1 (The Finite Kolmogorov–Nakazi Problem).This finite interpolation problem corresponds toM = ϕ
(the empty set) andK = {−m, . . . ,n} \ {0}, so that the solution of (8) is given byα′0 = 1/γ0,0. Consequently, from
(19)–(21), we have

σ2(K) =
(∑n

k=0
|ak,m+k|2

)−1
(23)

and

X0 − X̂0(K) =
(∑n

k=0
|ak,m+k|2

)−1 ∑n

k=0
āk,m+kεk,−m. (24)

Next, we show that (23) and (24) are, indeed, precursors of some important results in prediction theory due
to Kolmogorov (1941), Masani (1960), and Nakazi (1984). First, the result in (4) for the infinite index setSn =

{. . . , n− 1,n} \ {0} which is due to Nakazi (1984) was obtained using tedious duality arguments from functional and
harmonic analyses and under a very restrictive condition. Here we obtain it simply by taking the limit of (23) as
m→ ∞ (without assumingf −1 ∈ L1). Indeed, from (16) and (23) it is immediate that

σ2(Sn) =
(∑n

k=0
|ak|2

)−1
. (25)

Furthermore, in view of (18), it follows from (24) that

X0 − X̂0(Sn) =
(∑n

k=0
|ak|2

)−1 ∑n

k=0
ākεk, (26)

which provides an explicit formula for the dual of the semi-finite process{Xt; t ≤ n} for a fixedn.
The solution (3) of the Kolmogorov (1941) interpolation problem withS∞ = Z \ {0} also follows from (25) by

simply taking the limit asn→ ∞, provided that{ak} is square summable. Thus, as in Kolmogorov (1941), assuming
that{Xt} is minimal or f −1 ∈ L1, we obtain

σ2 (S∞) =
(∑∞

k=0
|ak|2

)−1
=

(
1
2π

∫ π

−π
f (λ)−1dλ

)−1

.

Under the same minimality condition, the limit of (26) asn→ ∞, leads to

X0 − X̂0(S∞) =
(∑∞

k=0
|ak|2

)−1 ∑∞

k=0
ākεk,

which is Masani’s representation of the two-sided innovation of{X j} at time 0 (Masani, 1960), which is a moving
average of the future innovations.

In fact, the origin of above moving average representation can be traced to (19) and (26). A version of (26) seems
to have appeared first in Box and Tiao (1975) in the context of intervention analysis; see Pourahmadi (1989, and 2001,
Sect. 8.4) for a more rigorous derivation, detailed discussion and connection with outlier detection.
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Our second example corresponds toM having one element and hence involves inversion of 2× 2 matrices, no
matter how largeK is.

Example 2 (The Finite Past with a Single Missing Value).This problem corresponds tom> 0, n = 0,

K = {−m, . . . ,−1} \ {−u}, M = {−u},

where 1≤ u ≤ m, so thatX−u from the finite past of lengthm is missing. From (19), the 2× 2 matrix for solving (8) is(
γ−u,−u γ−u,0

γ0,−u γ0,0

)
=

( ∑u
k=0 |au−k,m−k|2 a0,m āu,m

ā0,m au,m |a0,m|2
)
.

Hence, using the subscriptm to emphasize the dependence onm, we have

α′0,m =
1
∆m

∑u

k=0
|au−k,m−k|2, α′−u,m = −

ā0,mau,m

∆m
,

where∆m = |a0,m|2
∑u

k=1 |au−k,m−k|2. Thus, from (20) and (21),

σ2(K) =

∑u
k=0 |au−k,m−k|2

|a0,m|2
∑u

k=1 |au−k,m−k|2
, X0 − X̂0(K) = α′0,mā0,mε0,−m + α

′
−u,m

∑u

k=0
āu−k,m−kε−k,−m, (27)

and, taking the limit asm→ ∞,

σ2(S0 \ {−u}) = |b0|2
∑u

k=0 |ak|2∑u−1
k=0 |ak|2

, X0 − X̂0(S0 \ {−u}) = α′0ā0ε0 + α
′
−u

∑u

k=0
āu−kε−k, (28)

whereα′0 andα′−u are the limits ofα′0,m andα′−u,m, asm→ ∞, respectively. The expressions in (28) were obtained first
in Pourahmadi (1992); see also Pourahmadi and Soofi (2000) and Pourahmadi (2001, Section 8.3). However, those in
(27) are new and have not appeared before.

For n > 0, slightly more general calculations leading to analogues of (27) and (28) can be used to show in a
more rigorous manner that the inverse autocorrelation function of{Xt} at lagu is the negative of the partial correlation
betweenX0 andXu after elimination of the effects ofXt, t , 0,u, as shown formally in Kanto (1984) for processes
with strictly positive spectral density functions.

Example 3 (The Finite Yaglom Problem). There are many situations where the cardinality ofM is two or more; see
Pourahmadiet al. (2007), Box and Tiao (1975), Brubacher and Wilson (1976), Damsleth (1980), Abraham (1981),
and there are several ad hoc methods for interpolating the missing values. For example, Brubacher and Wilson (1976)
minimizes

∑n
−mε

2
j =

∑n
−m(

∑ j
k=−∞ a j−kXk)2 with respect to the unknownX j , j ∈ M ∪ {0}, and then study the solution

of the normal equations asm,n → ∞. Budinsky (1989) has shown that this approach under some conditions gives
the same result as the more rigorous approach of Yaglom (1963). In applying Lemma 1 (c) to this problem, we first
note that, due to the large cardinality ofM, handling (20) and (21) via (8) does not lead to simple explicit formulas
as in (27) and (28). Nevertheless, the limits of the expressions in (20) and (21) as firstm→ ∞, and then asn→ ∞
(assumingf −1 ∈ L1) have simple forms in terms of the AR parameters:

X0 − X̂0(S) =
∑

i∈M∪{0}
α′i

∞∑
k=i

āk−i εk, σ2(S) = the (0,0)-entry of the inverse of
(∑∞

k=i∨ j
āk−i ak− j

)
i, j∈M∪{0}

. (29)

Using (22) and writing the entries of the above matrix, in terms of the Fourier coefficients of f −1, it follows that (29)
reduces to the results in Yaglom (1963); see also Salehi (1979).

4. Applications to Series Representations

The Wold decomposition (12) expresses predictors and prediction errors in terms of the innovation process{εt}.
This works well for achieving the goal (P2) in Section 1, but since the innovationεt is not directly observable the
resulting predictor formulas are not suitable for computation. To get around this difficulty, one must express the
innovations or the predictors in terms of the past observations. In this section, we obtain series representations for
predictors and interpolators in terms of the observed values.
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4.1. The Infinite past and the Wold decomposition

An alternative method of solving prediction problems forS = Sn \M is to reduce them to a slightly different class
of finite prediction problems than those in Section 3.2, using the Wold decomposition of a purely nondeterministic
stationary process.

As in Section 3.1, writeN = {−m, . . . ,n} andN = K ∪ {0} ∪ M (disjoint union), so that

S = Sn \ M = {. . . ,−m− 2,−m− 1} ∪ K (disjoint union).

For j ≥ −m, let X̂ j be the linear least-squares predictor ofX j based on the infinite past{Xk; k < −m}. Then, by (12),
we haveX j − X̂ j =

∑ j
k=−m b j−kεk, j ≥ −m, which are orthogonal tosp{X j ; j < −m}, and it follows that

sp{X j ; j ∈ S} = sp{X j − X̂ j ; j ∈ K} ⊕ sp{X j ; j < −m}.

This equality plays the key role in finding the predictor ofX0 and its prediction error variance, based on{X j ; j ∈ S}.
In fact, by using it, we only have to solve the problem of predictingX0− X̂0 based on{X j − X̂ j ; j ∈ K}. More precisely,
we consider the vectorX′ := (X j − X̂ j) j∈N with the covariance matrixG = (gi, j)i, j∈N, wheregi, j :=

∑i∧ j
k=−m bi−kb̄ j−k (see

Pourahmadi, 2001, p. 273). Then, writingX0 = X̂0 + (X0 − X̂0), we get

X̂0(S) = X̂0 +
∑

k∈K
αk(Xk − X̂k), σ2(S) =

∥∥∥∥(X0 − X̂0) −
∑

k∈K
αk(Xk − X̂k)

∥∥∥∥2
, (30)

where
∑

k∈K αk(Xk − X̂k) is the predictor ofX0 − X̂0 based on{Xk − X̂k; k ∈ K}, and the predictor coefficientsαk and
prediction error varianceσ2(S) are usually obtained using (15) withγi, j replaced bygi, j . Here we apply Lemma 1 (c)
to the above finite prediction problem forX′. In so doing, the following representations of the (i, j)-entrygi, j of G−1

and thej-th entryYj of the dualY of X′ are available:

gi, j =
∑n

k=i∨ j
āk−iak− j , Yj =

∑n

k= j
āk− jεk. (31)

In fact, these are obtained from using (13) and Proposition 3 (3) or by lettingm → ∞ in (19). These explicit
representations turn out to be crucial for finding series representations for certain predictors and interpolators discussed
in the next two subsections.

4.2. Series representation of the predictors based on incomplete infinite past

In this section, we obtain series representations for the predictors in terms of the observed values from an incom-
plete past. A novelty of our approach is its reliance on the representation of the prediction error in terms of the dual
of the random vectorY in (31), hence the solution of the problem (P1) for S = Sn \M is more direct and simpler than
the procedures of Bondon (2002, Theorem 3.1) and Nikfar (2006).

Let f j,k := −∑k
i=0 bk−ia j+i be the coefficients of the (k + 1)-step ahead predictor based on the infinite pastS0 =

{. . . ,−2,−1}, i.e., X̂k(S0) =
∑∞

j=1 f j,kX− j for k = 0, 1, . . . . Then, assuming that{X j} j∈Z has the mean-convergent AR
representation (14), it follows from (30) withS = {. . . ,−m− 2,−m− 1} ∪ K that

X̂0(S) =
∑

k∈K
αkXk +

∑∞

j=1

(
f j,m −

∑
k∈K
αk f j,m+k

)
X−m− j .

On the other hand, from (6) and (31), we have

X̂0(S) = X0 −
∑

i∈M∪{0}
α′i

(∑n

k=i
āk−iεk

)
,

where replacing in forεk from (14) and after some algebra, we get the following alternative series representation for
the predictor ofX0 based on the incomplete past:

X̂0(S) = −
∑

j∈S

(∑
i∈M∪{0}

α′i

∑n

k=i∨ j
āk−iak− j

)
X j . (32)
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Then, the prediction error has the following representation:

X0 − X̂0(S) =
∑

i∈M∪{0}
α′i

(∑n

k=i
āk−iεk

)
, (33)

in terms of the dualY in (31). Furthermore, it follows that the sequence{∑n
k= j āk− jεk}nj=−∞ spanssp{X j ; j ≤ n}, the

infinite past up ton of the process{Xt}.
The formulas (32) and (33) were obtained initially by Bondon (2002, Theorem 3.2) without using the notion of

duality.

4.3. Series representation of the interpolators
Series representation for the interpolator ofX0 based on the observed values from the index setS = S∞ \ M =

Z \ (M ∪ {0}) was obtained by Salehi (1979). Here we obtain such representation using the idea of the dual process.
Assuming f −1 ∈ L1 or

∑∞
j=0 |a j |2 < ∞, the processξ j :=

∑∞
k= j āk− jεk, j ∈ Z, is well-defined in the sense of mean-

square convergence. The process{ξ j} has already appeared in prediction theory and time series analysis, and is called
thestandardized two-sided innovation(Masani, 1960) or theinverse process(Cleveland, 1972) of{Xt}t∈Z.

From (12), (13), and the above results, we have the following:

(i) (Xi , ξ j) = δi j for i, j ∈ Z.

(ii) ξ j = {X j − X̂ j(Z \ { j})}/∥X j − X̂ j(Z \ { j})∥2 for j ∈ Z.

(iii) {ξ j ; j ∈ Z} spans the spacesp{X j ; j ∈ Z}.

(iv) {ξ j ; j ∈ Z} is a stationary process with the autocovariance functionγ j := (2π)−1
∫ π
−π e−i jλ f (λ)−1dλ, j ∈ Z, i.e.,

(ξi , ξ j) = γi− j =
∑∞

k=i∨ j āk−iak− j for i, j ∈ Z.

Now, for solving the interpolation problem withS = Z\ (M∪{0}), we need to show that{ξ j ; j ∈ M∪{0}} spans the
orthogonal complement ofsp{X j ; j ∈ S} in sp{X j ; j ∈ Z}. Then, it turns out that there is unique (α′j) j∈M∪{0} satisfying

X0 − X̂0(S) =
∑

i∈M∪{0}
α′i ξi =

∑
i∈M∪{0}

α′i

(∑∞

k=i
āk−iεk

)
(see (21) and (33)), and thatσ2(S) = α′0. Since (X0, ξ j) −

∑
i∈M∪{0} α

′
i (ξi , ξ j) = (X̂0(S), ξ j) = 0 for j ∈ M ∪ {0}, we can

compute (α′i )i∈M∪{0} by solving the following system of linear equations:
∑

i∈M∪{0} α
′
iγ

i− j = δ j0, j ∈ M ∪ {0}. As for
the interpolator, if

∑∞
j=−∞ γ

jX− j is mean-convergent, then (ξ j) j∈Z admits the series representationξi =
∑∞

j=−∞ γ
i− jX j ,

i ∈ Z, and we havêX0(S) = −∑
j∈S

(∑
i∈M∪{0} αiγ

i− j
)
X j , which is the two-sided version of the formula (32).

5. Discussion and future work

We have established the central role of a basic property of the inverse of the covariance matrix of a random vector
in providing a time-domain, geometric and finite-dimensional approach to a class of prediction problems for stationary
stochastic processes. It brings considerable clarity and simplicity to this area of prediction theory as compared to the
classical spectral-domain approach based on analytic function theory and duality in the infinite-dimensional spaces.
Since our duality lemma is not confined to stationary processes or Toeplitz matrices, it has the potential of being
useful in solving similar prediction problems for nonstationary processes, particularly those with low displacement
ranks (Kailath and Sayed, 1995). However, the present form of the lemma does not seem to be useful for predicting
infinite-variance- orLp-processes (Cambanis and Soltani, 1984; Chenget al., 1998).

From application point of view, we note that the two simple formulas (2) and (4) and their extensions provide
explicit and informative expressions for the prediction error variances. Like their predecessors (1) and (3), they serve
as yardsticks to assess the impact (worth) of observations in predictingX0 when they are added to or deleted from
the infinite past and highlight the role of the autoregressive and moving-average parameters for this purpose; see
Pourahmadi and Soofi (2000). In fact, Bondon (2002, Theorem 3.3, and 2005) show that a finite number of missing
values do not affect the prediction ofX0 if and only if the AR parameters corresponding to the indices of those missing
values are zero. Furthermore, the examples in Section 3 indicate how the interpolators of the missing values can be
computed rigorously without resorting to formal derivations (Box and Tiao, 1975, Brubacher and Wilson, 1976, and
Budinsky, 1989).
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A. Dual of a random vector

For the sake of completeness and ease of reference, in the next two propositions, we summarize the characteri-
zation, interpretation and other basic information about the dual of a random vector in terms of its covariance matrix
and certain prediction errors. LetN, HN andX̂l(K) for X ∈ HN, l ∈ N andK ⊂ N be as in Section 3.

Proposition 2. For any X∈ HN, the following conditions are equivalent:

(1) The components Xj , j ∈ N, of X are linearly independent.

(2) The covariance matrixΓ = (γi, j)i, j∈N of X withγi, j = (Xi ,X j) is nonsingular.

(3) X is minimal: Xj < sp{Xi ; i ∈ N, i , j} for j ∈ N.

(4) X has a dual.

Proof. Clearly, (1)–(3) are equivalent. Assume (3) and defineY = (Yj) j∈N ∈ HN by Yj = (X j− X̂ j(N j))/∥X j− X̂ j(N j)∥2,
whereN j := N \ { j}. ThenYj belongs to sp{Xk; k ∈ N}, and (Xi ,Yj) = δi j holds:

(X j ,Yj) =
(X j ,X j − X̂ j(N j))

∥X j − X̂ j(N j)∥2
=

(X j − X̂ j(N j),X j − X̂ j(N j))

∥X j − X̂ j(N j)∥2
= 1,

and fori , j, (Xi ,Yj) = (Xi ,X j − X̂ j(N j)/∥X j − X̂ j(N j)∥2 = 0. ThusY is a dual ofX, and hence (4). Conversely, assume
(4) and letY be a dual ofX. If X is not minimal, then there existsj ∈ N such thatX j ∈ sp{Xi ; i ∈ N, i , j}, that is,
X j =

∑
i, j ciXi for someci ∈ C, and, since (Xi ,Yj) = 0 for i , j, we have (X j ,Yj) =

∑
i, j ci(Xi ,Yj) = 0. However, this

contradicts (X j ,Yj) = 1. Thus,X is minimal, and (3) follows.

The proof above reveals the importance of the “standardized” interpolation errors of components ofX in defining
its dual. More explicit representations and other properties of the dual are given next.

Proposition 3. Let X∈ HN, with the covariance matrixΓ, have a dual Y. Then, the following assertions hold:

(1) The dual Y is unique.

(2) The dual Y is given by Yj = (X j − X̂ j(N j))/∥X j − X̂ j(N j)∥2 with Nj := N \ { j} for j ∈ N.

(3) The dual Y is also given by Y= Γ−1X or Yi =
∑

j∈N γ
i, jX j , i ∈ N, whereΓ−1 = (γi, j)i, j∈N.

(4) The covariance matrix of Y is equal toΓ−1.

(5) The dual of Y is X.

(6) sp{X j ; j ∈ N} = sp{Yj ; j ∈ N}.

Proof. First, we prove (1). LetZ be another dual ofX and j ∈ N be fixed. Then (Xi ,Yj−Z j) = 0 for all i ∈ N. However,
sinceYj − Z j ∈ sp{Xk; k ∈ N}, it follows thatYj = Z j and hence (1). (2) follows from the proof of Proposition 2. To
prove (3) and (4), we putY = Γ−1X. ThenYj ∈ sp{Xk; k ∈ N}. SinceΓ−1 is Hermitian, we have

Cov(X,Y) = Cov(X,X)Γ−1 = ΓΓ−1 = I , Cov(Y,Y) = Γ−1Cov(X,X) Γ−1 = Γ−1ΓΓ−1 = Γ−1.

Thus (3) and (4) follow. Finally, we obtain (5) and (6) from (3) and (4).
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