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1. Introduction

The purpose of this paper is to study the long-time behaviour of the partial

autocorrelation function of a stationary process.

Let {Xn} = {Xn : n ∈ Z} be a real, zero-mean, weakly stationary process,

defined on a probability space (Ω,F , P ), which we shall simply call a stationary

process . Throughout this paper, we assume that {Xn} is purely nondeterministic

(see §2). The autocovariance function γ(·) of {Xn} is defined by

γ(n) := E[XnX0] (n ∈ Z).

We denote by H the closed real linear hull of {Xk : k ∈ Z} in L2(Ω,F , P ). Then

H is a real Hilbert space with inner product

(Y1, Y2) := E[Y1Y2]

and norm

‖Y ‖ := (Y, Y )1/2.

For n ≥ 1, we write H[1,n] for the subspace of H spanned by {X1, . . . , Xn}, and

P[1,n] for the orthogonal projection operator of H onto H[1,n].

The partial autocorrelation α(n) is the correlation coefficient of the two resid-

uals obtained after regressing X0 and Xn on the intermediate observations X1,

. . . , Xn−1. More precisely, the partial autocorrelation function α(·) of {Xn} is

defined by

α(n) :=
E[Z+

n Z−
n ]

E[(Z+
n )2]1/2 · E[(Z−

n )2]1/2
(n = 2, 3, . . . ),

where

Z+
n := Xn − P[1,n−1]Xn, Z−

n := X0 − P[1,n−1]X0.
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Furthermore, α(1) is defined by

α(1) := γ(1)/γ(0).

We think of Z+
n as the part of X0 that cannot be explained by the intermediate

observations X1, . . . , Xn−1, and Z−
n as the part of Xn that cannot be explained

by these observations. So the partial autocorrelation α(n) is a kind of ‘pure’

correlation coefficient between X0 and Xn. See Brockwell–Davis [BD, §3.4 and

§5.2] for background.

One of the important facts about the partial autocorrelation function α(·)
is that we can calculate the value of α(n) easily (at least numerically) from the

values of γ(0), γ(1), . . . , γ(n). To do that, one may just use the Durbin–Levinson

algorithm (see [BD, Proposition 5.2.1]). Moreover, if we look at the algorithm

carefully, we find that conversely the values of γ(0), α(1), . . . , α(n) determine

the value of γ(n). In this sense, the partial autocorrelation function α(·) has the

same information as the autocovariance function γ(·).
What does α(n) look like for n large? This seemingly simple problem, which

is our central concern in this paper, turns out to be much harder than it looks at

first. The difficulty is related to the fact that the definition of partial autocor-

relation function involves the prediction from a finite part of time. This setting

makes the asymptotic analysis particularly difficult.

We are especially interested in the case in which {Xn} is a long-memory pro-

cess ; roughly speaking, this means that the autocovariance γ(k) of {Xn} tends

to zero as k → ∞ so slowly that γ(·) is not summable (see [BD, §13.2]). In

our main theorem (Theorem 2.1), we determine the desired asymptotics for the

partial autocorrelation function, modulo absolute value, for a class of stationary

processes which includes long-memory processes. Our result presents a surpris-

ing regularity in the asymptotics. More precisely, let −∞ < d < 1
2

and � be a

slowly varying function at infinity (see §2). Then under certain conditions (on

the MA(∞) and AR(∞) coefficients of {Xn}), it is shown that,

γ(n) ∼ n2d−1�(n) (n → ∞)(1.1)
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implies

|α(n)| ∼ γ(n)∑n
k=−n γ(k)

(n → ∞).(1.2)

In particular, if 0 < d < 1
2
, that is, 0 < 1 − 2d < 1, then

|α(n)| ∼ d

n
(n → ∞).(1.3)

We wish to emphasize some features of the results presented just above. It

should be noted that the assumption (1.1) simply says γ(·) is regularly varying

with negative index (cf. Bingham et al. [BGT, §1.4.2]) since the index 2d − 1

may take any negative values. It is perhaps surprising that there exists such a

simple formula as (1.2). As one sees, the result (1.3) for the long-memory case

0 < d < 1
2

is particularly simple; the index over n is one, whence independent of

d, and the slowly varying function � has even disappeared. We also notice that

the quantity d, which is important in a long-memory process, appears explicitly

in (1.3).

We tackle the problem above via the asymptotic analysis of the relevant ex-

pected prediction error (Theorems 6.4, 6.6 and 6.7). The idea is to use the precise

asymptotics for the sequence {cn} of MA(∞) coefficients and the sequence {an}
of AR(∞) coefficients. Here we note that the sequences {cn} and {an} are de-

fined for every purely nondeterministic stationary process (§2). To deduce the

desired asymptotic behaviour of the partial autocorrelation function from that

of the prediction error, we use a Tauberian argument. So naturally we need an

adequate Tauberian condition. It turns out that the most elementary Tauberian

condition, that is, monotonicity, is available here.

We verify the desired monotonicity by an explicit representation of the predic-

tion error in terms of {cn} and {an} (Theorems 4.5 and 4.6). This representation,

in turn, is obtained by an argument on the geometry of the Hilbert space H (The-

orem 4.1). Here we use a discrete-time analogue of the Seghier–Dym theorem.

The (original) Seghier–Dym theorem ([S], [Dy2]) concerns the intersection of

past and future of a continuous-time stationary process. This theorem originates

in the work of Levinson–McKean [LM]. We prove an analogue of this theorem

for discrete-time stationary processes (Theorem 3.1) and then apply it to our

problem.
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In the main theorem, we assume some conditions which are given in terms of

{cn} and {an}. As an example, we consider the stationary processes whose au-

tocovariance functions are completely monotone. This property for a stationary

process is called reflection positivity . For example, if −∞ < d < 1
2
, then the sta-

tionary process with autocovariance function of the form γ(n) = (1+ |n|)2d−1 has

reflection positivity (Example in §7). See Okabe [O] as well as [I2, OI] for earlier

work. Since we wish to consider long-memory processes (as well as short-memory

ones), our class of stationary processes with reflection positivity is different from

those studied in these references; the latter do not include long-memory pro-

cesses. We show that the stationary processes in our class satisfy the conditions

of the main theorem (Theorem 7.3).

We state the main theorem in §2. In §3, we prove the Seghier–Dym type

theorem. In §4, we give some representation theorems in terms of {cn} and {an}.
We obtain the necessary asymptotics for {cn} and {an} in §5. In §6, we first

show the necessary results on the asymptotics for the prediction error and then

prove the main theorem using them. In §7, we consider the stationary processes

with reflection positivity and show that they satisfy the conditions of the main

theorem.

2. Main theorem

In this section, we shall state the main theorem. To do that, we need some

notation.

Let {Xn} = {Xn : n ∈ Z} be a stationary process; as stated in §1, this

means that {Xn} is a real, zero-mean, weakly stationary process, defined on a

probability space (Ω,F , P ). Let γ(·) be the autocovariance function of {Xn}.
As we also stated in §1, we write H for the real Hilbert space spanned by {Xk :

k ∈ Z} in L2(Ω,F , P ), with inner product (Y1, Y2) := E[Y1Y2] and norm ‖Y ‖ :=

(Y, Y )1/2. For I ⊂ Z, denote by HI the closed real linear hull of {Xk : k ∈ I} in

H . In particular, for m ∈ Z and n ∈ Z with m ≤ n, we write H(−∞,m], H[m,∞)

and H[m,n] for HI with I = {k ∈ Z : −∞ < k ≤ m}, {k ∈ Z : m ≤ k < ∞} and

{k ∈ Z : m ≤ k ≤ n}, respectively. For I ⊂ Z, we denote by PI the orthogonal
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projection operator of H onto HI . We write P⊥
I := IH − PI , where IH is the

identity map of H . So P⊥
I is the orthogonal projection operator of H onto H⊥

I .

As we stated in §1, we assme throughout this paper that the stationary process

{Xn} is purely nondeterministic, that is,

⋂∞
n=−∞

H(−∞,n] = {0}

or, equivalently, there exists a positive even and integrable function ∆(·) on

(−π, π) such that

γ(n) =

∫ π

−π

einθ∆(θ)dθ (n ∈ Z),

∫ π

−π

| log ∆(θ)|dθ < ∞

(see [BD, §5.7] and Rozanov [Ro, Chapter II]; in the latter, the term linearly

regular is used instead of purely nondeterministic). We call ∆(·) the spectral

density of {Xn}. It should be pointed out that there exists an a.e. ambiguity for

∆(·). We define the outer function h(·) of {Xn} by

h(z) := (2π)1/2exp

{
1

4π

∫ π

−π

eiθ + z

eiθ − z
log ∆(θ)dθ

}
(z ∈ C, |z| < 1).(2.1)

The function h(·) is actually an outer function which is in the Hardy space H2+

of class 2 over the unit disk |z| < 1 (see Rudin [Ru, Definition 17.14]).

Let cn be the power series coefficients of h(z):

h(z) =

∞∑
n=0

cnzn (|z| < 1).

The coefficients cn are real and satisfy
∑∞

0 (cn)2 < ∞ (see [Ru, Theorem 17.12]).

We call cn the nth MA(∞) coefficient of {Xn} (see (4.7) below for background).

The sequence {cn} is often called the canonical representation kernel of {Xn},
too. Now the outer function h(z) has no zeros in |z| < 1, whence we have another

holomorphic function 1/h(z) in |z| < 1. Let an be the power series coefficients

of the function −1/h(z):

− 1

h(z)
=

∞∑
n=0

anzn (|z| < 1).

Then an are also real. We call an the nth AR(∞) coefficient of {Xn} (see (4.9)

below for background). Since(∑∞
n=0

anzn
)(∑∞

n=0
cnzn

)
= −1 (|z| < 1),(2.2)
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we have the following relation between {cn} and {an}:
n∑

j=0

ajcn−j = −δn0 (n ≥ 0).(2.3)

We state the main theorem under the following conditions on the sequences

{cn}∞n=0, {an}∞n=0 and {an − an+1}∞n=0:

cn ≥ 0 for all n ≥ 0;(C1)

{cn} is eventually decreasing to zero;(C2)

{an} is eventually decreasing to zero;(A1)

{an − an+1} is eventually decreasing to zero.(A2)

We write R0 for the class of slowly varying functions at infinity: the class of

positive, measurable �, defined on some neighbourhood [A,∞) of infinity, such

that

lim
x→∞

�(λx)/�(x) = 1 for all λ > 0

(see [BGT, Chapter 1] for background). Let � ∈ R0, and choose B so large that

�(·) is locally bounded on [B,∞) (see [BGT, Corollary 1.4.2]). When we say∫∞
�(s)ds/s = ∞, it means that

∫∞
B

�(s)ds/s = ∞. If so, then we define another

slowly varying function �̃ by

�̃(x) :=

∫ x

B

�(s)

s
ds (x ≥ B)(2.4)

(see [BGT, §1.5.6]). The asymptotic behaviour of �̃(x) as x → ∞ does not

depend on the choice of B because we have assumed that
∫∞

�(s)ds/s = ∞.

Let α(·) be the partial autocorrelation function of {Xn}. Here is the main

theorem.

Theorem 2.1. Let −∞ < d < 1
2

and � ∈ R0. We assume (C1), (C2), (A1),

and (A2). Suppose that

γ(n) ∼ n2d−1�(n) (n → ∞).(2.5)

Then

|α(n)| ∼ γ(n)∑n
k=−n γ(k)

(n → ∞)(2.6)

holds. In other words,
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(1) if 0 < d < 1
2
, then

|α(n)| ∼ d

n
(n → ∞);(2.7)

(2) if d = 0 and
∫∞

�(s)ds/s = ∞, then

|α(n)| ∼ n−1 �(n)

2�̃(n)
(n → ∞);(2.8)

(3) if −∞ < d ≤ 0, and if futher
∫∞

�(s)ds/s < ∞ for d = 0, then

|α(n)| ∼ n2d−1�(n)∑∞
−∞ γ(k)

(n → ∞).(2.9)

We must point out that what we actually do below is to prove (2.7)–(2.9) sepa-

rately rather than to prove (2.6) directly. It is easy to show that the asymptotics

(2.7)–(2.9) are unified in (2.6) but it is still mysterious why this is so.

3. Intersection of past and future

In this section, we prove a discrete analogue of the Seghier–Dym theorem ([S],

[Dy2]; see also Levinson–McKean [LM, §6c], Dym–McKean [DM, §4.3] and Dym

[Dy1, Theorem 2.1]). It plays a crucial role in this paper though it is used only

once, viz. in the proof of Theorem 4.1 below. Note that, as stated in §2, the

stationary process {Xn} is assumed to be purely nondeterministic.

Theorem 3.1. If the spectral density ∆(·) of {Xn} satisfies
∫ π

−π
∆(θ)−1dθ < ∞,

then

H(−∞,0] ∩ H[−n,∞) = H[−n,0](3.1)

holds for every n ≥ 0.

Proof. Step 1. We denote by H� the closed complex linear hull of {Xk : k ∈
Z} in L2(Ω,F , P ). Then H� is a complex Hilbert space with inner product

(Y1, Y2) := E[Y1Y2]. We define its closed subspaces H�

(−∞,0], H�

[−n,∞) and H�

[−n,0]

as we defined H(−∞,0], H[−n,∞) and H[−n,0] in §2, but replacing R by C. We prove

H�

(−∞,0] ∩ H�

[−n,∞) = H�

[−n,0] for all n ≥ 0.(3.2)

The assertion (3.1) for the real case follows from this.
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We write L for the complex Hilbert space L2((−π, π), ∆(θ)dθ) with the inner

product

(f, g)L :=

∫ π

−π

f(θ)g(θ)∆(θ)dθ.

For I ⊂ Z, we denote by LI the closed complex linear hull of {eikθ : k ∈ I} in

L. In particular, for m ∈ Z and n ∈ Z with m ≤ n, we write L(−∞,m], L[m,∞)

and L[m,n] for LI with I = {k ∈ Z : −∞ < k ≤ m}, {k ∈ Z : m ≤ k < ∞} and

{k ∈ Z : m ≤ k ≤ n}, respectively.

The stationary process {Xn} permits a spectral representation of the form

X(k) =

∫ π

−π

eikθZ(dθ) (n ∈ Z),(3.3)

where Z is the spectral measure such that E[Z(A)Z(B)] =
∫

A∩B
∆(θ)dθ (see

[BD, §4.8]). The mapping f 
→ ∫ π

−π
f(θ)Z(dθ) gives a Hilbert space isomorphism

of L onto H� . For I ⊂ Z, the subspace LI is mapped to H�

I . So in order to

prove (3.2), it is enough to prove

L(−∞,0] ∩ L[−n,∞) = L[−n,0] for all n ≥ 0.

However, the implication ⊃ is trivial; hence we prove only the opposite one (⊂).

We write H2+ for the Hardy space H2+ of class 2 over the unit disk |z| < 1,

and H2− for that over the region |z| > 1 of the Riemann sphere C ∪ {∞}. As

usual, we identify each function f(z) in H2+ or H2− with its boundary function

f(eiθ) and regard both H2+ and H2− as subspaces of L2((−π, π), dθ).

We define an outer function h in H2+ by (2.1), and h∗ ∈ H2− by h∗(z) :=

h(1/z) (|z| > 1). We define hn ∈ H2+ by hn(z) := znh(z). Then since L[−n,∞) =

e−inθL[0,∞), it follows that

L[−n,∞) =
1

hn
H2+, L(−∞,0] =

1

h∗H2−

(see Ibragimov and Rozanov [IR, II.2, Theorem 1]; Beurling’s theorem is essential

here). So, for any f(eiθ) ∈ L(−∞,0] ∩L[−n,∞), there exist g+ ∈ H2+ and g− ∈ H2−

such that

f(eiθ) =
g+(eiθ)

hn(eiθ)
=

g−(eiθ)

h∗(eiθ)
a.e. on (−π, π).

For these g+ and g−, we put f(z) := g+(z)/hn(z) for |z| < 1, and f(z) :=

g−(z)/h∗(z) for |z| > 1. Then f is meromorphic in |z| < 1 and possibly has a
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unique pole at zero, of order at most n, while f is holomorphic in the region

|z| > 1 of the Riemann sphere. We claim that the function f can be continued

analytically from |z| < 1 to |z| > 1 across the unit circle |z| = 1.

This claim implies that the function f so obtained is meromorphic over the

Riemann sphere, whence it is a rational function. By the above description

of singularity, f must be of the form f(z) =
∑n

k=0 akz
−k with some ak ∈ C

(k = 1, . . . , n), whence f(eiθ) =
∑n

k=0 ake
−ikθ. Therefore f(eiθ) ∈ L[−n,0], and

this gives the desired implication L(−∞,0] ∩ L[−n,∞) ⊂ L[−n,0].

Step 2. We complete the proof by proving the claim above. It should be pointed

out that the argument below is parallel to that of [LM, §6c].

Put Ak := {θ ∈ (−π, π) : sup1−(1/k)<r<1 |f(reiθ)| ≥ k} for k = 1, 2, . . . . Then

Ak ⊃ Ak+1 (k = 1, 2, . . . ). Moreover, since∫ π

−π

|f(eiθ)|dθ ≤
{∫ π

−π

|f(eiθ)|2∆(θ)dθ

}1/2{∫ π

−π

∆(θ)−1dθ

}1/2

< ∞,

Egoroff’s theorem implies that the Lebesgue measure of Ak tends to zero as

k → ∞.

Now we have∫
Ak

|f(reiθ)|dθ ≤ r−n

{∫
Ak

|g+(reiθ)|2dθ

}1/2{∫
Ak

|h(reiθ)|−2dθ

}1/2

≤ r−n‖g+‖2+

{∫
Ak

|h(reiθ)|−2dθ

}1/2

,

where ‖g+‖2+ is the H2+-norm of g+. Let

Pr(θ) :=
1 − r2

1 − 2r cos θ + r2
(3.4)

be the Poisson kernel. By Jensen’s inequality,

|h(reiθ)|−2 =
1

2π
exp

{
1

2π

∫ π

−π

Pr(θ − t) log ∆(t)−1dt

}

≤ 1

(2π)2

∫ π

−π

Pr(θ − t)∆(t)−1dt,

whence, for k ≥ 2,

sup
1−(1/k)<r<1

∫
Ak

|f(reiθ)|dθ

≤ 2n‖g+‖2+

(2π)1/2

[∫ π

−π

{
sup

1−(1/k)<r<1

1

2π

∫
Ak

Pr(t − θ)dθ

}
∆(t)−1dt

]1/2

.
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For m ∈ N and for almost all t ∈ (−π, π), we have

0 ≤ lim sup
k→∞

sup
1−(1/k)<r<1

1

2π

∫
Ak

Pr(t − θ)dθ

≤ lim
k→∞

sup
1−(1/k)<r<1

1

2π

∫
Am

Pr(t − θ)dθ = IAm(t).

Let m → ∞. Then we obtain

lim
k→∞

sup
1−(1/k)<r<1

1

2π

∫
Ak

Pr(t − θ)dθ = 0 a.e. on (−π, π).

Consequently,

lim
k→∞

sup
1−(1/k)<r<1

∫
Ak

|f(reiθ)|dθ = 0,

so that

lim
r↑1

∫ π

−π

|f(eiθ) − f(reiθ)|dθ = 0.

The analogous result for r ↓ 1 follows similarly from the fact g− ∈ H2−.

Choose α ∈ (−π, π) so that f(reiα) tends boundedly to f(eiα) as r → 1. For

z = reiθ in the region D := {reiθ : 1
2

< r < 2, α < θ < α + 2π}, define F (z)

by F (z) :=
∫
Γ
f(w)dw, where the path Γ = γ1 + γ2 from eiα to z is defined by

γ1(t) := teiα with t from 1 to r and then γ2(t) := reit with t from α to θ. Then

the function F is holomorphic in D0 := D \ {z ∈ D : |z| = 1} and continuous

in D, whence F is holomorphic in D by the reflection principle. Since f = F ′

in D0, this implies that f can be continued analytically in D across |z| = 1.

Since we can choose a different α and do the same thing, we conclude that f can

be continued analytically across the whole unit circle |z| = 1, as claimed. This

completes the proof.

4. Representations

In this section, we establish some representation theorems in terms of the

MA(∞) coefficients cn and AR(∞) coefficients an for a purely nondeterministic

stationary process {Xn}. These enable us to carry out the asymptotic analysis

via {cn} and {an} in §6.

For Y ∈ H and I ⊂ Z, we may think of PIY as the best predictor of Y on

the observations {Xk : k ∈ I}, whence P⊥
I Y = Y − PIY as its prediction error.

10



From the orthogonal decompositions

P⊥
[−n,0] = P⊥

(−∞,0] + P⊥
[−n,0]P(−∞,0] = P⊥

[−n,∞) + P⊥
[−n,0]P[−n,∞),

we have

‖P⊥
[−n,0]Y ‖2 = ‖P⊥

(−∞,0]Y ‖2 + ‖P⊥
[−n,0]P(−∞,0]Y ‖2

= ‖P⊥
(−∞,0]Y ‖2 + ‖P⊥

[−n,∞)P(−∞,0]Y ‖2

+ ‖P⊥
[−n,0]P[−n,∞)P(−∞,0]Y ‖2,

(4.1)

and similarly, by induction, for m ≥ 0,

‖P⊥
[−n,0]Y ‖2 =

m∑
k=0

‖P⊥
(−∞,0]{P[−n,∞)P(−∞,0]}kY ‖2

+

m∑
k=0

‖P⊥
[−n,∞){P(−∞,0]P[−n,∞)}kP(−∞,0]Y ‖2

+ ‖P⊥
[−n,0]{P[−n,∞)P(−∞,0]}m+1Y ‖2.

(4.2)

Now what will happen if we let m → ∞? The following theorem gives an answer.

Theorem 4.1. If the spectral density ∆(·) of X satisfies
∫ π

−π
∆(θ)−1dθ < ∞,

then for Y ∈ H and n ≥ 0,

‖P⊥
[−n,0]Y ‖2 =

∞∑
k=0

‖P⊥
(−∞,0]{P[−n,∞)P(−∞,0]}kY ‖2

+

∞∑
k=0

‖P⊥
[−n,∞){P(−∞,0]P[−n,∞)}kP(−∞,0]Y ‖2.

(4.3)

Proof. It follows from Theorem 3.1 that H(−∞,0] ∩ H[−n,∞) = H[−n,0]. Hence,

s-lim
m→∞

{P(−∞,0]P[−n,∞)}m = P[−n,0]

(see, for example, Halmos [Ha, Problem 122]). This implies that the last term

of the right-hand side of (4.2) tends to zero as m → ∞. Thus the theorem

follows.

The point of Theorem 4.1 is that it enables us to investigate the prediction

problem from a finite part of time via the prediction from an infinite past and

that from an infinite future.

We can give the key assumption
∫ π

−π
∆(θ)−1dθ < ∞ above in different ways.

Proposition 4.2. The following conditions are equivalent:

(1)
∫ π

−π
∆(θ)−1dθ < ∞;
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(2) h−1 ∈ H2+;

(3)
∑∞

0 (an)2 < ∞.

Proof. The implication (2)⇔(3) follows from the well-known characterization of

the space H2+ in terms of power series coefficients (see [Ru, Theorem 17.12]).

On the other hand, since

1

h(z)
= (2π)−1/2exp

{
1

4π

∫ π

−π

eiθ + z

eiθ − z
log{1/∆(θ)}dθ

}
(|z| < 1),

we see that (1) and (2) are equivalent (see [Ru, Theorem 17.16]).

We look at the relation between the condition above and those in §2.

Proposition 4.3. If (C1) and (A1) hold, then we have
∑∞

0 |an| < ∞ and hence∫ π

−π
∆(θ)−1dθ < ∞.

Proof. Bearing in mind that {an} is eventually non-negative, we apply the mono-

tone convergence theorem to (2.2). Then it follows that∑∞
n=0

an = − lim
r↑1

(∑∞
n=0

cnrn
)−1

∈ (−∞, 0],

which implies
∑∞

0 |an| < ∞. In particular, we have
∑∞

0 (an)2 < ∞, so that, by

Proposition 4.2,
∫ π

−π
∆(θ)−1dθ < ∞.

Now we consider P(−∞,0]Xn for n ≥ 1. We vaguely think of it as a linear

combination of {Xk : −∞ < k ≤ 0}. We make this point clear to the extent

sufficient for our purpose. We put

bm
j :=

m∑
k=1

cm−kak+j (m ≥ 1, j ≥ 0).(4.4)

Theorem 4.4. If
∑∞

0 |ak| < ∞, then for n ∈ N,

P(−∞,0]Xn =
∞∑

j=0

bn
j X−j,(4.5)

the sum converging absolutely in H.

Proof. Recall the spectral representation (3.3) for the stationary process {Xn}.
Since |h(eiθ)|2 = 2π∆(θ) > 0 a.e. on (−π, π), we may put

ξn :=

∫ π

−π

einθ
{
h(eiθ)

}−1

Z(dθ) (n ∈ Z).(4.6)
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Then, as is well known, {ξn : n ∈ Z} forms a complete orthonormal system for

H such that

Xn =

n∑
j=−∞

cn−jξj, H(−∞,n] = H(−∞,n](ξ) (n ∈ Z),(4.7)

where H(−∞,n](ξ) is the closed subspace of H spanned by {ξk : −∞ < k ≤
n} (see [Ro, Chapter II]). The representation (4.7) is the so-called canonical

representation of {Xn}. It follows that∥∥∥∑m

k=0
akXn−k + ξn

∥∥∥2

=

∫ π

−π

|fm(θ)|2 ∆(θ)dθ (m ∈ N),(4.8)

where

fm(θ) :=
1

h(eiθ)
+

m∑
k=0

ake
ikθ (−π < θ < π).

By assumption, h−1(·) is in H2+. Hence we have the Fourier series expansion

1

h(eiθ)
= −

∞∑
k=0

ake
ikθ

in L2((−π, π), dθ), which yields fm(θ) = −∑∞
m+1 ake

ikθ. The condition
∑∞

0 |ak| <

∞ now implies that fm(θ) tends boundedly to zero as m → ∞, and so the right-

hand side of (4.8) converges to zero as m → ∞. Thus we obtain the following

AR(∞) representation for {Xn}:
n∑

j=−∞
an−jXj + ξn = 0 (n ∈ Z).(4.9)

We set Yn := P(−∞,0]Xn for n ∈ N. By (4.9), the sequence {Yn : n ∈ N} is a

solution to
n∑

m=1

an−mYm = −
∞∑

j=0

an+jX−j (n ∈ N).(4.10)

On the other hand, by (2.3),

n∑
m=1

an−m

∞∑
j=0

bm
j X−j =

∞∑
j=0

(
n∑

m=1

an−m

m∑
k=1

cm−kak+j

)
X−j

=

∞∑
j=0

(
n∑

k=1

ak+j

n−k∑
p=0

an−k−pcp

)
X−j = −

∞∑
j=0

an+jX−j,

which implies that the sequence {∑∞
j=0 bn

j X−j : n ∈ N} is also a solution to

(4.10). However, the solution to (4.10) is unique because a0 �= 0. Thus (4.5)

follows.
13



Since the stationary process {Xn} is assumed to be purely nondeterministic,

we have P⊥
(−∞,0]X1 �= 0; use (4.16) below and the fact c0 �= 0. So we put

ε(n) :=
‖P⊥

[−n,0]X1‖2 − ‖P⊥
(−∞,0]X1‖2

‖P⊥
(−∞,0]X1‖2

(n = 0, 1, . . . ).(4.11)

We note that ε(n) → 0 as n → ∞ because, by (4.1) and (4.7),∥∥P⊥
[−n,0]X1

∥∥2 − ∥∥P⊥
(−∞,0]X1

∥∥2
=
∥∥∥P⊥

[−n,0]

∑∞
j=n+2

cjξ1−j

∥∥∥2

≤
∥∥∥∑∞

j=n+2
cjξ1−j

∥∥∥2

=
∑∞

j=n+2
(cj)

2 → 0 (n → ∞).

In §6, we give a detailed treatment of the asymptotic behaviour of ε(n) as n → ∞.

Here we prove a representation of ε(n) in terms {ck} and {ak}.

Theorem 4.5. If
∑∞

0 |ak| < ∞, then for n ∈ N,

ε(n) =

∞∑
k=1

∞∑
p=0

dk(n, p)2,(4.12)

where d1(n, p) :=
∑∞

v=0 cvav+n+2+p and for k ≥ 2,

dk(n, p) :=
∞∑

m1=1

an+1+m1

∞∑
m2=1

bm1
n+m2

· · ·
∞∑

mk−1=1

b
mk−2
n+mk−1

∞∑
mk=1

b
mk−1
n+p+mk

cmk−1.

Proof. By Theorem 4.4, we have

P(−∞,0]Xm =
∞∑

j=1

bm
n+jX−n−j (mod H[−n,0])

for m ≥ 1 and n ≥ 0. Let Sk and θ be the k-step shift operator and reflection

operator on H :

Sk(Xm) = Xm+k, θ(Xm) = X−m.

Then Sk and θ are Hilbert space automorphisms of H such that S−1
k = S−k,

θ−1 = θ. In view of the identity (θSn)−1P(−∞,0](θSn) = P[−n,∞), we have

P[−n,∞)X−n−m =

∞∑
j=1

bm
n+jXj (mod H[−n,0]).

Hence

{P[−n,∞)P(−∞,0]}kX1 = c0

∞∑
m1=1

an+1+m1

∞∑
m2=1

bm1
n+m2

· · ·
∞∑

mr−1=1

b
mr−2

n+mr−1

∞∑
mr=1

b
mr−1

n+mr
Xmr (mod H[−n,0]),

(4.13)
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where r := 2k. This and

P⊥
(−∞,0]Xm =

m∑
q=1

cm−qξq (m ∈ N)

yield

P⊥
(−∞,0]{P[−n,∞)P(−∞,0]}kX1

=c0

∞∑
m1=1

an+1+m1

∞∑
m2=1

bm1
n+m2

· · ·
∞∑

mr−1=1

b
mr−2

n+mr−1

∞∑
mr=1

b
mr−1

n+mr

mr∑
q=1

cmr−qξq.

Therefore, for p ≥ 0,

(
P⊥

(−∞,0]{P[−n,∞)P(−∞,0]}kX1, ξp+1

)
= c0d2k(n, p),

so that

‖P⊥
(−∞,0]{P[−n,∞)P(−∞,0]}kX1‖2

=

∞∑
p=0

(
P⊥

(−∞,0]{P[−n,∞)P(−∞,0]}kX1, ξp+1

)2
= (c0)

2

∞∑
p=0

d2k(n, p)2.
(4.14)

Similarly, we obtain

‖P⊥
[−n,∞){P(−∞,0]P[−n,∞)}kP(−∞,0]X1‖2

=‖P⊥
[−n,∞)P(−∞,0]{P[−n,∞)P(−∞,0]}kX1‖2 = (c0)

2
∞∑

p=0

d2k+1(n, p)2.
(4.15)

Since we have
∫ π

−π
∆(θ)−1dθ < ∞ by Proposition 4.2, it follows from Theorem

4.1 that

‖P⊥
[−n,0]X1‖2 = ‖P⊥

(−∞,0]X1‖2 + (c0)
2

∞∑
k=1

∞∑
p=0

dk(n, p)2.

However,

‖P⊥
(−∞,0]X1‖2 = ‖c0ξ1‖2 = (c0)

2,(4.16)

whence (4.12) follows.

Theorem 4.6. We assume (C1) and (A1), and choose M ∈ N so that an+2 ≥ 0

for all n ≥ M . Then, for dk(n, p) in Theorem 4.5 with n ≥ M and p ≥ 0, we

have

d2(n, p) =

∞∑
v2=0

cv2

∞∑
v1=0

cv1

∞∑
m=0

av2+m+n+2+pav1+m+n+2,(4.17)
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and for k ≥ 3,

dk(n, p) =
∞∑

vk=0

cvk

∞∑
vk−1=0

cvk−1

· · ·
∞∑

v1=0

cv1

∞∑
mk−1=0

avk+mk−1+n+2+p

∞∑
mk−2=0

avk−1+mk−1+mk−2+n+2

· · ·
∞∑

m2=0

av3+m3+m2+n+2

∞∑
m1=0

av2+m2+m1+n+2av1+m1+n+2.

(4.18)

Proof. We first note that, by Proposition 4.3,
∑∞

0 |ak| < ∞ holds. By assump-

tion, we can apply the Fubini–Tonelli theorem to exchange the order of sums. In

particular, for n ≥ M ,

dk(n, p) =

∞∑
vk=0

cvk

∞∑
mk−1=0

b
mk−1+1
n+1+vk+p

∞∑
mk−2=0

b
mk−2+1
n+1+mk−1

· · ·
∞∑

m2=0

bm2+1
n+1+m3

∞∑
m1=0

bm1+1
n+1+m2

am1+n+2.

Since bm+1
j+1 =

∑m
v=0 cvam−v+j+2 for m ≥ 0 and j ≥ 0, it follows that

∞∑
m1=0

bm1+1
n+1+m2

am1+n+2 =

∞∑
m1=0

(
m1∑

v1=0

cv1am1−v1+m2+n+2

)
am1+n+2

=

∞∑
v1=0

cv1

∞∑
m1=0

am2+m1+n+2av1+m1+n+2.

This gives (4.17). Similarly

∞∑
m2=0

bm2+1
n+1+m3

∞∑
m1=0

bm1+1
n+1+m2

am1+n+2

=
∞∑

v1=0

cv1

∞∑
m2=0

(
m2∑

v2=0

cv2am2−v2+m3+n+2

) ∞∑
m1=0

am2+m1+n+2av1+m1+n+2

=

∞∑
v2=0

cv2

∞∑
v1=0

cv1

∞∑
m2=0

am3+m2+n+2

∞∑
m1=0

av2+m2+m1+n+2av1+m1+n+2.

Repeating the same arguments, we arrive at (4.18).

5. Asymptotic relations

The aim of this section is to give the link among the asymptotics for the

autocovariance function γ(·), spectral density ∆(·), sequence {cn} of MA(∞) co-

efficients, and sequence {an} of AR(∞) coefficients for a purely nondeterministic

stationary process {Xn}. We refer to [I1]–[I6] for related work.
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Since the spectral density ∆(·) of {Xn} is an even function, we have

γ(n) = 2

∫ π

0

∆(θ) cos(nθ)dθ (n ∈ Z),(5.1)

∞∑
n=0

cnrn = (2π)1/2 exp

{
1

4π

∫ π

−π

Pr(θ) log ∆(θ)dθ

}
(−1 < r < 1)(5.2)

(recall Pr(θ) from (3.4)). On the other hand, it follows from (4.7) that

γ(n) =
∞∑

m=0

cn+mcm (n ≥ 0).(5.3)

If the sequence {cn} satisfies (C1) and (C2), then the sequence {γ(n)}∞0 is even-

tually decreasing to zero; and so the Fourier series

1

2π
γ(0) +

1

π

∞∑
n=1

γ(n) cos(nθ)(5.4)

converges to a continuous function on (−π, π) \ {0} (see Zygmund [Z, Chapter

I, (2.6)]). Moreover, by Lebesgue’s theorem ([Z, Chapter III, (3.9)]), the Fourier

series coincides with ∆(θ) almost everywhere. So in the sequel, we identify ∆(θ)

with the Fourier series (5.4).

To state the result for the boundary case, we recall the notion of Π-variation.

For � ∈ R0, the class Π� is the class of real-valued measurable g, defined on some

neighbourhood [A,∞) of infinity, such that

lim
x→∞

{g(λx) − g(x)}/�(x) = c log λ for all λ > 0

with c ∈ R called the �-index of g (see [BGT, Chapter 3] for background).

The following theorems are the results for the long-memory processes, bound-

ary case, and intermediate-memory processes ([BD, p. 520]), respectively.

Theorem 5.1. Let � ∈ R0 and 0 < d < 1
2
. We assume (C1) and (C2). Then

(2.5) and the following are equivalent:

∆(θ) ∼ θ−2d�(1/θ) · 1

2Γ(1 − 2d) sin(πd)
(θ → 0+),(5.5)

cn ∼ n−(1−d)

{
�(n)

B(d, 1 − 2d)

}1/2

(n → ∞).(5.6)

If we further assume (A1), then each of these conditions implies that

an ∼ n−(1+d)

{
�(n)

B(d, 1 − 2d)

}−1/2
d sin(πd)

π
(n → ∞).(5.7)
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Theorem 5.2. Let d = 0, and � ∈ R0 such that
∫∞

�(s)ds/s = ∞. We assume

(C1) and (C2). Then (2.5) is equivalent to

∆(1/·) ∈ Π� with �-index π−1.(5.8)

Both imply

cn ∼ n−1�(n){2�̃(n)}−1/2 (n → ∞).(5.9)

If we further assume (A1), then all imply

an ∼ n−1�(n){2�̃(n)}−3/2 (n → ∞).(5.10)

Theorem 5.3. Let −∞ < d ≤ 0 and � ∈ R0. We further assume
∫∞

�(s)ds/s <

∞ if d = 0. We also assume (C1) and (C2). Then (2.5) is equivalent to

cn ∼ n−(1−2d)�(n)

{∑∞
−∞ γ(k)}1/2

(n → ∞).(5.11)

If we further assume (A1), then both imply

an ∼ n−(1−2d)�(n)

{∑∞
−∞ γ(k)}3/2

(n → ∞).(5.12)

To prove the theorems above, we start by proving the following lemma which

link the asymptotic behaviour of {cn} with that of {an}.

Lemma 5.4. Let � ∈ R0. Let {un}∞0 and {vn}∞0 be real sequences such that both

are eventually decreasing to zero and satisfy the relation(∑∞
n=0

unzn
)(∑∞

n=0
vnzn

)
= −1 (|z| < 1).(5.13)

(1) Let 0 < d < 1. Suppose either
∑∞

0 un = ∞ or
∑∞

0 vn = 0. Then the

following are equivalent:

un ∼ n−(1−d)�(n) (n → ∞),(5.14)

vn ∼ n−(d+1)

�(n)
· d sin(πd)

π
(n → ∞).(5.15)

(2) We assume
∫∞

�(s)ds/s = ∞. Suppose either
∑∞

0 un = ∞ or
∑∞

0 vn = 0.

Then the following are equivalent:

un ∼ n−1�(n) (n → ∞),(5.16)

vn ∼ n−1 �(n)

�̃(n)2
(n → ∞).(5.17)
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(3) Let 1 ≤ p < ∞. Suppose that
∑∞

0 un is finite and nonzero. Then the

following are equivalent:

un ∼ n−p�(n) (n → ∞),(5.18)

vn ∼ n−p�(n)

(
∑∞

0 uk)2
(n → ∞).(5.19)

Proof. (1) By assumption,
∑∞

0 un = ∞ if and only if
∑∞

0 vn = 0. We set

wn :=
∑∞

k=n+1 vk for n ≥ 0. Then

∞∑
n=0

vnzn = (z − 1)
∞∑

n=0

wnz
n,(5.20)

and so

(1 − z)
(∑∞

n=1
unzn

)(∑∞
n=1

wnz
n
)

= 1 (|z| < 1).(5.21)

By the monotone density theorem ([BGT, §1.7]), (5.15) holds if and only if

wn ∼ n−d

�(n)
· sin(πd)

π
(n → ∞),

which, by Karamata’s Tauberian theorem for power series ([BGT, Corollary

1.7.3]), is equivalent to

∞∑
n=0

wnsn ∼ 1

(1 − s)1−d�(1/(1 − s))Γ(d)
(s ↑ 1).

Now by (5.21) this is equivalent to

∞∑
n=0

uns
n ∼ (1 − s)−d�(1/(1 − s))Γ(d) (s ↑ 1),

which, again by [BGT, Corollary 1.7.3], is equivalent to (5.14).

(2) We set U(x) :=
∑[x]

n=0 un for x ≥ 0 and := 0 for x < 0. Here [·] denotes

the integer part. We write Û for the Laplace-Stieltjes transform of U :

Û(x) :=

∫
[0,∞)

e−txdU(t) =
∞∑

n=0

une−nx (x > 0).

Similarly we put V (x) :=
∑[x]

n=0 vn for x ≥ 0 and V̂ (x) :=
∑∞

n=0 vne−nx for x > 0.

First we assume (5.16). Then Û(1/·) ∈ Π� with �-index 1, by de Haan’s

theorem (see [I5, Theorems 2.3 and 2.4]). On the other hand, since U(x) ∼
�̃(x) as x → ∞, Karamata’s Tauberian theorem ([BGT, Theorem 1.7.1]) gives

Û(1/x) ∼ �̃(x) as x → ∞. We put �1(x) := �(x)/�̃(x)2. Then, by (5.13), for
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λ > 0,

V̂ (1/λx) − V̂ (1/x)

�1(x)
=

Û(1/λx) − Û(1/x)

�(x)
· �̃(λx)

Û(1/λx)
· �̃(x)

Û(1/x)
· �̃(x)

�̃(λx)

→ log λ (x → ∞).

Therefore, we see that V̂ (1/·) ∈ Π�1 with �1-index 1, which, by de Haan’s Taube-

rian theorem, implies (5.17).

Next we assume (5.17). Let wn be as in (1). We write, as above, W (x) =∑[x]
n=0 wn for x ≥ 0, and Ŵ (x) =

∑∞
n=0 wne−nx for x > 0. Since

wn ∼
∫ ∞

n

�1(t)dt/t = 1/�̃(n) (n → ∞),

we see that W (x) ∼ x/�(x) as x → ∞. By Karamata’s Tauberian theorem,

Ŵ (1/x) ∼ x/�̃(x) as x → ∞, so that, by (5.21), V̂ (1/x) ∼ 1/�̃(x) as x → ∞. On

the other hand, (5.17) implies V̂ (1/·) ∈ Π�1 with �1-index 1. Therefore, from an

argument similar to the above, it follows that Û(1/·) ∈ Π� with �-index 1, and

so (5.16).

(3) We use an argument similar to that of the proof of [I1, Theorem 4.1].

Since
∑∞

0 vn is also finite and nonzero, by symmetry it is enough to prove (5.18)

⇒ (5.19) only. Set f(x) :=
∑∞

n=0 une
−nx for x > 0. Then from (5.13) we obtain

∞∑
n=0

vne−nx = −1/f(x) (x > 0).

Let r := [p] be the integer part of p. By differentiating both sides of the above r

times with respect to x, we obtain
∞∑

n=1

vnnre−nx =

∑∞
n=1 unn

re−nx

f(x)2
+

Fr(x)

f(x)r+1
,

where Fr is a polynomial in {f (m) : m = 0, 1, . . . , r − 1} (see [I1, Lemma 3.3]).

Since r − p > −1 and

unnr ∼ nr−p�(n) (n → ∞),

it follows that
∞∑

n=0

unnre−nx ∼ xp−r−1�(1/x)Γ(r − p + 1) (x → 0+)

(see [I2, Theorem 5.3]). On the other hand, for any ε > 0 and 0 ≤ m ≤ r − 1,

we have

xεf (m)(x) → 0 (x → 0+)
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(cf. [I2, Lemma 5.5]); and so

Fr(x)/
{
xp−r−1�(1/x)

}→ 0 (x → 0+).

Thus
∞∑

n=1

vnnre−nx ∼ xp−r−1�(1/x)
Γ(r − p + 1)

(
∑∞

0 uk)2
(x → 0+).

Since the sequence {log(nrvn)} is slowly increasing ([BGT, §1.7.6]), it follows

from Karamata’s Tauberian theorem that

vnnr ∼ nr−p�(n) (n → ∞)

(see [I2, Theorem 5.3]). This yields (5.19).

Proof of Theorem 5.1. We use an argument similar to that of the proof of [I6,

Theorem 4.1]. The implication (2.5)⇔(5.5) follows from the Abel-Tauber theo-

rem for Fourier cosine series (see [BGT, Corollary 4.10.2]). If we put g(t) := c[t]

for t ≥ 0, then γ(n) =
∫∞
0

g(t + n)g(t)dt for n ∈ N, and so, by [I6, Proposition

4.3], (5.6) implies (2.5). We put

f(t) := ∆(2 arctan t), x(r) :=
1 − r

1 + r
.(5.22)

Then, by the change of variable θ = 2 arctan t, we have∫ ∞

−∞

|log f(t)|
1 + t2

dt =
1

2

∫ π

−π

|log ∆(θ)| dθ < ∞,(5.23) ∫ π

−π

Pr(θ) log ∆(θ)dθ =

∫ ∞

−∞

2x(r)

x(r)2 + t2
log f(t)dt (−1 < r < 1).(5.24)

Since (5.5) implies

f(t) ∼ t−2d�(1/t) · 1

22d+1Γ(1 − 2d) sin(πd)
(t → 0+),

it follows from [I6, Theorem 4.4] that

∞∑
n=0

cnrn = (2π)1/2 exp

{
1

2π

∫ ∞

−∞

2x(r)

x(r)2 + t2
log f(t)dt

}
∼ {2πf(x(r))}1/2

∼ (1 − r)−d�(1/(1 − r))1/2

{
π

Γ(1 − 2d) sin(πd)

}1/2

(r ↑ 1).

Hence (5.6) follows from [BGT, Corollary 1.7.3]. Finally, Lemma 5.4(1) gives the

implication (5.6)⇒(5.7).
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We use the following lemma in the proof of Theorem 5.2 below.

Lemma 5.5. Let c be a positive constant, and let � be a slowly varying function

such that
∫∞

�(s)ds/s = ∞. For a positive, even, and measurable function g on

R such that ∫ ∞

−∞

| log g(t)|
1 + t2

dt < ∞,

we set

K(x) := exp

{
1

2π

∫ ∞

−∞

x

x2 + t2
log g(t)dt

}
(x > 0).

Then g ∈ Π� with �-index c implies K ∈ Π�1 with �1-index
√

c/2, where �1(·) is

defined by �1(t) := �(t)/�̃(t)1/2.

Compare the proof below with that of [I6, Theorem 5.2].

Proof. In view of de Haan’s theorem ([BGT, Theorem 4.4]), we have

g(t) ∼ c�̃(t) (t → ∞)(5.25)

(see the argument in [BGT, p. 164]). Since

K(1/x) = exp

{
1

2π

∫ ∞

−∞

x

x2 + t2
log g(1/t)dt

}
(x > 0),

it follows from [I6, Theorem 4.4] that

K(x) ∼ {c�̃(x)}1/2 (x → ∞).(5.26)

We note that K(x) = exp A(x), where

A(x) :=
1

2π

∫ ∞

−∞

1

1 + t2
log g(tx)dt (x > 0).

Let λ > 1. Then, by the mean value theorem, we have

K(λx) − K(x) = {A(λx) − A(x)} exp Bλ(x),

where Bλ(x) is between A(λx) and A(x). Since, by (5.26), both K(λx)/�̃(x)1/2

and K(x)/�̃(x)1/2 tend to
√

c as x → ∞, we see that

expBλ(x) ∼ {c�̃(x)}1/2 (x → ∞).(5.27)

Again, by the mean value theorem, we have

log g(λxt)− log g(xt) = {g(λxt)− g(xt)}/kλ(x, t),
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where kλ(x, t) is between g(λxt) and g(xt). By (5.25), both g(x)/g(λxt) and

g(x)/g(xt) tend to 1 as x → ∞, whence

g(x)/kλ(x, t) → 1 (x → ∞) for all t > 0.(5.28)

We note that, by [BGT, Theorems 1.5.6 and 3.8.6] (Potter-type bounds), there

exist positive constants D and M such that

|g(λx) − g(x)|/�(x) ≤ Dλ (x ≥ M),

�(y)/�(x) ≤ D max
(
(y/x)1/4, (y/x)−1/4

)
(x ≥ M, y ≥ M),

g(x)/g(y) ≤ D max
(
(y/x)1/4, (y/x)−1/4

)
(x ≥ M, y ≥ M).

Now we have
A(λx) − A(x)

�(x)/�̃(x)
= I(x) − II(x) + III(x),

where

I(x) :=
�̃(x)

π�(x)

∫ M

0

x

x2 + u2
log g(λu)du,

II(x) :=
�̃(x)

π�(x)

∫ M

0

x

x2 + u2
log g(u)du,

III(x) :=
�̃(x)

πg(x)

∫ ∞

0

Fλ(x, t)dt

with

Fλ(x, t) := I(M/x,∞)(t) · 1

1 + t2
· {g(λxt) − g(xt)}

�(xt)
· �(xt)

�(x)
· g(x)

kλ(x, t)
.

By (5.28), Fλ(x, t) tends to c(1+ t2)−1 log λ as x → ∞ for all t > 0. On the other

hand, we have, for x ≥ M ,

I(M/x,∞)(t)
g(x)

kλ(x, t)
≤ I(M/x,∞)(t) max

(
g(x)

g(λxt)
,

g(x)

g(xt)

)
≤ Dλ1/4 max(t1/4, t−1/4),

whence, for x ≥ M and t > 0,

|Fλ(x, t)| ≤ D3λ5/4 max(t1/2, t−1/2)

1 + t2
.

Therefore, applying the dominated convergence theorem, we obtain

III(x) → 1

π

∫ ∞

0

1

1 + t2
dt · log λ =

log

2
λ (x → ∞).

As for I(x), we have

|I(x)| ≤ �̃(x)

πx�(x)

∫ M

0

| log g(λt)|dt → 0 (x → ∞).
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Similarly, II(x) → 0 as x → ∞. Thus

A(λx) − A(x)

�(x)/�̃(x)
→ log λ

2
(x → ∞).

Combining this with (5.27), we obtain

K(λx) − K(x)

�(x)/�̃(x)1/2
→

√
c

2
log λ (x → ∞).

This proves the lemma.

Proof of Theorem 5.2. By [I4, Theorem 1.3], (2.5) and (5.8) are equivalent. Define

f by (5.22), and g by g(t) := f(1/t). Then, by (5.23) and (5.24),∫ ∞

−∞

| log g(t)|
1 + t2

dt < ∞,

∞∑
n=0

cn

(
x − 1

x + 1

)n

= (2π)1/2 exp

{
1

2π

∫ ∞

−∞

x

x2 + t2
log g(t)dt

}
(x > 1).

Now we note that (5.8) implies g ∈ Π� with �-index π−1 (see [I5, Proposition 2.7]).

Hence, it follows from Lemma 5.5 and [I5, Proposition 2.6] that
∑∞

n=0 cne−n/x ∈
Π�1 with �1-index 1/

√
2, where �1(x) := �(x)/{�̃(x)}1/2. Therefore, applying de

Haan’s Tauberian theorem (cf. [I5, Theorems 2.3 and 2.4]), we obtain (5.9). To

complete the proof, we note that, for C large enough,∫ x

C

�(s)

{2�̃(s)}1/2s
ds = {2�̃(t)}1/2 − {2�̃(C)}1/2 ∼ {2�̃(x)}1/2 (x → ∞).(5.29)

Then, by Lemma 5.4(2), (5.9) implies (5.10).

Proof of Theorem 5.3. From (5.3), it follows that

∞∑
n=−∞

γ(n) = 2

∞∑
n=0

∞∑
m=0

cn+mcm −
∞∑

m=0

(cm)2 =

( ∞∑
m=0

cm

)2

.(5.30)

By [I2, Lemma 5.7], γ(n) ∼ cn(
∑∞

m=0 cm) as n → ∞, whence (2.5) and (5.11)

are equivalent. On the other hand, by Lemma 5.4 (3), (5.11) implies (5.12).

6. Proof of the main theorem

In this section we prove the main theorem (Theorem 2.1). To do that, we first

give the asymptotic behaviour of ε(n) as n → ∞ (recall ε(·) from (4.11)). We

carry out this first for the long-memory processes, next for the boundary case,

and finally for the intermediate-memory processes. It turns out that the two
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infinite sums
∑∞

k=1 in (4.3) with Y = X1 are negligible as n → ∞ in the second

and third cases but not so in the first case. As a result, the proof for the first

case is much more difficult than the others.

First we consider the long-memory processes. For 0 < d < 1
2
, we put

A1 :=

(
d

π

)2 ∫ ∞

0

{∫ ∞

0

dv1

(v1)1−d(v1 + 1 + u)1+d

}2

du,

A2 :=

(
d

π

)4 ∫ ∞

0

{∫ ∞

0

dv2

(v2)1−d

∫ ∞

0

dv1

(v1)1−d∫ ∞

0

ds1

(v2 + s1 + 1 + u)1+d(v1 + s1 + 1)1+d

}2

du,

and for k ≥ 3,

Ak :=

(
d

π

)2k ∫ ∞

0

du

{∫ ∞

0

dvk

(vk)1−d

∫ ∞

0

dvk−1

(vk−1)1−d
· · ·
∫ ∞

0

dv1

(v1)1−d∫ ∞

0

dsk−1

(vk + sk−1 + 1 + u)1+d

∫ ∞

0

dsk−2

(vk−1 + sk−1 + sk−2 + 1)1+d

· · ·
∫ ∞

0

ds2

(v3 + s3 + s2 + 1)1+d

∫ ∞

0

ds1

(v2 + s2 + s1 + 1)1+d(v1 + s1 + 1)1+d

}2

.

By the equality ∫ ∞

0

dv

(x + v)1+dv1−d
=

1

xd
(0 < x < ∞),(6.1)

Ak may be expressed more simply as follows: A1 = π−2,

A2 = π−4

∫ ∞

0

{∫ ∞

0

ds1

(s1 + 1 + u)(s1 + 1)

}2

du,

and for k ≥ 3,

Ak = π−2k

∫ ∞

0

{∫ ∞

0

dsk−1

(sk−1 + 1 + u)

∫ ∞

0

dsk−2

(sk−1 + sk−2 + 1)

· · ·
∫ ∞

0

ds2

(s3 + s2 + 1)

∫ ∞

0

ds1

(s2 + s1 + 1)(s1 + 1)

}2

du.

In particular, we see that Ak does not depend on d. The value of Ak for k ≥ 2

will be identified by (6.15) below.

Recall dk(n, p) from Theorems 4.5 and 4.6.

Proposition 6.1. Let 0 < d < 1
2

and � ∈ R0. We assume (C1), (C2), and (A1).

Then, for k ∈ N, (2.5) implies
∞∑

p=0

{dk(n, p)}2 ∼ n−1Ak sin2k(πd) (n → ∞).(6.2)
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Proof. We give full details for the case k = 2, and then describe how to adapt

the argument to the general case.

Choose δ from the interval (0, min(d, 1
14

)). Then, by Theorem 5.1 and Potter’s

bound ([BGT, Theorem 1.5.6]), there exists M > 0 such that

0 ≤ an

am
≤ 2

{(n + 3)/m}1+d−δ
(n ≥ m ≥ M),(6.3)

0 ≤ cn

cm
≤ 2 max

((
m

n + 1

)1−d+δ

,

(
m

n + 1

)1−d−δ
)

(n ≥ M, m ≥ M).(6.4)

We note that we choose n + 3 in (6.3) and n + 1 in (6.4) instead of n because

these are more useful for our purpose. We set, for x > 0, g0(x) := I(0,M)(x)c[x],

g1(x) := I[M,∞)(x)c[x], and

G(x) := 2 max
(
x−(1−d+δ), x−(1−d−δ)

)
.(6.5)

Here [·] denotes integer part as before. Then we have

0 ≤ g1(nv)

cn

≤ G(v) (n ≥ M, v > 0),

g1(nv)

cn
→ v−(1−d) (n → ∞) (v > 0).

From Theorem 4.6, it follows that, for n large enough,

∞∑
p=0

{d2(n − 2, p)}2

=

∫ ∞

0

{∫ ∞

0

dv2c[v2]

∫ ∞

0

dv1c[v1]

∫ ∞

0

a[v2]+[s1]+n+[u]a[v1]+[s1]+nds1

}2

du

= n7 {ancn}4

∫ ∞

0

{∫ ∞

0

dv2

c[nv2]

cn

∫ ∞

0

dv1

c[nv1]

cn∫ ∞

0

a[nv2]+[ns1]+n+[nu]

an
· a[nv1]+[ns1]+n

an
ds1

}2

du

= n7 {ancn}4 · ‖I00(n) + I01(n) + I10(n) + I11(n)‖2,

where ‖ · ‖ is the norm of L2((0,∞), du) and Iij(n) = Iij(n)(u) are defined by

Iij(n) :=

∫ ∞

0

dv2
gi(nv2)

cn

∫ ∞

0

dv1
gj(nv1)

cn∫ ∞

0

a[nv2]+[ns1]+n+[nu]

an
· a[nv1]+[ns1]+n

an
ds1.

First we consider I11(n). Since

v2 + s1 + 1 − 3

n
+ u <

[nv2] + [ns1] + n + [nu]

n
≤ v2 + s1 + 1 + u,
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we have

0 ≤ a[nv2]+[ns1]+n+[nu]

an
≤ 2(v2 + s1 + 1 + u)−(1+d−δ)

(n ≥ M, v2 > 0, s1 > 0, u > 0),

a[nv2]+[ns1]+n+[nu]

an

→ (v2 + s1 + u + 1)−(1+d) (n → ∞).

Similarly

0 ≤ a[nv1]+[ns1]+n

an
≤ 2(v1 + s1 + 1)−(1+d−δ) (n ≥ M, v1 > 0, s1 > 0),

a[nv1]+[ns1]+n

an

→ (v2 + s1 + 1)−(1+d) (n → ∞).

Now

(v2 + s1 + u + 1)−(1+d−δ)(v1 + s1 + 1)−(1+d−δ)

= (v2 + s1 + u + 1)−(d+2δ)−4δ−(1−7δ)(v1 + s1 + 1)−(d+2δ)−(1−3δ)

≤ (v2 + 1)−(d+2δ)(v1 + 1)−(d+2δ)(s1 + 1)−(1+δ)(u + 1)−(1−7δ),

(6.6)

and so, for n ≥ M , we have

|I11(n)|2 ≤ 24

(1 + u)2−14δ

×
{∫ ∞

0

G(v2)

(1 + v2)d+2δ
dv2 ·

∫ ∞

0

G(v1)

(1 + v1)d+2δ
dv1 ·

∫ ∞

0

1

(1 + s1)1+δ
ds1

}2

.

Hence, applying the dominated convergence theorem twice, we obtain

‖I11(n)‖2 → (π/d)4A2 (n → ∞).

Next we consider the remaining integrals. From the above estimates, we have,

for n ≥ M ,

|I01(n)|2 ≤ 1

(ncn)2
· 24

(1 + u)2−14δ

×
{∫ M

0

|g0(v2)|dv2 ·
∫ ∞

0

G(v1)

(1 + v1)d+2δ
dv1 ·

∫ ∞

0

1

(1 + s1)1+δ
ds1

}2

,

so that ‖I01(n)‖ → 0 as n → ∞. Similarly, ‖I10(n)‖ → 0 and ‖I00(n)‖ → 0 as

n → ∞.

Combining, we have

‖I00(n) + I01(n) + I10(n) + I11(n)‖2 → (π/d)4A2 (n → ∞).

However, by Theorem 5.1,

n7 {ancn}4 ∼
{

d sin(πd)

π

}4

n−1 (n → ∞),(6.7)
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whence, as asserted in (6.2),
∞∑

p=0

{d2(n, p)}2 ∼ n−1A2 sin4(πd) (n → ∞).

In the general case k ≥ 1, we choose δ from the interval (0, min{d, 1/(8k−2)}),
and instead of (6.6) we use the following estimate:

(vk + sk−1 + u + 1)−(1+d−δ)(vk−1 + sk−1 + sk−2 + 1)−(1+d−δ)

· · · (v2 + s2 + s1 + 1)−(1+d−δ)(v1 + s1 + 1)−(1+d−δ)

= (vk + sk−1 + u + 1)−(d+2δ)−(4k−4)δ−{1−(4k−1)δ}

× (vk−1 + sk−1 + sk−2 + 1)−(d+2δ)−{1−(4k−5)δ}−(4k−8)δ

· · · (v2 + s2 + s1 + 1)−(d+2δ)−(1−7δ)−4δ(v1 + s1 + 1)−(d+2δ)−(1−3δ)

≤ (vk + 1)−(d+2δ) · · · (v1 + 1)−(d+2δ)

× (sk−1 + 1)−(1+δ) · · · (s1 + 1)−(1+δ)(u + 1)−1+(4k−1)δ.

Here we note that δ < 1/(8k − 2) implies∫ ∞

0

1

(u + 1)2−(8k−2)δ
du < ∞.

Then we can prove the assertion for k ≥ 1 similarly.

Now, in a manner similar to the definition of dk(n, p), we introduce other

infinite sums consisting of cn and an, for later use. Thus, under the assumptions

(C1) and (A1), we choose M ∈ N so that an+2 ≥ 0 for all n ≥ M , and put for

k ≥ 2, n ≥ M , and p ≥ 0,

ek(n, p) :=
∞∑

m1=1

an+m1+1

∞∑
m2=1

bm1
n+m2

· · ·
∞∑

mk−1=1

b
mk−2

n+mk−1

∞∑
mk=1

b
mk−1

n+mk
cmk+p.

Then, as in Theorem 4.6,

e2(n, p) =

∞∑
v2=0

cv2+p+1

∞∑
v1=0

cv1

∞∑
m1=0

av2+m1+n+2av1+m1+n+2,

and for k ≥ 3,

ek(n, p) =
∞∑

vk=0

cvk+p+1

∞∑
vk−1=0

cvk−1

· · ·
∞∑

v1=0

cv1

∞∑
mk−1=0

avk+mk−1+n+2

∞∑
mk−2=0

avk−1+mk−1+mk−2+n+2

· · ·
∞∑

m2=0

av3+m3+m2+n+2

∞∑
m1=0

av2+m2+m1+n+2av1+m1+n+2.
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For 0 < d < 1
2

and k ≥ 2, we also define Bk(d), in a manner similar to the

definition of Ak, as follows:

B2(d) :=

(
d

π

)4 ∫ ∞

0

{∫ ∞

0

dv2

(v2 + u)1−d

∫ ∞

0

dv1

(v1)1−d∫ ∞

0

ds1

(v2 + s1 + 1)1+d(v1 + s1 + 1)1+d

}2

du,

and for k ≥ 3,

Bk(d) :=

(
d

π

)2k ∫ ∞

0

du

{∫ ∞

0

dvk

(vk + u)1−d

∫ ∞

0

dvk−1

(vk−1)1−d
· · ·
∫ ∞

0

dv1

(v1)1−d∫ ∞

0

dsk−1

(vk + sk−1 + 1)1+d

∫ ∞

0

dsk−2

(vk−1 + sk−1 + sk−2 + 1)1+d

· · ·
∫ ∞

0

ds2

(v3 + s3 + s2 + 1)1+d

∫ ∞

0

ds1

(v2 + s2 + s1 + 1)1+d(v1 + s1 + 1)1+d

}2

.

By the equality (6.1), Bk(d) with k ≥ 3 defined above may be expressed more

simply as follows:

Bk(d) =
d2

π2k

∫ ∞

0

du

{∫ ∞

0

dvk

(vk + u)1−d

∫ ∞

0

dsk−1

(vk + sk−1 + 1)1+d∫ ∞

0

dsk−2

(sk−1 + sk−2 + 1)
· · ·
∫ ∞

0

ds2

(s3 + s2 + 1)

∫ ∞

0

ds1

(s2 + s1 + 1)(s1 + 1)

}2

.

(6.8)

The following proposition is an analogue of Proposition 6.1 for {ek(n, p)}. We

use it, in the proof of Theorem 6.4 below, to estimate the difference between

upper and lower bounds.

Proposition 6.2. Let 0 < d < 1
2

and � ∈ R0. We assume (C1), (C2), and (A1).

Then, for k ≥ 2, (2.5) implies
∞∑

p=0

{ek(n, p)}2 ∼ n−1Bk(d) sin2k(πd) (n → ∞).(6.9)

Proof. For k ≥ 3 and n large enough, we have
∞∑

p=0

{ek(n − 2, p)}2 = n4k−1 {ancn}2k

×
∫ ∞

0

du

{∫ ∞

0

dvk

c[nvk]+[nu]+1

cn

∫ ∞

0

dvk−1

c[nvk−1]

cn

· · ·
∫ ∞

0

dv1

c[nv1]

cn∫ ∞

0

dsk−1

a[nvk]+[nsk−1]+n

an

∫ ∞

0

dsk−2

a[nvk−1]+[nsk−1]+[nsk−2]+n

an

· · ·
∫ ∞

0

ds2

a[nv3]+[ns3]+[ns2]+n

an

∫ ∞

0

a[nv2]+[ns2]+[ns1]+n

an
· a[nv1]+[ns1]+n

an
ds1

}2

.
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However, for simplicity, we give details for the case k = 2 only, and finish the

proof with brief notes for the general case.

Take δ ∈ (0, min(1
2
− d, 1

5
d)), and M so large that both (6.3) and (6.4) hold.

We set q0(x) := I(0,M)(x) and q1(x) := I[M,∞)(x). Then, for n large enough, we

have
∞∑

p=0

{e2(n − 2, p)}2 = n7 {ancn}4 · ‖I00(n) + I01(n) + I10(n) + I11(n)‖2,

where ‖ · ‖ is the norm of L2((0,∞), du) and Iij(n) = Iij(n)(u) are defined by

Iij(n) :=

∫ ∞

0

dv2qi([nu])
c[nv2]+[nu]+1

cn

∫ ∞

0

dv1qj([nv1])
c[nv1]

cn∫ ∞

0

a[nv2]+[ns1]+n

an

· a[nv1]+[ns1]+n

an

ds1.

First we consider I11(n). From

v2 + u − 1

n
<

[nv2] + [nu] + 1

n
≤ v2 + u +

1

n
,

we have

q1([nu]) · c[nv2]+[nu]+1

cn
≤ G(v2 + u) (n ≥ M, u > 0, v2 > 0),

q1([nu]) · c[nv2]+[nu]+1

cn

→ (v2 + u)−(1−d) (n → ∞) (u > 0, v2 > 0),

where G is the function defined by (6.5). Since

(v2 + s1 + 1)−(1+d−δ)(v1 + s1 + 1)−(1+d−δ)

= (v2 + s1 + 1)−(1+d−5δ)−4δ(v1 + s1 + 1)−(d+2δ)−(1−3δ)

≤ (v2 + 1)−(1+d−5δ)(v1 + 1)−(d+2δ)(s1 + 1)−(1+δ),

(6.10)

we have, for n ≥ M ,

|I11(n)|2 ≤ 24

{∫ ∞

0

G(u + v2)dv2

(v2 + 1)1+d−5δ
·
∫ ∞

0

G(v1)dv1

(v1 + 1)d+2δ
·
∫ ∞

0

ds1

(s1 + 1)1+δ

}2

.

Now

G(u + v2) ≤ I(0,1)(u)G(v2) + I[1,∞)(u)G(u);(6.11)

and so, if we notice that (a + b)2 ≤ 2(a2 + b2), then

|I11(n)|2 ≤ 25

{∫ ∞

0

G(v1)

(v1 + 1)d+2δ
dv1 ·

∫ ∞

0

1

(s1 + 1)1+δ
ds1

}2

×
[{∫ ∞

0

I(0,1)(u)G(v2)

(v2 + 1)1+d−5δ
dv2

}2

+

{∫ ∞

0

I[1,∞)(u)G(u)

(v2 + 1)1+d−5δ
dv2

}2
]

.
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The right-hand side is in L1((0,∞), du), whence, by the dominated convergence

theorem, we have

‖I11(n)‖2 → (π/d)4B2(d) (n → ∞).

We turn to the remaining integrals. We have, for n ≥ M ,

|I01(n)|2 ≤ 24I(0,1)([nu])

(
max ck

cn

)2

×
{∫ ∞

0

dv2

(v2 + 1)1+d−5δ
·
∫ ∞

0

G(v1)

(v1 + 1)d+2δ
dv1 ·

∫ ∞

0

ds1

(s1 + 1)1+δ

}2

.

Hence it follows that ‖I01(n)‖ → 0 as n → ∞. Furthermore, for n ≥ M , |I10(n)|2

is at most

24

(
max ck

ncn

)2{∫ ∞

0

G(u + v2)

(v2 + 1)1+d−5δ
dv2 ·

∫ M

0

dv1 ·
∫ ∞

0

ds1

(s1 + 1)1+δ

}2

.

Hence, by (6.11) and (5.6), ‖I10(n)‖ → 0 as n → ∞. Similarly, ‖I00(n)‖ → 0 as

n → ∞.

Combining, we obtain

‖I00(n) + I01(n) + I10(n) + I11(n)‖2 → (π/d)4B2(d) (n → ∞),

and so, from (6.7), as asserted,

∞∑
p=0

{e2(n, p)}2 ∼ n−1B2(d) sin4(πd) (n → ∞).

As for the general k ≥ 1, we choose δ ∈ (0, min{1
2
−d, d/(4k−3)}), and instead

of (6.10) we use the estimate

(vk + sk−1 + 1)−(1+d−δ)(vk−1 + sk−1 + sk−2 + 1)−(1+d−δ)

· · · (v2 + s2 + s1 + 1)−(1+d−δ)(v1 + s1 + 1)−(1+d−δ)

=(vk + sk−1 + 1)−{1+d−(4k−3)δ}−(4k−4)δ

× (vk−1 + sk−1 + sk−2 + 1)−(d+2δ)−{1−(4k−5)δ}−(4k−8)δ

· · · (v2 + s2 + s1 + 1)−(d+2δ)−(1−7δ)−4δ(v1 + s1 + 1)−(d+2δ)−(1−3δ)

≤(vk + 1)−{1+d−(4k−3)δ}(vk−1 + 1)−(d+2δ) · · · (v1 + 1)−(d+2δ)

× (sk−1 + 1)−(1+δ) · · · (s1 + 1)−(1+δ).

We note that δ < d/(4k − 3) implies∫ ∞

0

1

(vk + 1)1+d−(4k−3)δ
dvk < ∞
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and that δ < 1
2
− d implies

∫∞
1

G(u)2du < ∞. We also have∫ ∞

0

G(vk)

(vk + 1)1+d−(4k−3)δ
dvk < ∞.

In this way, we can prove the general assertion in a manner similar to the above.

For 0 < d < 1
2
, we define an integral operator Kd on L2((0,∞), du) by

Kdf(x) :=

∫ ∞

0

kd(x, y)f(y)dy,

where

kd(x, y) :=

∫ ∞

0

1

(x + v)1−d(v + y)1+d
dv (x > 0, y > 0).

We write ‖Kd‖ for the operator norm of Kd.

Lemma 6.3. For 0 < d < 1
2
, Kd is a bounded operator on L2((0,∞), du) such

that ‖Kd‖ ≤ (π/d) tan(πd).

Proof. Since

kd(x, xy) =
1

x

∫ ∞

0

1

(1 + s)1−d(s + y)1+d
ds,

we have ∫ ∞

0

kd(x, y)(x/y)
1
2 dy = x

∫ ∞

0

kd(x, xy)y− 1
2 dy

=

∫ ∞

0

ds

(s + 1)1−dsd+ 1
2

·
∫ ∞

0

dy

(y + 1)1+dy
1
2

= B(1
2
, 1

2
− d)B(d + 1

2
, 1

2
) =

π

d
tan(πd).

Similarly ∫ ∞

0

kd(x, y)(y/x)
1
2 dx =

π

d
tan(πd).

Thus the lemma follows (see [HLP, Theorem 319]).

Now we are ready to prove the following theorem which gives the asymptotic

behaviour of ε(·) for long-memory processes. See [IK], where an analogous result

for a special continuous-time stationary process is given.

Theorem 6.4. Let 0 < d < 1
2

and � ∈ R0. We assume (C1), (C2), and (A1).

Then (2.5) implies

ε(n) ∼ d2

n
(n → ∞).(6.12)
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Proof. By Proposition 4.3, we have
∑∞

0 |ak| < ∞. Hence it follows from (4.2)

and (4.14)–(4.16) that, for m ≥ 1,

2m−1∑
k=1

∞∑
p=0

{dk(n, p)}2 ≤ ε(n)

=

2m−1∑
k=1

∞∑
p=0

{dk(n, p)}2 + (c0)
−2‖P⊥

[−n,0]

{
P[−n,∞)P(−∞,0]

}m
X1‖2.

Let n → ∞. Then, by Proposition 6.1,

2m−1∑
k=1

Ak sin2k(πd) ≤ lim inf
n→∞

ε(n)n ≤ lim sup
n→∞

ε(n)n

≤
2m−1∑
k=1

Ak sin2k(πd) + lim sup
n→∞

{
(c0)

−2n‖P⊥
[−n,0]

{
P[−n,∞)P(−∞,0]

}m
X1‖2

}
.

Now it follows from (4.13) that

{
P[−n,∞)P(−∞,0]

}m
X1 = c0Z(n, m) (mod H[−n,0]),

where

Z(n, m) :=

∞∑
j1=1

an+j1+1

∞∑
j2=1

bj1
n+j2

· · ·
∞∑

j2m=1

b
j2m−1

n+j2m
Xj2m.

Let {ξk} be the complete orthonormal system for H defined by (4.6). Then

(c0)
−2‖P⊥

[−n,0]

{
P[−n,∞)P(−∞,0]

}m
X1‖2 = ‖P⊥

[−n,0]Z(n, m)‖2

≤ ‖Z(n, m)‖2 =

∞∑
p=−∞

(Z(n, m), ξp)
2

=

0∑
p=−∞

{ ∞∑
j1=1

an+j1+1

∞∑
j2=1

bj1
n+j2

· · ·
∞∑

j2m=1

b
j2m−1

n+j2m
cj2m−p

}2

+
∞∑

p=1

{ ∞∑
j1=1

an+j1+1

∞∑
j2=1

bj1
n+j2

· · ·
∞∑

j2m=p

b
j2m−1

n+j2m
cj2m−p

}2

=

∞∑
p=0

{e2m(n, p)}2 +

∞∑
p=0

{d2m(n, p)}2,

Thus, from Propositions 6.1 and 6.2, it follows that

2m−1∑
k=1

Ak sin2k(πd) ≤ lim inf
n→∞

ε(n)n ≤ lim sup
n→∞

ε(n)n

≤
2m∑
k=1

Ak sin2k(πd) + B2m(d) sin4m(πd).

(6.13)
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We are about to estimate the last term. By (6.8), for k ≥ 3,

Bk(d) ≤ d2

π2k

∫ ∞

0

du

{∫ ∞

0

dvk

(vk + u)1−d

∫ ∞

0

dsk−1

(vk + sk−1)1+d∫ ∞

0

dsk−2

(sk−1 + sk−2)
· · ·
∫ ∞

0

ds2

(s3 + s2)

∫ ∞

0

ds1

(s2 + s1)(s1 + 1)

}2

=
d2

π2k
‖KdH

k−2f‖2,

where f(x) := 1/(1+x), and H is the bounded linear operator on L2((0,∞), du)

defined by

Hg(u) :=

∫ ∞

0

1

u + v
g(v)dv.

Since, by Hilbert’s theorem (cf. [HLP, Theorems 316 and 317]), the operator

norm ‖H‖ of H is equal to π , this inequality and Lemma 6.3 yield

Bk(d) ≤ tan2(πd)

π2
(k ≥ 3).

Thus, if we let m → ∞ in (6.13), then we obtain

lim
n→∞

ε(n)n =
∞∑

k=1

Ak sin2k(πd).(6.14)

By Lemma 6.5 below, the right-hand side is equal to d2. Thus (6.12) follows.

Lemma 6.5. For |x| < 1,
∑∞

k=1 Akx
2k = π−2 arcsin2 x.

Though this is a purely analytic assertion, we give a proof based on results for

the ARIMA(0, d, 0) processes.

Proof. For 0 < d < 1
2
, let {Yn : n ∈ Z} be a ARIMA(0, d, 0) process such that

E[Y 2
0 ] = Γ(1−2d)/Γ2(1−d) (see Granger–Joyeux [GJ] and Hosking [Ho]; see also

[BD, §13.2]). We denote by γ′(·), {c′n}, {a′
n}, α′(·), and ε′(·) the autocovariance

function, sequence of MA(∞) coefficients, sequence of AR(∞) coefficients, partial

autocorrelation function, and function defined by (4.11), respectively, of {Yn}.
Then we have

a′
n = − Γ(n − d)

Γ(n + 1)Γ(−d)
, c′n =

Γ(n + d)

Γ(n + 1)Γ(d)
(n ≥ 0),

γ′(n) ∼ n2d−1 Γ(1 − 2d)

Γ(d)Γ(1 − d)
(n → ∞)

(see, for example, [BD, §13.2]). These imply that {Yn} satisfies (C1), (C2), (A1),

and (2.5). Hence it follows from (6.14) that nε′(n) tends to
∑∞

1 Ak sin2k(πd) as
34



n → ∞. On the other hand, by [Ho, Theorem 1] (see also [BD, (13.2.10)]),

α′(n) =
d

n − d
∼ d

n
(n → ∞),

which, by (6.22) and (6.23) below, implies

ε′(n) ∼
∞∑

k=n

α′(k)2 ∼ d2

n
(n → ∞).

Thus,
∑∞

1 Ak sin2k(πd) = d2. The lemma follows if we substitute π−1 arcsin x

with 0 < x < 1 into d.

Remark. From Lemma 6.5, it follows that

Ak =
1

π2
· (2k − 2)!!

(2k − 1)!!k
(k ∈ N).(6.15)

Next we consider the boundary case.

Theorem 6.6. Let d = 0, and let � ∈ R0 such that
∫∞

�(s)ds/s = ∞. We

assume (C1), (C2), (A1), and (A2). Then (2.5) implies

ε(n) ∼ n−1

{
�(x)

2�̃(x)

}2

(n → ∞).(6.16)

Proof. From (4.1) and (4.15), we obtain the lower bound estimate

ε(n) ≥ (c0)
−2‖P⊥

[−n,∞)P(−∞,0]X1‖2 =
∑∞

p=0
{d1(n, p)}2

=
∑∞

p=0

(∑∞
v=0

cvav+n+2+p

)2

=
∑∞

p=n+2

(∑∞
v=0

cvav+p

)2

.
(6.17)

On the other hand, from (4.1) and the equality

P(−∞,0]X1 = c0

∞∑
v=0

av+1X−v,

we obtain the upper bound estimate

ε(n) = (c0)
−2
∥∥P⊥

[−n,0]P(−∞,0]X1

∥∥2
=
∥∥∥P[−n,0]

∑∞
v=n+1

av+1X−v

∥∥∥2

≤
∥∥∥∑∞

v=n+1
av+1X−v

∥∥∥2

=
∑∞

v=n+1

∑∞
m=n+1

av+1am+1γ(m − v)

= γ(0)
∑∞

m=n+1
(am+1)

2 + 2
∑∞

m=n+1
am+1

∞∑
v=1

am+v+1γ(v).

(6.18)

First, we consider the lower bound. By (5.29) and Theorem 5.2,
n∑

u=0

cu ∼ {2�̃(n)}1/2 (n → ∞).

In particular, av+p+1

∑v
u=0 cu → 0 as v → ∞. Summing by parts,∑∞

v=0
cvav+n =

∑∞
v=0

(∑v

u=0
cu

)
(av+n − av+n+1).

35



Now, by (A2), Theorem 5.2, and the monotone density theorem, we have

an − an+1 ∼ n−2�(n){2�̃(n)}−3/2 (n → ∞).

Thus it follows from [I6, Proposition 4.3] that
∞∑

v=0

cvav+n ∼ n−1 �(n)

2�̃(n)
(n → ∞),(6.19)

whence ∑∞
p=n+2

(∑∞
v=0

cvav+p

)2

∼ n−1

{
�(n)

2�̃(n)

}2

(n → ∞).

Next, we consider the upper bound. As in (6.19), we have
∞∑

v=1

an+v+1γ(v) ∼ n−1 �(n)

23/2�̃(n)1/2
(n → ∞),

whence

2
∞∑

m=n+1

am+1

∞∑
v=1

am+v+1γ(v) ∼ n−1

{
�(n)

2�̃(n)

}2

(n → ∞).

On the other hand, by Theorem 5.2,
∞∑

m=n+1

(am+1)
2 ∼ n−1�(n)2{2�̃(n)}−3 (n → ∞).

Since �̃(n) → ∞ as n → ∞, the latter is negligible in comparison with the former,

whence

γ(0)

∞∑
m=n+1

(am+1)
2 + 2

∞∑
m=n+1

am+1

∞∑
v=1

am+v+1γ(v) ∼ n−1

{
�(n)

2�̃(n)

}2

as n → ∞. Thus the theorem follows.

Finally we consider the intermediate-memory processes.

Theorem 6.7. Let −∞ < d ≤ 0 and � ∈ R0, where
∫∞

�(s)ds/s < ∞ if d = 0.

We also assume (C1), (C2), and (A1). Then (2.5) implies

ε(n) ∼ n4d−1�(n)2

(1 − 4d){∑∞
−∞ γ(k)}2

(n → ∞).(6.20)

Proof. By Theorem 5.3 as well as [I2, Lemma 5.7] and (5.30), we have∑∞
v=0

cvav+n ∼ an

(∑∞
v=0

cv

)
∼ n2d−1�(n)∑∞

−∞ γ(k)
(n → ∞),

so that ∑∞
p=n+2

(∑∞
v=0

cvav+p

)2

∼ n4d−1�(n)2

(1 − 4d){∑∞
−∞ γ(k)}2

(n → ∞).
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On the other hand, it follows from Theorem 5.3 and [I2, Lemma 5.7] that

γ(0)
∑∞

m=n+1
(am+1)

2 + 2
∑∞

m=n+1
am+1

∑∞
v=1

am+v+1γ(v)

∼
{

γ(0) + 2
∑∞

v=1
γ(v)

}∑∞
m=n+1

(am+1)
2 (n → ∞)

∼ n4d−1�(n)2

(1 − 4d){∑∞
−∞ γ(k)}2

(n → ∞).

Thus the theorem follows from the estimates (6.17) and (6.18).

Now we are ready to prove the main theorem.

Proof of Theorem 2.1. We put

δ(n) :=
‖P⊥

[−n,0]X1‖2 − ‖P⊥
[−n−1,0]X1‖2

‖P⊥
(−∞,0]X1‖2

(n = 1, 2, . . . ).(6.21)

Then since ‖P⊥
[−n,0]X1‖ → ‖P⊥

(−∞,0]X1‖ as n → ∞, it follows that

∞∑
k=n

δ(k) = ε(n) (n ≥ 1).(6.22)

On the other hand, by the Durbin–Levinson algorithm ([BD, (5.2.5)]), we have

α(n)2 = δ(n − 2)
‖P⊥

(−∞,0]X1‖2

‖P⊥
[−n+2,0]X1‖2

∼ δ(n − 2) (n → ∞).(6.23)

Now it follows from (C1)–(A2) and Theorem 4.6 that, for any k ≥ 1 and p ≥ 0,

both the sequences {dk(n, p) : n = 1, 2, . . .} and {dk(n, p) − dk(n + 1, p) : n =

1, 2, . . . } are eventually non-negative and decreasing. Since (4.12) implies

δ(n) =

∞∑
k=1

∞∑
p=0

{dk(n, p) + dk(n + 1, p)} {dk(n, p) − dk(n + 1, p)} ,

the sequence {δ(n)} is also eventually decreasing. Hence, by the monotone den-

sity theorem, Theorems 6.4, 6.6 and 6.7 give the asymptotics for δ(·). Therefore,

from (6.23), we obtain (2.7)–(2.9). To complete the proof, it suffices to note

that (2.6) is equivalent to (2.7), (2.8) or (2.9) under each assumption on d and

�(·).

7. Reflection positivity

In this section, we consider the stationary processes with reflection positivity,

that is, those with completely monotone autocovariance functions. These have

the advantage that the relevant series and functions have nice integral represen-

tations. In fact, it is shown below that the corresponding sequences {cn} and
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{an} have such integral representations. These representations in turn imply

the conditions (C1)–(A2) immediately, whence we can apply Theorem 2.1 to the

stationary processes.

First, we prove some preliminary analytic results. In what follows, we write∫ 1

0
for
∫
[0,1)

. We put

Σ := {σ : σ is a nonzero finite Borel measure on [0, 1)}.

For σ ∈ Σ, we write

∆σ(θ) :=
1

2π

∫ 1

0

Pr(θ)σ(dr) (−π < θ < π),

where Pr(θ) is the Poisson kernel defined by (3.4). Then the function ∆σ(·) is

positive and integrable on (−π, π). It follows that∫ π

−π

einθ∆σ(θ)dθ =

∫ 1

0

r|n|σ(dr) (n ∈ Z),(7.1)

where the convention 00 = 1 is adopted in the integral on the right-hand side.

For a finite Borel measure µ on [0, 1), we write

Fµ(z) :=

∫ 1

0

1

1 − rz
µ(dr) (z ∈ C, |z| < 1),

Fµ(eiθ) :=

∫ 1

0

1

1 − reiθ
µ(dr) (−π < θ < π).

We write N for the set of all nonzero Borel measures ν on [0, 1) such that∫ 1

0

∫ 1

0

1

1 − rs
ν(dr)ν(ds) < ∞.(7.2)

If ν ∈ N , then ν is a finite measure, that is, ν ∈ Σ. For ν ∈ N , we define

σ = S(ν) ∈ Σ by

σ(dr) :=

{∫ 1

0

1

1 − rs
ν(ds)

}
ν(dr).

Then we have

|Fν(e
iθ)|2 = 2π∆σ(θ) (−π < θ < π),(7.3)

for

1 − (r + s) cos θ + rs

|1 − reiθ|2 · |1 − seiθ|2 =
1

2(1 − rs)
{Pr(θ) + Ps(θ)} .

In particular,
∫ π

−π
|Fν(e

iθ)|2dθ = 2πσ([0, 1)), whence Fν(e
iθ) ∈ L2(−π, π) if ν ∈

N . Moreover, since the real part of Fν(z) is positive in |z| < 1, Fν(z) is an outer
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function for the space H2+, and so log |Fν(e
iθ)| is integrable on (−π, π) and

Fν(z) = exp

{
1

2π

∫ π

−π

eiθ + z

eiθ − z
log |Fν(e

iθ)|dθ

}
(|z| < 1)(7.4)

(see Duren [Du, Chapter 3, Exercise 1] and [Ru, Theorem 17.16]). If σ = S(ν),

then, from (7.3) and (7.4), it follows that log ∆(·) is also integrable on (−π, π)

and that

Fν(z) = (2π)1/2exp

{
1

4π

∫ π

−π

eiθ + z

eiθ − z
log |∆σ(θ)|dθ

}
(z ∈ C, |z| < 1).(7.5)

The following theorem is a discrete-time analogue of [I3, Theorem 2.5].

Theorem 7.1. The map S from N to Σ is one-to-one and onto.

Proof. Step 1. For brevity, call a measure σ on [0, 1) simple if σ is of the form

σ =
n∑

k=1

skδrk

for some n ∈ N, where sk ∈ (0,∞) (k = 1, · · · , n) and 0 < r1 < r2 < · · · < rn <

1. In this step, we show that for σ simple there exists a simple measure ν such

that σ = S(ν).

For a simple measure σ of the above form, we define a polynomial f(z) of

degree 2n − 2 by

f(z) :=
n∑

k=1

{1 − (rk)
2}sk

∏
m�=k

(1 − rmz)(z − rm).

Then, since f(rk)f(rk+1) < 0 (k = 1, . . . , n − 1), f(z) has a zero qk in (rk, rk+1)

for k = 1, . . . , n−1. Moreover, since f(1/z) = z−2n+2f(z), we see that 1/qk (k =

1, . . . , n − 1) are also zeros of f(z). Thus f(z) must be of the form

f(z) = c

n−1∏
k=1

(1 − qkz)(z − qk)

with some positive constant c. Now we define a rational function F (z) by

F (z) :=
√

c

∏n−1
k=1(1 − qkz)∏n
k=1(1 − rkz)

.

Then

F (z)F (1/z) = cz

∏n−1
k=1(1 − qkz)(z − qk)∏n
k=1(1 − rkz)(z − rk)

=

n∑
k=1

{1 − (rk)
2}sk

(1 − rkz)(1 − rkz−1)
,

so that

|F (eiθ)|2 = lim
t→1−

F (teiθ)F (1/teiθ) = 2π∆σ(θ).(7.6)
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On the other hand, F (z) has the following partial fraction decomposition:

F (z) =

u∑
k=1

mk

1 − rkz
,

where mk ∈ (0,∞) (k = 1, . . . , n). If we write ν :=
∑n

k=1 mkδrk
, then we have

F (z) = Fν(z); and so, by (7.3) and (7.6), ∆σ(θ) = ∆σ′(θ) with σ′ := S(ν).

By (7.1), this implies that
∫ 1

0
tnσ(dt) =

∫ 1

0
tnσ′(dt) for all n ∈ N ∪ {0}. Thus

σ = σ′ = S(ν).

Step 2. For σ ∈ Σ, choose a sequence of simple measures σn such that σn → σ

weakly on [0, 1] as n → ∞. Here we regard σ and σn as measures on [0, 1] by

σ({1}) = σn({1}) = 0. In view of Step 1, we have simple measures νn such that

S(νn) = σn. From (7.1), (7.5), and Jensen’s inequality, it follows that

νn([0, 1)) = Fν(0) = (2π)1/2exp

{
1

4π

∫ π

−π

log |∆σn(θ)|dθ

}
≤
√

2πσn([0, 1)),

whence, by the Helly selection principle, there exists a sequence of integers n′ →
∞ such that νn′ converges weakly on [0, 1] to a finite measure, ν. From (7.3), we

have ∣∣∣∣
∫ 1

0

1

1 − reiθ
νn′(dr)

∣∣∣∣
2

=

∫ 1

0

Pr(θ)σn′(dr) (−π < θ < π).

Let n′ → ∞. Then since, for θ �= 0, both integrands are bounded and continuous

on [0, 1], we have∣∣∣∣
∫

[0,1]

1

1 − reiθ
ν(dr)

∣∣∣∣
2

= 2π∆σ(θ) (−π < θ < π, θ �= 0).

The absolute value of the integral on the left-hand side is at least∣∣∣∣Im
∫

[0,1]

1

1 − reiθ
ν(dr)

∣∣∣∣ ≥ | sin θ|
2(1 − cos θ)

ν({1}).

Since ∆σ ∈ L1(−π, π), this implies that ν({1}) = 0. We put

σ′(dr) :=

{∫ 1

0

1

1 − rs
ν(ds)

}
ν(dr).

Then

∆σ(θ) =
1

2π

∫ 1

0

Pr(θ)σ
′(dr);

and so, as in Step 1,
∫ 1

0
tnσ(dt) =

∫ 1

0
tnσ′(dt) for all n ≥ 0. Consequently, ν is in

N , and σ = σ′ = S(ν). Thus S is onto.
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It remains to show that S is one-to-one. By (7.5), we find that Fν is determined

uniquely by σ. Since Fν(z) determines ν uniquely, this implies that S is one-to-

one.

Theorem 7.2. For every ν ∈ N , there exists a unique triple (b1, b2, ρ) consisting

of b1 ∈ (0,∞), b2 ∈ [0,∞) and a finite (possibly zero) Borel measure ρ on [0, 1)

such that

Fν(z)
{
b1(1 − z) + b2(1 + z) + (1 − z2)Fρ(z)

}
= 1 (z ∈ C, |z| < 1).(7.7)

Proof. Let z ↓ −1 or z ↑ 1 in (7.7). Then we obtain

b1 =

{∫ 1

0

1

1 + r
ν(dr)

}−1

, b2 =

{∫ 1

0

1

1 − r
ν(dr)

}−1

(7.8)

(b2 = 0 if
∫ 1

0
(1 − r)−1ν(dr) = ∞). Therefore both b1 and b2 are uniquely

determined by ν. Since ρ is uniquely determined by Fρ, it is also uniquely

determined by ν.

Now we show the existence. First we assume
∫ 1

0
(1 − r)−1ν(dr) < ∞. Then

by [I2, Theorem 3.1(i)], there exist positive constants α2, β2, and a finite Borel

measure ρ2 on [0, 1) such that
∫ 1

0
(1 + r)−1ρ2(dr) < 1 and

α2√
2π

{
β2

2
(1 + z) + (1 − z) + z(1 − z)Fρ2(z)

}
Fν(z) = 1 (z ∈ C, |z| < 1).

Since

zFρ2(z) = −
∫ 1

0

1

1 + r
ρ2(dr) + (1 + z)

∫ 1

0

1

(1 − rz)(1 + r)
ρ2(dr),

it follows that (7.7) holds with

b1 =
α2√
2π

{
1 −

∫ 1

0

1

1 + r
ρ2(dr)

}
, b2 =

α2β2

2
√

2π
, ρ(dr) =

α2√
2π(1 + r)

ρ2(dr).

Next we assume
∫ 1

0
(1 − r)−1ν(dr) = ∞. We put

ν(n)(dr) := I[0,1−n−1](r)ν(dr) (n ≥ M),

where we choose M so large that ν(M) is not a zero measure. By the result above,

there exist b
(n)
1 ∈ (0,∞), b

(n)
2 ∈ (0,∞), and a finite Borel measure ρ(n) on [0, 1)
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which satisfy (7.7) with ν(n). By (7.8),

b
(n)
1 =

{∫ 1

0

1

1 + r
ν(n)(dr)

}−1

↓ b1 :=

{∫ 1

0

1

1 + r
ν(dr)

}−1

(n → ∞),

b
(n)
2 =

{∫ 1

0

1

1 − r
ν(n)(dr)

}−1

↓ 0 (n → ∞).

On the other hand, if we let z = 0 in (7.7), then we obtain

sup
n≥M

ρ(n)([0, 1)) ≤ sup
n≥M

1

ν(n)([0, 1))
< ∞.

Thus, by a standard argument which involves the Helly selection principle, there

exists a finite Borel measure ρ on [0, 1) such that the triple (b1, 0, ρ) satisfies (7.7)

with ν.

Let us come back to stationary processes. For σ ∈ Σ, the function γ(·) defined

by γ(n) :=
∫ 1

0
t|n|σ(dt) (n ∈ Z) is non-negative definite by (7.1), whence it is

the autocovariance function of a stationary process with spectral density ∆σ. A

stationary process {Xn} with autocovariance function γ(·) has the property of

reflection positivity if

there exists σ ∈ Σ such that γ(n) =
∫ 1

0
t|n|σ(dt) (n ∈ Z).(RP)

Since log ∆σ(·) is integrable on (−π, π) for σ ∈ Σ, it follows that such a stationary

process is purely nondeterministic.

Now we prove that (RP) implies (C1)–(A2).

Theorem 7.3. Let {Xn} be a stationary process that satisfies (RP). Then there

exist two finite Borel measures ν and ρ on [0, 1) such that

cn =

∫ 1

0

rnν(dr) (n = 0, 1, . . . ),(7.9)

an =

∫ 1

0

rn−2(1 − r2)ρ(dr) (n = 2, 3, . . . ).(7.10)

In particular, {Xn} satisfies (C1), (C2), (A1), and (A2).

Proof. Let σ be the measure that appears in (RP). Set ν := S−1(σ) ∈ N . Then,

by (7.5), the outer function h(z) of {Xn} is equal to Fν(z). Therefore it follows

that the MA(∞) coefficients cn of {Xn} are given by (7.9) with this ν. Let

(b1, b2, ρ) be the triple determined by the relation (7.7). Then, for z ∈ C,

−1/h(z) = −1/Fν(z) = −b1(1 − z) − b2(1 + z) − (1 − z2)Fρ(z).
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Thus (7.10) holds with this ρ.

Example. Let −∞ < d < 1
2
, and let {Xn} be a stationary process with autoco-

variance function of the form γ(n) = (1 + |n|)−(1−2d). Since

1

(1 + |n|)1−2d
=

∫ 1

0

t|n|
(− log t)−2d

Γ(1 − 2d)
dt (n ∈ Z),

we see that {Xn} satisfies (RP). Let α(·) be the partial autocorrelation function

of {Xn}. Then application of Theorem 2.1 to {Xn} yields the following result:

(1) if 0 < d < 1
2
, then

|α(n)| ∼ d

n
(n → ∞);

(2) if d = 0, then

|α(n)| ∼ 1

2n log n
(n → ∞);

(3) if −∞ < d < 0, then

|α(n)| ∼ n2d−1

{2ζ(1 − 2d) − 1} (n → ∞).

Here ζ(s) is the Riemann zeta function.

In view of the numerical data obtained using the Durbin–Levinson algorithm,

it seems unnecessary to take the absolute values of α(n) in (1)–(3) above. This

observation even suggests a possible improvement of Theorem 2.1.

We have seen that the stationary processes with reflection positivity satisfy the

conditions (C1)–(A2). We must, however, point out that it would be desirable

to remove the assumption (C1) from Theorem 2.1.

Acknowledgement. I should like to thank Professor Takahiko Nakazi for help-

ful comments on the Seghier–Dym theorem.
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