On the asymptotic behavior of the prediction error

of a stationary process
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Abstract. We give an example of a long-memory stationary process for which we can
calculate explicitly the prediction error from a finite part of the past. The long-time

behavior of the prediction error is discussed.

1. INTRODUCTION AND RESULTS

Let X = (X(t),t € R) be a real, centered, weakly stationary process defined
on a probability space (2, F,P). For T > 0, we denote by P_rg the orthogonal
projection operator of L?(Q,F, P) onto the subspace spanned by {X(u) : —T <
u < 0}. Similarly, we write P(_ ) for the orthogonal projection operator onto the
subspace spanned by {X(u) : —oo < u < 0}. For T > 0 and ¢ > 0, we define Q(T, 1)
and Q(o0,t) by

Q(T,t) :
Q(o0,t) :

{X(#) = Aarg X (5},

E
E[{X(t) = Pecca X (1)}

We adopted 27T rather than 7" in the above to follow the notation of Dym and McKean
3].

We are concerned with the asymptotic behavior of Q(7',t) — Q(o0,t) as T' — oc.
We are especially interested in the case where the stationary process X is a long-
memory process (see Beran [1]). The main difficulty of this problem comes from
that of the calculation of Q(7',t) itself. In this paper, we give an example of a long-
memory process for which we can calculate Q(7,t) explicitly. The authors know no
other example of such a long-memory process.

We write R for the autocovariance function of X: R(t) = E[X ()X (0)] for t € R.
Let 4« be the spectral measure of X: R(t) = [*°_ e pu(dy). For 1 < a <1, we define
the constants ¢ = ¢(a) and d = d(«) by

= {FM}Q g 2enlen) (1.1)

[a— %)2

As usual, we write K, for the modified Bessel function (cf. Watson [6, 3.7]).
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Theorem 1. LetT > 0,t >0 and% <a<1l. SetTy:=T-+t. Let X be a real,
centered, weakly stationary process with spectral measure o on R of the form

_sinfam) |y

d
p(d) - 112

Then Q(T,t) = d{Q\(T,t) + Qu(T, 1)} with

T T )

dr. (1.2)

T sK_a(s)?
1 g 2 2 2 3 2 ds
Q2(T,1) ::/T {/S w17 —u®) 2K1a(u)du} 75[(1,&(5)2'
For the stationary process X in the theorem above, we can show that
1
R(t) ~ =t 72 (¢ 1.3

(see §3). Therefore X is a long-memory process.

Theorem 2. Let a, t and X be as in Theorem 1. Then

2

QT 1) — Q(oo,1) ~ sin(a) {ﬁ [eterad Lo

Let X be as in Theorem 1 and let f be the spectral density of X:

sin(ar) |y['7*
= . R). 14
=2 L e (1.4
We write h for the outer function of X:
1 [ 1+9¢ logf(y) N
— . . 1.
h(Q) exp{m/_w_g Sl @0 (15)

The canonical representation kernel F' of X is defined by F' := (27r)*1/2i1, where £
is the Fourier transform of h(-) := Lim.,oh(- +in) € L*(R). We have the following
relation between F' and h:

h(Q) = (27) 2 /OOO ECLR()dt (IS¢ > 0). (1.6)

Corollary. Let % <a<landt>0. Let X be as in Theorem 1 with autocovariance

function R and canonical representation kernel F'. Then

Q(T,t)—Q(oo,t)N(/OtF(s)ds)zx/Qj{%}Qdu (T = o0). (L7
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Recently, the authors obtained similar results for the stationary processes with

autocovariance function R of the form
R(t) = / h e Pad))  (teR),
0
where o is a finite Borel measure on (0, 00). There, we assume that
R(t) ~ t7PL(t) (t — o0)

with 0 < p < oo and ¢ slowly varying. It is perhaps surprising that the asymptotic
relation (1.7) still holds as it is even for the case p > 1 there. The proofs are quite
different from that of the present paper. The detail will appear elsewhere. The
first author also obtained relevant results for the partial autocorrelation functions of

stationary time series ([4]).

2. PROOF OF THEOREM 1

In the proof below, we apply the theory of strings, due to M. G. Krein, as
described in [3]. The key is to use Rule 6.9.4 in [3, p. 268].

Step 1. Recall 3 < a <1 and ¢ from (1.1). We write m for the function

2
c
__ - (1-a)/«a <
m(z) : a(l—a)x (0 <z < o0).
The purpose of this step is to obtain the functions A, B, C', D, K and the measure
dA associated with the string specified by m; see [3, Ch. 5] for background.

For z € C, we consider the following differential equation

82

— A —_ 2A !

52 (z,2) 22 A(z, z)m/(x) (0 <z < 00),
A0+, 2) =1, gA(O—i—,z) = 0.

ox

The solution to the above is given by

1

- } 22 J_o(2c2w2) (0 <z < 00),

Az, 2) = w{

where J, is the Bessel function of the first kind ([6, 3.1]).
We set, as in [3, p. 172],

C(z,2) = Az, 2) /Ox{A(y,z)}_Qdy (0 <z < o0, Sz#0).

sin(ar)

Since

#(m) ' % {J{aa(?gc))} - xJ_i(x)Z
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(cf. [6, 5.11(1)]), we have

am d | J,(2czae) B 1
sin(ar) dr | J_,(2cza) 2 J_o(2czx70)2
This and the asymptotic representation

T~ (3) ﬁ (= 04) (2.1)

(see [6, 3.12]) give
« % 1 1
N S —r3 J (2czx3a Q) .
C(z,2) {sin(om)} 27 %2 J,(2cza2a) (0 <z <00, Jz#0)

As usual, we write HS" for the Bessel function of the third kind ([6, 3.6]). Let
the function D be as in [3, §5.4]. By [3, p. 175], [6, 3.6(2)], and the asymptotic

representations

T, (2) = (72/2) 7% [cos {z — ir(1+ )} + O(z))] (2] — o0), (2.2)
HO(2) ~ (r2/2) Z expli{z — 1n(1+20)}]  (|2] — o) (2.3)
(see [6, 7.2]), we have, for Sz # 0,
. C(z,2) 1 o 1 Jo(2cz27)
D(0,z) = xh_{glo Az, =) = xh_)rglo —J,a(chxi)

=7 127 lim {em” - isin(aﬂ)w}
T—00 J_o(2czx3a)
=1 'z exp{iar - sgn(3Jz)}.
Therefore, by [3, p. 175] and [6, 3.7(2)], we obtain, for 0 < x < co and Iz # 0,
D(z,z) = D(0,2)A(z, 2) — C(z, 2)

1

2
— { « } Z—Oéx% [eXp{ionr . Sgn(%z)}J_a(2czx%) _ Ja(QCZx%)]

sin(am)

or, by [6, 3.6(2)],
Di.2) = { i{a sin(om)}%z’o‘x%H(,lc),(2czm2a) (Sz > 0),
—i{a sin(om)}%z’ax%H(_Q;(chxi) (Sz < 0).
In particular, by [6, 3.7(8)],

D(z,i) = %{asm(aw)}éx%z{a(zm%) (0 < 2 < o). (2.4)



Recall p from (1.2). We write dA for the measure (1 + 7?)du(y) on R:

sin(am), 4 _on
dA(y) = ———= | *dy.
By simple calculation, we obtain
/OO L dy = S exp{iam - sgn(¥z)} (Sz #0)
0o 72— 22 2sin(am) '

Therefore

D(0,z2) = 7T/_ A80) (Sz #0).

V-2

See [3, §5.5] for the implication of this equality.
As in Rule 6.9.4 in [3, p. 268], we set

D(x,1)

K(z) = ~@D/on)=.0) (x> 0).
By (2.4) and [6, 3.71(6)], we have
%—l;(x,z) = —j—C{QSIH(OHT)}Z.I 2 Ky _o(2em2%)

and hence
L K_o(2cx7
K(z)= c_laxl_%w (0 <z < 00).
Ki_o(2cx2a)

Let B asin [3, §5.7]. Then it follows from [6, 3.2] that, for 0 < z < co and v € R,

1 a 1 l1—a 1
B(l‘,’y) = _58_14(‘% ’7) C7T{Oz Sin(om)}_iyo‘xwJl_a(Qny%),

Step 2. Recall T > 0,¢t > 0and T} =T +t. By [3, §6.10] and Rule 6.9.4 in [3,

p. 268] applied to the string specified by m, we obtain

Q(T7 t) = Qeven (T7 t) + Qodd<T7 t)7

where
Qeven(T', ) w/oo E /OOO cos(v11) {A(y,v) — 7K (y)B(y,7)} fﬁ%lr
Qoda (T, t) w/oo E /OOO sin(v1h) {vA(y,7) + K(y)B(y,7)} fﬁ<zz}2dm(y)
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with T = [7{m/(y)}'/?dy, or « = {T/(2¢)}**. By change of variables s = 2cy, we

have

23111 (am ds
even T t I sK_ (s5)2’
Qeven ( - / {1 ( )} SK_o(s)?
2 sin(a) ds
oda(T,t) = ——~——2 I I — g
Qua(T.t) = 2 [T (s) = Loy =
where
00 -«
v
[ = K _a T J d )
1(s) == sK; (5)/0 cos(y11) <87)1+’Y v
00 ,}/2 a
I(s) = sKa(s)/O COS(”YTl)Jlfa@’Y)l _i_,YQd%
00 2—«
I3(s) == sKy_q(s) /0 Sin(VTﬁJ—a(”)lVTy?d%
00 l1—a
Iy(s) == SK_a(s)/O sin(y11)J1—a(57) 17+7 dy.
Step 5. Recall the constant d from (1.1). In this step, we show that Qeven(T7) =
d-Q(T,1).

We first note that I; —I5 is continuous on (0, c0) by the asymptotic representations
(2.1) and (2.2). By [5, p. 68], (13.19), we have

o] v+1
/ 1x+ 5Ju(ax) cos(wy)dy = cosh(y) K, (a) (y<a, —1<v<3),
0 x

so that I1(s) — Ix(s) = 0 for s > T} hence for s > T3 by continuity.
The calculation of I;(s) — Ix(s) for T < s < T} is more tricky. By

d « _ « d 11—« _ 1«
ot a(2)} =~ isa(z), A T ima(2)} = 2 (),

d «@ _ «@ d -« _ 11—«
LK @)} = =K afe), e TR (o)} = R ()

(see [6, 3.2 and 3.71]), we have

%{Il(s) —L(s)} = —sK_,(s) /000 cos(YT )Y~ *J_a(s7)dy (T < s <Th).

In fact, by (2.2) and the second integral mean-value theorem ([7, §4.14]), the improper
integral on the right-hand side converges uniformly in s on each compact subset of
(T, T1), whence we may interchange the derivative and the integral. Now the above

equality and (13.13) in [5, p. 67] give
21 7T2T1 1 o

0
%{[1(5) —Iy(s)} = _1—\(71

a—3)

(T? = $2)* 2K _o(s)



for T' < s < T}, and so we have
2170‘7T%T1
L(a—3)
Thus Qeven(T,t) =d - Q1(T,1).
Step 4. We show that Qoqq(T,t) = d- Qo(T,t). The proof is quite analogous to that

for Qeven in Step 3. First, I3 — I, is continuous on (0, 00). Next, since

Li(s) — I(s) = / 1 ut(TE — UQ)Q_%K_a(u)du (T <s<Th).

/ T f_ . J,(az) sin(xy)dy = sinh(y) K, (a) (y<a, —1<v< g)
0

(see [5, p. 166], (13.20)), I3— I, vanishes on [T}, 00). Finally, it follows from [5, p. 164],
(13.9) that, for T' < s < 11,

L) ~ L(s)) = ~sKr_als) / ST a(s7)dn

2!-ons 2—a (2 _ 2ya—3
— _F(T—%)S (T{ — s°)* 2 K1 _,(9),
and so
2izops (T 2—a (2 2\a—3
Ia(s) — Iu(s) = F(7_%)/ V(T2 — 23, o (wdu (T < s < T)).
Thus Qoaa(T,t) = d - Q2(T,1). O

3. PROOF OF (1.3)

Let o and X be as in Theorem 1, and let R be the autocovariance function of X.
We set

2

x
o) =1
Then, for t > 0,
2 i 0 A 12« t 2 qi t20<—2 [e'¢)
R(t) = sm(om)/ ol COSQ(")/ )dv _ sin(ar) / () () .
m 0 147 s 0
Choose § > 0 such that 0 < min(2 — 2a, 2a — 1). Then the improper integrals

1 00—
/ t0k(x)dx, / 2 k(z)dx
0+ 1

exist. Therefore, by the Bojanic-Karamata theorem (cf. Bingham et al. [2, Th. 4.1.5]),

/0 " k(@) 0(at)dz — /0 f_ Ka)de  (t— oo).

k(x) := 2?3 cos(1/x) (0 <z < 00).

Since

T ke = [ e cosade = -
/o+ (v)de /0 v coswar 2sin(am)I'(2a — 1)’



8

(1.3) follows.

4. PROOF OF THEOREM 2

Step 1. First we consider Q1(T,t). By change of variables s’ = s - T, v’ =u —T,

we obtain
Ql(Ta t) _ 22a—3 /t ds (T + t)2 :
0 T+ 9)iK (T 9]

X Ut<T+u)éKa<T+u)(T+u LT+ L)} (- w) B du
By ’Zhe asymptotic representation
23K, (2) = (n/2)7e " {1+ L2 — 1)zt + 0z ")} (v — o0)
(see [6, 7.23]), we have, as T" — o0,
(T +u)3 K oT +u) = (r/2)7¢ T {1+ L4 = )T~ + O(T2)}.
This, together with
1+ 2P =1+pr+0(z*)  (z— 0+4),
gives
(T4 )2 K_o(T + u)(T + 1) {T+it+ u)}a_%
= (7?/2)%e_T_“T_
x [T+ {34’ -1+ (G -a)ut+ila=2)t+u)}T " +0(T?)]
= (W/Q)%e*T*qul
x[1+3{(a® =) =20+ (a+Ht—-w)}T " +0(T7?)].

Hence, as T' — o0,
2

[/:(T Fu)2 K o(T +u)(T +u)>{T + Lt + u)}* 3 (t — u)a_%du}

7T€_2(t+T) (/t—s 5 )2 ( t—s 4
e — u* 2edu | + / uo‘ie“du)
272 0 0
(/ {(a®=1) =2t + (a+ d)u} ua%e“du) T'+ O(TZ)] :
Similarly, we have
(T +1t)? 272> T+s)

- [1+{2t— (> =D} T +0(T?)].

(T + 8)K_o(T + s)? 7r



Combining, we obtain

(T + t)?
(T+3)K_o(T +5)2

2

x |:/:(T+ W) Ko (T +u)(T + )5 {T+ Lt +u)}* 2 (¢ — u)o‘_gdu]

t—s 2
3
— e_Q(t_S) (/ uo‘_ie“du)
0
t—s t—s
+ (a+ %)e‘Q(t_s) </ ua_%e“du) (/ uo‘_%e“du) T+ 0(T7?).
0 0

Thus
Q1(T,t) =22 Jo(t) + 2P (a+ HLOT ' +O0(T?) (T — o0) (4.2)

with

t s 2
Jo(t) :== / e % (/ uage“du) ds,
0 0
t s 3 s )
Ji(t) == / e % (/ ua2e“du) (/ u“?e“du) ds.
0 0 0

Step 2. Next we consider Q2(T,t). By change of variables s = s —T, v =u —T,

we obtain

1

QQ(T’ t) B 22a_3/0 ds{(T+ S)%Klfaaj_'_ S)}2

X [/t(T ) K o(T 4 u) (T + w) i T+ 2t +w) Y% (¢ — ) Sdu
By (4.1), we have, as T" — o0,
(T +w) 3Ky o(T +u) = (7/2)7e 7" [1 + H{4(1 — a)? = 13T+ O(T?)] .
Therefore,

(T +u)2 Ky o(T +u)(T +u)2 {T+%(t+u)}a_%
~ (/e T
x 1+ {1l-a)-1+(a=3)t-—w}T"+0(T7?)].
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Hence, as T' — o0,

[/:(T )T Ky (T + u)(T 4+ u) 2T + 3(t +u)}* 3 (t — u)o‘_%du] ’

—2(t+7T) t—s 5 2 t—s s
_re (/ ua_ie“du) + (/ ua_ie“du)
2 0 0
t—s
X (/ {1-a) =1+ (a—3)u} u“%“du) T '+ O(TQ)] :
0

Similarly, we have

1 9e2(T+s) o |
Tk mise - - G- l-af =T+ o).
Combining, we obtain
1

(T 4 s)K1_o(T + 5)?

2
_3
2

X {/t<T+U)§K1a(T+u)(T+u)§a (T4 14w} 2 (¢ — 0 ddu

t—s 2
= ¢ 2(t—s) (/ u"“%”du)
0
t—s 5 t—s )
+ (o — %)6_2(t_8) (/ ua_ie“du) (/ uo‘_ie”du) T4+ 0(T™?).
0 0

Thus
Qa(T,t) =222 Jo(t) + 2P (a = DI MOT ' +O0(T?) (T — o0). (4.3)

Step 3. Since Q(T,t) | Q(oo,t) as T — oo, it follows from (4.2) and (4.3) that
2sin(ar) [t ., $ o3 2
Q(o0,t) = 7/ e’ / u*"2e%du | ds 4.4
I'(a - %)2 0 0 (44)

(2cc — 1) sin(am)
(o — 1)2

2

and that

Q(Tv t) - Q(Oo7t) =

LT +0(T7?). (T — ).

It remains to show that
2

(2a — 1)Jy(t) = ( /0 t sa—%es—tds) . (4.5)

Integrating by parts, we have

S S
3 1 1
(a—%)/ u* zetdu = s* 263—/ u* ze'du.
0 0
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Hence the left-hand side of (4.5) is equal to 2{Js(t) — J5(¢)}, where

:/ s (/ o ée“du) e %%ds,
0
2
/e (/ o 2e“du) ds.
0 0
2

J(t)—/ti ! / “3etd 2 e — & /t e lds |+ Js(t)
2 — OdS 9 Ou e au 8—2 OS € S 3 )

and so (4.5) follows. O

However

5. PROOF OF COROLLARY

JFrom (1.3), we see that

O
So
oT fjuR(S)dS 2 2 . '

Recall f and h from (1.4) and (1.5). By applying Exercises 2.3.4 and 2.7.2 of [3]
to the rational functions 1/(1 —i¢) and —i¢/(1 — i¢)?, we obtain

L[ [Tl e
1—Z'C_exp{2ﬂ'i/;oofy—< 1_|_,-}/2 dry (‘S<>O)7

= exp{ 1 /°° 1+9¢ log(72>d7} (S¢ > 0)

2mi J_o v —C 14792
(note that both 1/(1 —i¢) and —i( are positive on the upper imaginary axis). There-

fore

h(C) _ {sin(om) }2 (—1716);{0[ (%C > 0) (52)

We set

G(t) = %/ﬂ "t 2 s (0 <t < o0).

Then, by (5.2) and (1.6), we have

S

(—i¢)z

(2m) "3 /O G dt = {Sm(o‘”)} 1'_ ;C
_ ;/OO it
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Hence F' = G, and so
t 94i 1 t
/0 F(s)ds = ({ Si’“(M)}Z) /0 er~ts*hds, (5.3)

a—3)(a—3

This, together with Theorem 2 and (5.1), gives the corollary. O
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