
RATIO MERCERIAN AND TAUBERIAN THEOREMS

AKIHIKO INOUE

1. Introduction

This lecture1 reviews the work on the title, mostly done jointly with Nick Bing-

ham.
We start with a rough description of the developments of the work. In 1995 when

I was visiting London, Nick and I succeeded in proving a Mercerian2 theorem for
Fourier cosine and sine transforms ([BI1]). In the course of our efforts to prove it,

we found a theorem of B. I. Korenblum [K1, K2] on Beurling algebras very useful.
His theorem has played an important role in this and subsequent work of ours.

Fourier cosine and sine transforms are Hankel transforms of order −1/2 and
1/2, respectively. In 1996, while trying to extend the result of [BI1] to that for

Hankel transforms of arbitrary order ν ≥ −1/2, we found a useful method, which
we call a localization method . Though it was simple, the output was large. Indeed,

by the method, we could prove the desired Mercerian theorem for Hankel trans-
forms ([BI3]). Moreover, the method enabled us to free the Mercerian theorem for

absolutely convergent integral transforms, due to Drasin, Shea and Jordan, from
unnecessary conditions ([BI4]). Also in [BI3], we introduced the notion of Ratio

Mercerian Theorem, which we thought was worth formulating. All of these results

are of Mercerian type.
In 1999, we took interest in some problems in analytic number theory. What we

wanted to do was to prove Tauberian3 theorems for some arithmetic sums. When
we were trying to do so, we had a revelation that the Ratio Mercerian Theorem,

if extended suitably to that for systems of kernels, would supply us with a new
and powerful method to prove Tauberian theorems (not only for arithmetic sums).

Indeed, by the method, we could prove a Tauberian theorem for a wide class
of integral transforms with nonnegative kernels, under the same weak Tauberian

conditions as in that for Laplace transforms ([BI5]). Tauberian conditions are
assumptions in Tauberian theorems to be checked, whence the weaker, the better.

We remark that Karamata’s4 Tauberian theorem for Laplace transforms is regarded
as a prototype of Tauberian theorems. In [BI5], we could also extend de Haan’s

Tauberian theorem for Laplace transforms (which deals with a boundary case) to
a class of integral transforms. Before our work, such theorems had been known

only for sporadic examples of integral transforms. In [BI6], using the results of

[BI5] as well as the idea to use a system of kernels itself, we could prove the desired
Tauberian theorems for the arithmetic sums. See A. Ivić [Iv] for the review of this

and related work in analytic number theory.
As stated above, the aim of this lecture is to review the work described above

but, in the rest of this section, we explain what Abelian, Tauberian and Mercerian
1
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theorems are, in the framework of Hardy–Littlewood–Karamata or that of regular
variation.

First we recall the notion of regular variation due to Karamata. A positive
measurable function f : [X,∞) → (0,∞), defined on a neighborhood [X,∞) of

infinity, is regularly varying with index ρ (∈ R), or f ∈ Rρ, if the following holds5：

∀λ > 0, lim
x→∞

f(λx)

f(x)
= λρ.(1.1)

In particular, a function belonging to R0, that is, a regularly varying function with

index 0, is said to be slowly varying . Usually, a slowly varying function is denoted
such as �(·) or L(·)6. Thus, in this paper, if we write �(·), then we mean that it is

a slowly varying function. It is easy to see the following equivalence:

f ∈ Rρ ⇐⇒ f(x) ∼ xρ�(x) (x → ∞) for some � ∈ R0,

where f(x) ∼ g(x) implies f(x)/g(x) → 1. Roughly speaking, a function f ∈ Rρ

has an asymptotic behavior close to xρ.

Example. Positive constants, log x and log log x are slowly varying functions,

while x2 and x2 log x are regularly varying with index 2.

To explain basic notions, it would be perhaps the best to use the simplest integral

transforms, that is, arithmetic means. Let f be a real-valued function in L1
loc[0,∞).

In the case of arithmetic means, we assume that ρ ∈ (−1,∞). Then

f(x) ∼ xρ�(x) (x → ∞)(1.2)

implies

1

x

∫ x

0

f(t)dt ∼ xρ�(x)
1

ρ + 1
(x → ∞).(1.3)

The converse does not necessarily hold. However, if f satisfies a so-called Tauberian
condition (such as monotonicity), then (1.3) implies (1.2). The assertion (1.2)

⇒ (1.3) is called an Abelian theorem, while its partial converse (1.3) + (Tauber
condition on f) ⇒ (1.2) a Tauberian theorem.

Now, combining (1.2) and (1.3), we soon notice the following asymptotic relation:

1

x

∫ x

0

f(t)dt ∼ Cf(x) (x → ∞)(1.4)

with C = 1/(1 + ρ). Interestingly, this happens only when f is regularly varying,
that is, f and its arithmetic mean have the same asymptotic behavior (if and) only

if f satisfies (1.2) for some ρ > −1 and �(·) ∈ R0. More precisely, if (1.4) holds
for some C ∈ (0,∞), then we have f ∈ Rρ with C = 1/(ρ + 1) (Karamata, 1930).

This assertion is called a Mercerian theorem. We refer to Bingham et al. [BGT,

Chapter 1] for the proofs of these Abelian, Tauberian and Mercerian theorems for
arithmetic means.

It is easy to understand the importance of Tauberian theorems since they have
many applications in various fields of mathematics7. On the other hand, at this

stage, the importance of Mercerian theorems is not so clear; they look like only
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telling us that regular variation is not only sufficient but also necessary for Abel–
Tauber theorems to hold. However, this lecture will lay emphasis on the usefulness

of Mercerian viewpoints.
Abelian, Tauberian and Mercerian theorems similar to the above also hold for

Laplace transforms8. From the viewpoint of application, it is desirable to be able to
prove similar results for various integral transforms. To deal with general integral

transforms, it is useful to use the Mellin convolution notation9. In fact, it has been
more than useful to us since it led us to several unexpected discoveries.

For measurable functions f, g : (0,∞) → R, we define the Mellin convolution

f ∗ g by the following integral10:

f ∗ g(x) :=

∫ ∞

0

f(x/t)g(t)dt/t (x > 0).

Example. For the arithmetic mean, we have x−1
∫ x

0
f(t)dt = k∗f(x) with k(x) :=

x−1I(1,∞)(x). For the Laplace transform, we have

x−1

∫ ∞

0

e−t/xf(t)dt = k ∗ f(x)

with k(x) := x−1e−1/x. Notice that the integral on the left-hand side is the Laplace
transform with x replaced by x−1.

For given measurable function k : (0,∞) → R, we define its Mellin transform

ǩ(z) by

ǩ(z) :=

∫ ∞

0

t−zk(t)dt/t

for z ∈ C for which the integral converges11.

Example. For the integral kernel k(x) = x−1I(1,∞)(x) for arithmetic means, we

have ǩ(z) = 1/(1 + z) (
z > −1). Notice that we have already seen the same
function in (1.3). For the kernel k(x) = x−1e−1/x for Laplace transforms, we have

ǩ(z) = Γ(1 + z) (
z > −1).

The asymptotic behavior (1.2) implies, at least formally,

k ∗ f(x)

f(x)
=

∫ ∞

0

f(x/t)

f(t)
k(t)dt/t →

∫ ∞

0

t−ρk(t)dt/t = ǩ(ρ) (x → ∞),

whence

k ∗ f(x) ∼ xρ�(x)ǩ(ρ) (x → ∞).(1.5)

For the integral transform k ∗ f , we may regard the implication (1.2) ⇒ (1.5) as
Abelian and (1.5) + (Tauber condition on f) ⇒ (1.2) Tauberian. The Mercerian

assertion may be stated in the following way: if

k ∗ f(x) ∼ Cf(x) (x → ∞)(1.6)

for some C �= 0, then f ∈ Rρ for ρ ∈ R with C = ǩ(ρ). Of course, these assertions

may turn out to be untrue as the case may be.
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2. Ratio Mercerian Theorem

In this section, we explain the Ratio Mercerian Theorem introduced in [BI3].

Since the statement of [BI3, Theorem 3] contained an error (cf. Remark in [BI5,
Section 3]), here we show the version corrected (and improved) in [BI5].

For a positive function f : [X,∞) → (0,∞), we define its upper order ρ(f) by

ρ(f) := lim sup
t→∞

log f(t)

log t
.

Recall from Section 1 that the class Rρ is the class of measurable f regularly

varying with index ρ. If f ∈ Rρ, then ρ(f) = ρ. So, for a function f for which we
wish to show f ∈ Rρ, we can use the upper order ρ(f) as a tentative alternative

to ρ.
The Ratio Mercerian Theorem is roughly the following assertion (see Theorem

5.1 below with #Λ = 1 for precise statement):

Theorem 2.1 (Ratio Mercerian Theorem, [BI3, BI5]). Under some suitable con-

ditions on the integral kernels k1 and k2 as well as on the function f ,

k2 ∗ f(x)

k1 ∗ f(x)
→ C �= 0 (x → ∞)(2.1)

implies C = ǩ2(ρ)/ǩ1(ρ) and f ∈ Rρ, where ρ is the upper order of f .

We put

k0(t) := ǩ1(ρ)k2(t) − ǩ2(ρ)k1(t) (0 < t < ∞).(2.2)

Two key assumptions of Theorem 2.1 are as follows: for some σ ∈ R and ε ∈ (0,∞)
such that σ − ε < ρ < σ + ε,{

ρ is the unique zero of ǩ0(z) = ǩ1(ρ)ǩ2(z) − ǩ2(ρ)ǩ1(z)

in the strip σ − ε ≤ 
z ≤ σ + ε;
(2.3)

exp

(
−π|t|

2ε

)
log |ǩ0(σ + it)| → 0 (t → ±∞).(2.4)

Notice that, formally, f ∈ Rρ implies (2.1) with C = ǩ2(ρ)/ǩ1(ρ) by Abelian
theorem. Thus the Ratio Mercerian Theorem (Theorem 2.1) asserts the converse

implication.
There are two keys to the proof of Theorem 2.1; one is the localization method

and the other is Korenblum’s theorem.
First we explain the localization method. We define two functions E1 and E2 by

E1(x) := I(1,∞)(x)xσ−ε, E2(x) := I(0,1)(x)xσ+ε (0 < x < ∞),

and we set h(x) := E2 ∗ E1 ∗ f(x). Then, from the two different representations

h(x) = xσ−ε

∫ x

0

(E2 ∗ f)(t)dt/t1+σ−ε = xσ+ε

∫ ∞

x

(E1 ∗ f)(t)dt/t1+σ+ε

for h, we see that x−σ+εh(x) is increasing and x−σ−εh(x) is decreasing (here f is

assumed to be nonnegative). From this observation, we obtain the following key

estimate:

h(ux)/h(x) ≤ max(uσ−ε, uσ+ε) (0 < u < ∞, 0 < x < ∞).(2.5)
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Now, by (2.1), we can show that E2∗E1∗k2∗f(x)/E2∗E1∗k1∗f(x) → C (x → ∞)
or

k2 ∗ h(x)

k1 ∗ h(x)
→ C �= 0 (x → ∞).(2.6)

Since h = E2 ∗E1 ∗f ∈ Rρ implies f ∈ Rρ by a simple Tauberian argument, we see

from (2.6) that our problem is reduced to that for h from that for f . The advantage
here is that h satisfies the good estimate (2.5) which we can never expect to hold

for f . The localization method is the method that reduces the problem for f to
that for E2 ∗ E1 ∗ f in this way12. It actually localizes the domain, on which we

must consider the behavior of the Mellin transform (ǩ0 in this case), to the strip
σ − ε ≤ 
z ≤ σ + ε.

Next we turn to Korenblum’s theorem. To state it, we put, for α > 0,

L(α) := L1(R, eα|x|dx).

Then L(α) becomes a commutative Banach algebra with respect to the usual

convolution. For K ∈ L(α), we define its Fourier transform K̂ by

K̂(z) :=
1√
2π

∫ ∞

−∞
e−ixzK(x)dx (|�z| ≤ α).

The function K̂(z) is holomorphic in |�z| < α.

Here is Korenblum’s theorem13 that we use.

Theorem (Korenblum, [K1, K2]). Let I be a closed ideal of L(α). We assume

that z0 is the unique common zero of K̂(z), K ∈ I, in |�z| ≤ α and that z0 is an

inner point, i.e., |�z| < α. We further assume that

sup
K∈I

lim sup
x→∞

log |K̂(x)|
exp(πx/2α)

= sup
K∈I

lim sup
x→−∞

log |K̂(x)|
exp(−πx/2α)

= 0.

Let n0 be the minimum of the orders of the zero point z0 for K̂(z), K ∈ I. Then
I is described in the following way:

I = {K ∈ L(α) : z0 is a zero of K̂ of at least order n0.}
We explain how Korenblum’s theorem is used in our argument. As stated above,

our problem is reduced to showing h ∈ Rρ, that is, h(ux)/h(x) → uρ as x → ∞ for

all u > 0. To do that, we may show that any sequence xn ↑ ∞ has a subsequence
xn′ satisfying h(uxn′)/h(xn′) → uρ (∀u > 0). However, by the Helly selection

principle, we can choose a subsequence (xn′) such that h(uxn′)/h(xn′) converges to
a function, say, j(u). Therefore we may show that j(u) = uρ. From (2.5), (2.6) and

the equality C = ǩ2(ρ)/ǩ1(ρ) (which can be shown easily by a standard method),
we see that j(·) is a solution to the following linear integral equation：

k0 ∗ j(x) = 0 (0 < x < ∞),(2.7)

where k0 is the integral kernel defined by (2.2). Now, from the definition of k0, we
see the equality ǩ0(ρ) = 0, which implies that uρ is a solution to (2.7). Moreover,

we easily see that j(1) = 1. Thus the problem is reduced to showing that the
general solution to (2.7) is of the form const.× uρ. Korenblum’s theorem does the

job, and, in so doing, the conditions (2.3) and (2.4) are required.
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As an application of the Ratio Mercerian Theorem (Theorem 2.1), we show the
next Mercerian theorem for cosine transforms14.

Theorem 2.2 ([BI1, BI3]). Let f ∈ L1
loc[0,∞). We assume that f(t) is eventually

decreasing to 0 as t → ∞. Let Fc it its Fourier cosine transform：

Fc(x) :=

∫ ∞−

0

f(t) cos txdt (0 < x < ∞).

If
∫ ∞
0

f(t)dt �= 0 and

x−1Fc(1/x) ∼ Cf(x) (x → ∞)(2.8)

for some constant C such that C �= 0,
√

π/2, then we have C > 0 and f ∈ Rρ,

where ρ is the unique solution on (−1, 0) to the equation Γ(1 + ρ) sin(−1
2
πρ) = C.

In the theorem above,
∫ ∞−
0

denotes the improper integral limM→∞
∫ M

0
. Since

f ↓ 0, the integral converges 15. We cannot drop the assumption C �= √
π/2 (which

corresponds to the case ρ = −1
2
); see [BI1, §7].

We outline the proof of Theorem 2.2. To write the integral transform in the
Mellin convolution form, we put k(x) := x−1 cos(1/x). Then we can write (2.8) as

k ∗ f(x)/f(x) → C (x → ∞).

If we put B(x) := e−x, then (2.9) implies B ∗ k ∗ f(x)/B ∗ f(x) → C, that is,

D ∗ f(x)/B ∗ f(x) → C (x → ∞),(2.9)

where D(x) := B ∗ k(x) = x/(1 + x2). The advantage here is that the integrals
D ∗ f and B ∗ f in (2.9) converge absolutely. Thus, by taking Laplace transforms,

the original Mercerian problem for conditionally convergent integrals has been con-
verted into a problem of ratio Mercerian type for absolutely convergent integrals.

By applying the Ratio Mercerian Theorem, we obtain the desired result.

3. Ratio Mercerian Theorem for systems of kernels with
application to Tauberian theorems

In this section, we show a new method to prove Tauberian theorems. It is based
on the Ratio Mercerian Theorem for systems ([BI5]).

The Tauberian theorem that we want to prove now is the implication (1.5) ⇒
(1.2) under suitable conditions on k and f . Now we easily see that, for λ > 1,
(1.5) implies

k ∗ f(λx)

k ∗ f(x)
→ λρ (x → ∞),

or

k2
λ ∗ f(x)

k1 ∗ f(x)
→ λρ (x → ∞),(3.1)

where

k1(x) := k(x), k2
λ(x) := k(λx) (0 < x < ∞).

This is the same setting as (2.1), and it seems to be a very attractive idea to apply

the Ratio Mercerian Theorem to show f ∈ Rρ. If we could do this, then we obtain
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(1.2) easily by Abelian theorem. However, we soon realize that there is a problem.
Since we have

ǩ1(ρ)ǩ2
λ(z) − ǩ2

λ(ρ)ǩ1(z) = (λz − λρ)ǩ(ρ)ǩ(z),(3.2)

the function on the right-hand side, whence on the left-hand side, has infinitely
many zeros z = ρ + i(2nπ/ log λ) (n = ±1,±2, · · · ), other than z = ρ, on the

vertical line 
z = ρ, whence in any vertical strip σ − ε ≤ 
z ≤ σ + ε such that
ρ ∈ (σ − ε, σ + ε). Thus the key condition (2.3) does not hold at all.

In [BI5], we introduced a technique to overcome this trouble. It is to consider
not a single λ but more than one λ’s. To see this roughly, choose λ1 > 1 and

λ2 > 1 so that log λ2/ log λ1 is irrational, e.g., λ1 = 2 and λ2 = 3. Then we have

{ρ + i(2πn/ log λ1) : z ∈ Z} ∩ {ρ + i(2πn/ log λ2) : z ∈ Z} = {ρ}.
This suggests the following: if we could extend the Ratio Mercerian Theorem (The-

orem 2.1) to that for systems of integral transforms, then we would be able to prove
the desired Tauberian implication (1.5) ⇒ (1.2) by following the plan above.

In effect, we could prove the next Ratio Tauberian Theorem for systems almost
in parallel with the proof of Theorem 2.1.

Theorem 3.1 (Ratio Mercerian Theorem for Systems, [BI5]). Under suitable con-
ditions on the family of integral kernels ki

λ (i = 1, 2, λ ∈ Λ) as well as on the

function f ,

∀λ ∈ Λ,
k2

λ ∗ f(x)

k1
λ ∗ f(x)

→ Cλ �= 0 (x → ∞)(3.3)

implies Cλ = ǩ2
λ(ρ)/ǩ1

λ(ρ) (λ ∈ Λ) and f ∈ Rρ, where ρ is the upper order of f .

We put

k0
λ(t) := ǩ1

λ(ρ)k2
λ(t) − ǩ2

λ(ρ)k1
λ(t) (0 < t < ∞, λ ∈ Λ).(3.4)

The assumptions (2.3) and (2.4) of Theorem 2.1 must be replaced in Theorem 3.1
by the following ones, respectively: for some σ ∈ R and ε ∈ (0,∞) such that

σ − ε < ρ < σ + ε,{
ρ is the unique common zero of ǩ0

λ(z) = ǩ1
λ(ρ)ǩ2

λ(z) − ǩ2
λ(ρ)ǩ1

λ(z)

(λ ∈ Λ) in the strip σ − ε ≤ 
z ≤ σ + ε;
(3.5)

∀λ ∈ Λ, exp

(
−π|t|

2ε

)
log |ǩ0

λ(σ + it)| → 0 (t → ±∞).(3.6)

Using Theorem 3.1, we can prove the following Tauberian theorem (see Theorem

5.2 below with #Λ = 1 for precise statement):

Theorem 3.2 (Tauberian theorem for nonnegative kernels, [BI5]). If the kernel k

satisfies Korenblum’s conditions, then (1.5) implies (1.2) under the same weak
Tauberian conditions on f as in the Tauberian theorem for arithmetic means.

The point of Theorem 3.2 is that it holds under weak Tauberian conditions.
This is useful in applications. We remark that the conditions on k in Theorem 3.2

is of the type that usually holds. In particular, Theorem 3.2 includes Karamata’s
Tauberian theorem for Laplace transforms.

As an application of Theorem 3.2, we have the next theorem.
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Theorem 3.3 (Tauberian theorem for arithmetic sums (I), [BI6]). Let ρ > 0. For
f : [2,∞) → [0,∞), (1.2) implies

∑
n≤x

∑
p|n

f(p) ∼ xρ�(x)

log x
· ζ(1 + ρ)

1 + ρ
(x → ∞).(3.7)

Conversely, if f is increasing, then (3.7) implies (1.2).

In Theorem 3.3, p denotes a prime. The Abelian implication (1.2) ⇒ (3.7) is due
to De Koninck and Ivić [DI]. We explain the motivation to consider the arithmetic

sum ∑
n≤x

∑
p|n

f(p).

In analytic number theory, we are sometimes concerned with the asymptotic be-

havior of a function of the form g(n) :=
∑

p|n f(p). For example, if f(x) ≡ 1, then

g(n) is the number of prime factors of n (see the remark just after Theorem 4.2
below). In Theorem 3.3, we consider the asymptotic behavior of its arithmetic

mean, rather than g(n) itself, which is easier to handle. In the proof of Theorem
3.3, we take I(1,∞)(x)[x]/x as the integral kernel k17.

4. Tauberian theorems of de Haan type

As we have seen in Section 1, if ρ > −1, then we can characterize the asymptotic

behavior (1.2) of a monotone function f in terms of its arithmetic mean. It would

be natural to ask if we can do the same thing in the boundary case ρ = −1. The
answer is yes but, to do that, we need the notion of π-variation due to de Haan

(cf. [BGT, Chapter 3]).

Definition (π-variation). Let � ∈ R0 and c ∈ R, and let g : [X,∞) → R be a
measurable function. Then g is said to be in Π� with �-index c if

∀λ > 1, lim
x→∞

g(λx) − g(x)

�(x)
= c log λ.

Example. For �(x) ≡ 1, log x ∈ Π� with �-index 1. For, log(λx) − log x = log λ.
For general �, we can produce many examples by the assertion (4.1) ⇒ (4.2) below.

Here is the characterization of (1.2) with ρ = −1 in terms of the arithmetic

mean of f .

Theorem (de Haan [H]). Let f ∈ L1
loc[0,∞). Then

f(x) ∼ x−1�(x) (x → ∞)(4.1)

implies ∫ x

0
f(t)dt ∈ Π� with �-index 1.(4.2)

Conversely, if f satisfies a suitable Tauberian condition (such as monotonicity),

then (4.2) implies (4.1).



RATIO MERCERIAN AND TAUBERIAN THEOREMS 9

De Haan [H] proved a similar result for Laplace transforms (cf. [BGT, Theorem
3.9.1]). Similar results also hold for Fourier series and integrals as well as for Hankel

transforms18. Thus we may think that, for at least basic integral transforms, π-
variation naturally appears in Tauberian theorems in the boundary case. The

proofs of these results, however, have been based on special properties of the
special integral transforms, whence the mechanism behind them was unclear. Also

it was difficult to prove similar results for general integral transforms.
The Ratio Mercerian Theorem for Systems (Theorem 3.1) enables us to prove

such general results. It turns out that the key condition is described in terms of a

pole of the Mellin transform ǩ(z).

Theorem 4.1 (Tauberian theorem of de Haan type, [BI5]). Let k be a kernel sat-
isfying Korenblum’s conditions. We assume suitable conditions on k and f . In

particular, we assume that z = ρ (∈ R) is a simple pole of the analytic contin-
uation of the Mellin transform ǩ(z). We also assume that f satisfies a suitable

Tauberian condition. Then, in the below, (4.4) implies (4.3):

f(x) ∼ xρ�(x) (x → ∞),(4.3)

x−ρ(k ∗ f)(x) ∈ Π� with �-index c.(4.4)

See Theorem 5.3 below for the precise statement of Theorem 4.1. We remark
that, under weak conditions, the Abelian implication (4.3) ⇒ (4.4) also holds.

Theorem 4.1 includes the known results for arithmetic means as well as for Laplace
transforms. In the case of arithmetic means, we have ǩ(z) = 1/(1 + z) as we have

seen in Section 1. Thus this is the case ρ = −1, c = 1. For Laplace transforms, we
have ǩ(z) = Γ(1 + z), whence this also corresponds to the case ρ = −1, c = 1.

Korenblum’s conditions on k in Theorem 4.1 is of the type that usually holds.
However, we encountered a case in which it is impossible to check them. More

precisely, we were trying to prove a Tauberian theorem for arithmetic sums in the
boundary case. The kernel k(x) = I(1,∞)(x)[x]/x has the Mellin transform

ǩ(z + 1) =
ζ(1 + z)

1 + z
,

where ζ(·) is Riemann’s zeta function. Thus the Mellin transform ǩ(z + 1) has a

simple pole at z = 0, so that this corresponds to the case ρ = 0, c = 1. However,
to check Korenblum’s conditions in this case, we need to know the behavior of

ζ(z) in the strip 1 − ε < 
z < 1 + ε, in particular, nonexistence of zeros there. Of

course, these are completely inaccessible.
Fortunately, we could prove an analogue of Theorem 4.1 without Korenblum’s

conditions ([BI6]). In the proof, we use Wiener’s L1(R) theory instead of Koren-
blum’s L(α) theory. Also we use the idea to consider systems itself rather than

the Ratio Mercerian Theorem. The result thus obtained (Theorem 5.4 below) also
asserts the implication (4.4) ⇒ (4.3) but the conditions on k are weakened at the

cost of loss of flexibility about the Tauberian condition on f . As for the applica-
tion to arithmetic sums, we can check both conditions on k and f , whence this is

enough. The result thus obtained is the following:
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Theorem 4.2 (Tauberian theorem for arithmetic sums (II), [BI6]). For � ∈ R0,

we put �̃(x) := �(x)/ log x. Then, for f : [2,∞) → [0,∞),

f(x) ∼ �(x) (x → ∞)(4.5)

implies

1

x

∑
n≤x

∑
p|n

f(p) ∈ Π�̃ with �̃-index 1.(4.6)

Conversely, if f is increasing and � satisfies∫ ∞ �(t)e−
√

log t

t
dt < ∞ and log x = O(�(x)),(4.7)

then (4.6) implies (4.5).

For example, �(x) = log x satisfies (4.7) but �(x) ≡ 1 does not. It is an open
problem to prove the theorem without (4.7) so that the case �(x) ≡ 1 or, more

specifically, the case of
∑

p|n f(p) being the number of prime factors, is covered.

5. Precise statements

In this section, we shall give the precise statements of Theorems 2.1, 3.1, 3.2, 4.1
etc. We follow the notation of [BGT]. In particular, we recall from [BGT, Section

2.1.2] the Matuszewska indices of a positive function f . The upper Matuszewska
index α(f) is the infimum of those α for which there exists a constant C = C(α)

such that for each Λ > 1,

f(λx)/f(x) ≤ C{1 + o(1)}λα (x → ∞) uniformly in λ ∈ [1, Λ];

the lower Matuszewska index β(f) is the supremum of those β for which, for some
constant D = D(β) > 0 and all Λ > 1,

f(λx)/f(x) ≥ D{1 + o(1)}λβ (x → ∞) uniformly in λ ∈ [1, Λ].

One says that f has bounded increase, written f ∈ BI, if α(f) < ∞, bounded

decrease, written f ∈ BD, if β(f) > −∞.

Theorem 5.1 ([BI5]). Let σ ∈ R, ε > 0, and ρ ∈ (σ − ε, σ + ε). Let k1
λ :

(0,∞) → [0,∞) (λ ∈ Λ) and k2
λ : (0,∞) → R (λ ∈ Λ) be measurable kernels

such that the Mellin transforms ǩi
λ (i = 1, 2, λ ∈ Λ) converge absolutely in the

strip σ − ε ≤ 
 ≤ σ + ε. We define k0
λ (λ ∈ Λ) by (3.4). We assume (3.5),

(3.6), and that |ǩ0
λ
′(ρ)| + |ǩ0

λ
′′(ρ)| > 0 for some λ ∈ Λ. Let f be non-negative and

locally bounded on [0,∞), vanish in a neighborhood of zero, have upper order ρ,

and f ∈ BD ∪BI. Then (3.3) implies Cλ = ǩ2
λ(ρ)/ǩ1

λ(ρ) (λ ∈ Λ) and E1 ∗ f ∈ Rρ

with E1(x) := I(1,∞)(x)xσ−ε.

Note that E1 ∗ f ∈ Rρ implies f ∈ Rρ under an adequate Tauberian condition
on f .

Theorem 5.2 ([BI5]). Let � ∈ R0, σ ∈ R, ε > 0, and ρ ∈ (σ− ε, σ + ε) \ {σ}. Let

kλ (λ ∈ Λ) be a system of non-negative measurable kernels on (0,∞) such that all
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ǩλ(z) (λ ∈ Λ) converge absolutely in the strip σ − ε ≤ 
z ≤ σ + ε. We assume
that ǩλ(z) (λ ∈ Λ) have no common zeros in σ − ε ≤ 
z ≤ σ + ε and that

∀λ ∈ Λ, exp

(
−π|t|

2ε

)
log |ǩλ(σ + it)| → 0 (t → ±∞).(5.1)

Let f be non-negative, measurable and locally bounded on [0,∞), and vanish in a
neighborhood of zero. Then (1.2) implies

∀λ ∈ Λ, kλ ∗ f(x) ∼ xρ�(x)ǩλ(ρ) (x → ∞).(5.2)

Conversely, (5.2) implies (1.2) if f satisfies one of the following:

f is eventually positive and log f is slowly decreasing(5.3)

f(x)/{xρ�(x)} is slowly decreasing(5.4)

lim
t↓1

lim inf
x→∞

inf
y∈[x,tx]

y−τf(y) − x−τf(x)

xρ−τ �(x)
≥ 0 (hence = 0) for some τ ∈ R,(5.5)

Theorem 5.3 ([BI5]). Let c ∈ R \ {0}. Let � ∈ R0, σ ∈ R, ε > 0, and ρ ∈
(σ−ε, σ+ ε)\{σ}. Let k : (0,∞) → R be a measurable kernel such that the Mellin

transform ǩ(z) converges absolutely in the strip ρ < 
z ≤ σ + ε. We assume the
following:{

there exist λ1, λ2 ∈ (0,∞) \ {1} such that log λ2/ log λ1 is irrational

and that (λjx)−ρk(λjx) − x−ρk(x) ≥ 0 for 0 < x < ∞ and j = 1, 2;
(5.6)

{
the analytic continuation of ǩ(z) is holomorphic in σ − ε ≤ 
z ≤ σ + ε

except for a simple pole, with residue c, at z = ρ;
(5.7)

exp

(
−π|t|

2ε

)
log |ǩ(σ + it)| → 0 (t → ±∞);(5.8)

ǩ(z) has no zeros in σ − ε ≤ 
z ≤ σ + ε.(5.9)

Let f be non-negative, measurable and locally bounded on [0,∞), and vanish in
a neighborhood of zero. We also assume that f satisfies either (5.3) or (5.4) or

(5.5). Then (4.4) implies (4.3).

Theorem 5.4 ([BI6]). Let c ∈ R \ {0} and � ∈ R0. Let −∞ < σ1 < ρ < σ2 < ∞.
Let k : (0,∞) → R be a measurable kernel such that the Mellin transform ǩ(z)

converges absolutely in the strip ρ < 
z < σ2. We assume (5.6) and the following:{
the analytic continuation of ǩ(z) is holomorphic in σ1 < 
z < σ2

except for a simple pole, with residue c, at z = ρ;
(5.10)

ǩ(z) has no zeros on 
z = ρ.(5.11)

Let f be non-negative, measurable and locally bounded on [0,∞), and vanish in a

neighborhood of zero. We also assume

lim
t↓1

lim inf
x→∞

inf
y∈[x,tx]

y−ρf(y) − x−ρf(x)

�(x)
≥ 0 (hence = 0).(5.12)

Then (4.4) implies (4.3).
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Comments

1. This lecture was given at the meeting of the Mathematical Society of Japan,

Tokyo, 2000. This is a translation from the one originally written in Japanese.
2. The term Mercerian comes from the fact that J. Mercer proved the following

theorem in 1907：if t > 0, then ant + n−1(a1 + a2 + · · ·+ an)(1− t) → A (n → ∞)
implies an → A (n → ∞) (cf. Pitt [P]). Mercer’s theorem is not of the same type

as Mercerian theorems in this lecture in the narrow sense. Many people would

recognize his name via his expansion theorem for positive semidefinite kernels.
3. The term Tauberian comes from the fact that A. Tauber proved the converse

of Abel’s theorem on power series, in 1897, under the condition an = o(1/n)
on coefficients. This naming is due to Hardy–Littlewood. Carleson [C], after

completely proving the theorem in only 4 lines, wrote: “It is almost unique in the
history of mathematics that a result of the simplicity of Tauber’s gave rise to so

many deep and important results that the author was immortalized by having his
name become an adjective.” Full investigation of Tauberian theorems dates from

the Hardy–Littlewood period (1910–1920). Inspired by their work, Wiener created
his theory of General Tauberian Theorem (around 1930). Wiener’s idea was novel.

Gelfand found that it was well described in terms of Banach algebras (1940).
4. Inspired by the work of Hardy–Littlewood as Wiener and also by the work of

Pólya (1917) and others, Yugoslav mathematician Karamata initiated the theory of
regular variation. Through his efforts to extend the Tauberian theorem of Hardy–

Littlewood, he was led to the notion of slowly varying function. See Tomić and

Aljančić [TA] for the biography of Karamata.
5. To see the potential of definition (1.1), one may just look at the Uniform

Convergence Theorem of Karamata (cf. [BGT, Theorems 1.2.1 and 1.5.2]) which
asserts that, under the measurability of f , the convergence of (1.1) is automatically

uniform in λ on each [a, b] (0 < a ≤ b < ∞).
6. The letter � or L seems to be intended to mean something like logarithm.

Notice that log x is a slowly varying function.
7. For example, Wiener’s Tauberian theorem seems to have been striking to the

people of his time primarily because it gave a novel proof of the Prime Number
Theorem.

8. See [BGT, Theorem 1.7.6] for the Able–Tauber theorem for Laplace transforms
(due to Karamata) and [BGT, Theorem 5.2.4] for the Mercerian counterpart (due

to Drasin).
9. In other words, in terms of the locally compact Abelian group (0,∞) with

respect to the multiplication of real numbers, which has invariant measure dt/t.

10. Unless stated otherwise, the integral is supposed to converge absolutely. How-
ever, when we consider, e.g., Fourier transforms, it may be in the sense of improper

integrals.
11. The same remark as Comment 10 applies. In general, the maximal domain

of absolute convergence for ǩ(z) is a vertical strip in C.
12. Integral transforms of the form E1 ∗ f or E2 ∗ f had already been used in

the proofs of Mercerian theorems by Drasin–Shea [DS] and Jordan [J] (cf. [BGT,
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Chapter 5]). However, in them, the integral transforms are written explicitly rather
than in Mellin convolution form. In the localization method, we just write them

in Mellin convolution form and apply both simultaneously to consider E2 ∗E1 ∗ f .
Though it may seem nothing significant , it in fact enables us to simplify the

long and complicated proof of the Drasin–Shea–Jordan theorem profoundly. More
importantly, it enables us to remove unnecessary conditions, whereby broaden the

applicability of the theorem ([BI4]; see Comment 15 below).
13. The Nyman–Korenblum theory [N, K1, K2] may be regarded as an analogue

of Wiener’s L1(R) theory for L(α). It describes closed ideals of the commutative

Banach algebra L(α). In particular, Korenblum determined all the primary ideals
associated with the point ∞ of the maximal ideal space {|�z| ≤ α}∪{∞} (cf. [C],

[Bor]). The Banach algebra L(α) is the so-called analytic case of Beurling algebras.
The function uρ is transformed into the exponential function eρt by the change of

variable u = et. The dual space of L1(R) consists only of bounded functions
but that of L(α) contains exponential functions. This is the reason why we need

L(α) rather than L1(R). I am sorry that no English translation of [K2] has been
published.

14. More generally, we proved, in [BI1], a Mercerian theorem for Hankel trans-
forms of order ν such that −1/2 ≤ ν ≤ ν0 = 0.8660252 . . . . This result was

extended to Hankel transforms of arbitrary order ν ≥ −1/2 in [BI3]. Recall that
Fourier cosine and sine transforms are Hankel transforms of order −1/2 and 1/2,

respectively. The difference between the two cases −1/2 ≤ ν ≤ ν0 and ν > ν0

is that, for the integral kernel k(x) := x−3/2Jν(1/x) of the Hankel transform of

order ν (in Mellin convolution form), the following analytic continuation of Mellin

transform ǩ(z) is monotone on the interval (−ν − 3
2
, ν + 1

2
) in the former case but

not so in the latter case:

ǩ(z) = 2z+(1/2) Γ
(

3
4

+ 1
2
ν + 1

2
z
)

Γ
(

1
4

+ 1
2
ν − 1

2
z
) .

In [BI3], the localization method made such a global property irrelevant.
15. In the case ν > −1/2, we can prove a Mercerian theorem for the Hankel

transform of a nonmonotone function f (but assuming a weak Tauberian condition
on f) if the integral converges absolutely ([BI4]). In this case, we can apply

the Drasin–Shea–Jordan theorem, in the from extended in [BI4], for absolutely
convergent integral transforms. However, in the case ν = −1/2, i.e., that of Fourier

cosine transforms, it is essential to consider conditionally convergent integrals. For,
in this case, the absolute convergence strip of the Mellin transform is empty.

16. What is called a Tauberian theorem in [DI] is in fact a Mercerian one in
our notation. The result [DI, Theorem 4] can be improved if we use the general

theory of Mercerian theorems or, in effect, the Drasin–Shea theorem in this case
(cf. [BI6]).

17. Here is an outline of the proof of the Tauberian implication (3.7) ⇒ (1.2).

By using the Prime Number Theorem of the form

∑
p≤x

1 =

∫ x

2

dt

log t
+ R(x), R(x) = O(xe−

√
log x),
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we write∑
n≤x

∑
p|n

f(p) =
∑
p≤x

f(p)

[
x

p

]
=

∫ x

2

f(t)

log t

[x

t

]
dt +

∫
[2,x]

f(t)
[x

t

]
dR(t).

We can neglect the second term on the right-hand side. As for the first term, we
write

1

x

∫ x

2

f(t)

log t

[x

t

]
dt = k ∗ f̃(x),

with

k(x) :=
[x]

x
I(1,∞)(x), f̃(x) :=

f(x)

log x
I(2,∞)(x).

We have ǩ(z) = ζ(1+ z)/(1+ z) for 
z > 0. Applying Theorem 3.2 to the integral

transform k ∗ f̃ , we obtain (1.2).
18. The next theorem answered the Question 7.18 of Boas [Bo].

Theorem ([I1]). Let an ↓ 0 and put F (θ) :=
∑∞

1 an cos nθ (0 < θ < 2π). Then
the following are equivalent:

an ∼ n−1�(n) (n → ∞),

F (1/·) ∈ Π� with �-index 1.

In view of the assertion (4.1) ⇔ (4.2) for arithmetic means, this theorem does not

seem so unexpected. However, strangely enough, no such results for Fourier series

and integrals had been known until [I1]. See [I2, I3, BI2, IK] for subsequent work.
The key to the proof of the above theorem is to use Laplace transforms to bypass

the difficulty arising from conditional convergence; similar idea has been stated
in the outline of the proof of Theorem 2.2 above. When I explained this idea to

Nick Bingham in the spring of 1995 in London, he suggested possible use of it in
the proof of yet unproven Mercerian theorems for Fourier transforms. The project

described in this lecture started in this way.
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