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1. INTRODUCTION

The fractional ARIMA or autoregressive integrated moving-average pro-
cesses were introduced independently by Granger and Joyeux [4] and Hosk-
ing [6], and have been used as a useful parametric family of long-memory
stationary processes. In [8], the first author has proved an asymptotic
formula for the partial autocorrelation functions of fractional ARIMA pro-
cesses with positive degree of differencing. Our purpose in this article is to
extend this result to those with negative degree of differencing.

We recall the definition of a fractional ARIMA process. Let {Xn : n ∈ Z}
be a real, zero-mean, weakly stationary process, defined on a probability
space (Ω,F , P ), which we shall simply call a stationary process. We write
γ(·) for the autocovariance function of {Xn}:

γ(n) := E[XnX0] (n ∈ Z).

If there exists an even, nonnegative, and integrable function ∆(·) on (−π, π)
such that

γ(n) =
∫ π

−π

einλ∆(λ)dλ (n ∈ Z),
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then ∆(·) is called the spectral density of {Xn}. For d ∈ (−1/2, 1/2) and
p, q ∈ N ∪ {0}, {Xn} is said to be a fractional ARIMA(p, d, q) process if it
has a spectral density ∆(·) of the form

∆(λ) =
1
2π

|Θ(eiλ)|2
|Φ(eiλ)|2 |1 − eiλ|−2d (−π < λ < π), (1.1)

where Φ(z) and Θ(z) are polynomials with real coefficients of degrees p, q,
respectively, satisfying the following condition:

Φ(z) and Θ(z) have no common zeros, and Φ(z) �= 0 and
Θ(z) �= 0 for all z in the closed unit disk {z ∈ C : |z| ≤ 1}. (A1)

We also assume without loss of generality that

Θ(0)/Φ(0) > 0. (A2)

Note that (A1) and (A2) imply Θ(1)/Φ(1) > 0.
The fractional ARIMA process {Xn} satisfies a difference equation of

the form

Φ(B)∇dXn = Θ(B)Zn (n ∈ Z), (1.2)

where B is the backward shift operator, i.e., BXm = Xm−1, ∇ is the
differencing operator defined by ∇ := 1 − B, and {Zn} is a zero-mean
process such that E[ZnZm] = δnm. See Brockwell and Davis [2, Sect. 13.2]
for details. We notice that in (1.2) the degree of fractional differencing is
given by d.

If d ∈ (−1/2, 1/2)\{0}, then the fractional ARIMA(p, d, q) process {Xn}
is a long-memory process in the sense that the autocovariance γ(n) decays
slowly as

γ(n) ∼ Cn2d−1 (n→ ∞), (1.3)

where the constant C is given by

C :=
Γ(1 − 2d) sin(πd)

π

{
Θ(1)
Φ(1)

}2

(1.4)

(see, e.g., [8]). Notice that the case d = 0 corresponds to the ordinary
ARMA(p, q) process, for which the autocovariance γ(n) decays exponen-
tially as n→ ∞ (see [2, Chap. 3]). From (1.3), we see that the degree d is
closely related to the long-range dependence of {Xn}.
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The partial autocorrelation α(n) of a stationary process {Xn} is the
correlation coefficient of the two residuals obtained after regressing X0 and
Xn on the intermediate observations X1, . . . , Xn−1. To be more precise,
we denote by H the closed real linear hull of {Xk : k ∈ Z} in L2(Ω,F , P ).
Then H is a real Hilbert space with inner product (Y1, Y2) := E[Y1Y2] and
norm ‖Y ‖ := (Y, Y )1/2. For n ∈ N, we write H[1,n] for the subspace of H
spanned by {X1, . . . , Xn}, and H⊥

[1,n] for its orthogonal complement in H.
We denote by P⊥

[1,n] the orthogonal projection operator of H onto H⊥
[1,n].

The partial autocorrelation function α(·) of {Xn} is defined by

α(n) :=

(
P⊥

[1,n−1]Xn, P
⊥
[1,n−1]X0

)
∥∥∥P⊥

[1,n−1]Xn

∥∥∥ · ∥∥∥P⊥
[1,n−1]X0

∥∥∥ (n = 2, 3, . . . ).

Furthermore, α(1) is defined by α(1) := γ(1)/γ(0). The partial autocorrela-
tion function plays an important role in time series analysis. Its importance
is illustrated in the fact that it appears in the Durbin–Levinson algorithm
(see [2, Proposition 5.2.1]).

In [8, Theorem 1.1], the first author has proved that if 0 < d < 1/2
the partial autocorrelation function α(·) of the fractional ARIMA(p, d, q)
process satisfies

|α(n)| ∼ d

n
(n→ ∞). (1.5)

Notice that the degree d, which is important in the fractional ARIMA
process, appears explicitly in (1.5). We wish to extend this asymptotic
formula to cover the case −1/2 < d < 0.

Here is the main theorem.

Theorem 1.1. Let p, q ∈ N ∪ {0} and −1/2 < d < 0, and let {Xn} be
a fractional ARIMA (p, d, q) process with partial autocorrelation function
α(·). Then α(·) satisfies

|α(n)| ∼ |d|
n

(n→ ∞). (1.6)

See Section 5 for numerical calculation of nα(n).
As in [7, 8], we deduce (1.6) from the asymptotic behaviour of the mean

squared prediction error ‖P⊥
[1,n−1]Xn‖ as n→ ∞, using a Tauberian argu-

ment. However, there is one distinction in the proof. The proofs of [7, 8] are
based on an explicit representation of ‖P⊥

[1,n−1]Xn‖ (see [7, Theorems 4.5
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and 4.6] and [8, Theorem 4.1]) in terms of the AR(∞) coefficients ak and
MA(∞) coefficients ck of {Xn}. The same representation is not available
in the present case −1/2 < d < 0 because the series that appear in the rep-
resentation do not converge absolutely. It turns out that if −1/2 < d < 0
we can we use a similar representation of ‖P⊥

[1,n−1]Xn‖ (Theorems 2.2 and
3.3) which is given in terms of φk and ψk defined by

φn :=

{
a0 (n = 0),
an − an−1 (n = 1, 2, . . . )

(1.7)

and

ψn := −
∞∑

k=n+1

ck (n = 0, 1, . . . ), (1.8)

respectively, rather than given in terms of ak and ck themselves. Once the
representation is obtained, the proof is parallel to that of [8].

In what follows, we write
∑∞−

k=0 for the sums that are not necessarily
absolutely convergent:

∞−∑
k=0

:= lim
M→∞

M∑
k=0

.

2. REPRESENTATION OF THE PREDICTION ERROR (1)

In this section, we assume that {Xn} is a purely nondeterministic sta-
tionary process (hence not necessarily a fractional ARIMA process). Let
∆(·) be the spectral density of {Xn}. We define the outer function h(·) of
{Xn} by

h(z) :=
√

2πexp
{

1
4π

∫ π

−π

eiλ + z

eiλ − z
log ∆(λ)dλ

}
(z ∈ C, |z| < 1).

The function h(·) is actually an outer function which is in the Hardy space
H2+ of class 2 over the unit disk |z| < 1. Using h(·), we define the MA(∞)
coefficients cn of {Xn} by

h(z) =
∞∑

n=0

cnz
n (|z| < 1)
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and the AR(∞) coefficients an of {Xn} by

− 1
h(z)

=
∞∑

n=0

anz
n (|z| < 1).

See, e.g., [7] for background.
As we stated in Section 1, we write H for the real Hilbert space spanned

by {Xk : k ∈ Z} in L2(Ω,F , P ), with inner product (Y1, Y2) := E[Y1Y2] and
norm ‖Y ‖ := (Y, Y )1/2. For I ⊂ Z, denote by HI the closed real linear hull
of {Xk : k ∈ I} in H. In particular, for m ∈ Z and n ∈ Z with m ≤ n, we
writeH(−∞,m], H[m,∞) andH[m,n] forHI with I = {k ∈ Z : −∞ < k ≤ m},
{k ∈ Z : m ≤ k < ∞}, and {k ∈ Z : m ≤ k ≤ n}, respectively. For I ⊂ Z,
we denote by PI the orthogonal projection operator of H onto HI . We
write P⊥

I := IH − PI , where IH is the identity map of H. So P⊥
I is the

orthogonal projection operator of H onto H⊥
I .

We now consider P(−∞,0]Xn for n ≥ 1. We define

bmj :=
m∑

k=0

ckaj+m−k (m, j ∈ N ∪ {0}).

Notice that bmj for j ≥ 1 here corresponds to bm+1
j−1 defined in [7, (4.4)].

Proposition 2.1. We assume the following conditions:

∞∑
k=0

|ck| <∞, (2.1)

∞∑
k=0

|ak|2 <∞. (2.2)

Then, for n ∈ N,

P(−∞,0]Xn =
∞−∑
j=0

bn−1
j+1X−j , (2.3)

the sum converging in H (not necessarily absolutely).

Proof. (Compare the proof of [7, Theorem 4.4].) Consider the spectral
representation of {Xn} written as

X(n) =
∫ π

−π

einλZ(dλ) (n ∈ Z),
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where Z is the spectral measure such that

E[Z(A)Z(B)] =
∫

A∩B

∆(λ)dλ

(see [2, Sect. 4.8]). We put

ξn :=
∫ π

−π

einλ
{
h(eiλ)

}−1

Z(dλ) (n ∈ Z).

Then it follows that∥∥∥∑m

k=0
akXn−k + ξn

∥∥∥2

=
∫ π

−π

|fm(λ)|2 ∆(λ)dλ (m ∈ N), (2.4)

where

fm(λ) :=
1

h(eiλ)
+
∑m

k=0
ake

ikλ (−π < λ < π).

Since (2.2) implies h−1 ∈ H2+ (cf. [7, Proposition 4.2]), we have the
Fourier expansion 1/h(eiλ) = −∑∞

k=0 ake
ikλ in L2((−π, π), dλ), which

yields fm(λ) = −∑∞
m+1 ake

ikλ. Thus it follows from (2.2) that fm(·)
converges to zero as m → ∞ in L2((−π, π), dλ). On the other hand, (2.1)
implies that

2π∆(λ) =
∣∣∣∑∞

n=0
cne

inλ
∣∣∣2 ≤

(∑∞
n=0

|cn|
)2

a.e. on (−π, π),

hence the spectral density ∆(·) is essentially bounded on (−π, π). Thus
the integral on the right-hand side of (2.4) tends to zero as m → ∞, and
so we obtain the AR(∞) representation of {Xn} of the form

∞−∑
j=0

ajXn−j + ξn = 0 (n ∈ Z).

As in the proof of [7, Theorem 4.4], this allows us to obtain (2.3).

We shall see in Section 3 that the fractional ARIMA(p, d, q) process with
−1/2 < d < 0 satisfies (2.1) and (2.2).

We put

ε(n) :=

∥∥∥P⊥
[−n+2,0]X1

∥∥∥2

−
∥∥∥P⊥

(−∞,0]X1

∥∥∥2

∥∥∥P⊥
(−∞,0]X1

∥∥∥2 (n = 2, 3, . . . ). (2.5)
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Notice that this definition is slightly different from that in [7, (4.11)]. In
fact, ε(n) here corresponds to ε(n − 2) in [7]. The next theorem is an
analogue of [7, Theorem 4.5].

Theorem 2.2. We assume (2.1) and (2.2). Then, for n = 2, 3, . . . ,

ε(n) =
∞∑

k=1

∞∑
p=0

dk(n, p)2, (2.6)

where d1(n, p) :=
∑∞−

v=0 av+n+pcv and, for k = 2, 3, . . . ,

dk(n, p) :=
∞−∑

mk−1=0

an+mk−1

∞−∑
mk−2=0

b
mk−1
n+mk−2

· · ·
∞−∑

m1=0

bm2
n+m1

∞−∑
v=0

bm1
n+p+vcv

Notice that dk(n, p) above corresponds to dk(n−2, p) defined in [7, Theo-
rem 4.5]. We can prove Theorem 2.2 using [7, Theorem 3.1] and Proposition
2.1, in the same way as the proof of [7, Theorem 4.5]. We omit the details.

3. REPRESENTATION OF THE PREDICTION ERROR (2)

In this section, we assume that {Xn} is a fractional ARIMA(p, d, q) with
p, q ∈ N ∪ {0} and

−1/2 < d < 0. (3.1)

Let an and cn be as in Section 2. We define φn and ψn by (1.7) and (1.8),
respectively. By (3.5) below, the sequence (cn) satisfies (2.1), and so ψn

are well-defined. In the arguments below, we write C for positive constants
which are not necessarily the same.

Since the spectral density ∆(·) of {Xn} is given by (1.1), we can write
the outer function h(·) of {Xn} explicitly as

h(z) =
Θ(z)
Φ(z)

(1 − z)−d (|z| < 1) (3.2)

(cf. [8, (2.1)]). Since we have assumed (3.1), it follows from (3.2) that

∞∑
k=0

ck = 0. (3.3)

This is one of the key features of the fractional ARIMA process {Xn} with
(3.1).
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Now we have

|an| ≤ C

(n+ 1)1+d
(n = 0, 1, . . . ), (3.4)

|cn| ≤ C

(n+ 1)1−d
(n = 0, 1, . . . ), (3.5)

|φn| ≤ C

(n+ 1)2+d
(n = 0, 1, . . . ). (3.6)

See Kokoszka and Taqqu [12, Sect. 3] and [8, Lemma 2.2]. From (3.5)
and (3.4), we find that cn and an satisfy (2.1) and (2.2), respectively. It
also follows from (3.5) that

|ψn| ≤ C

(1 + n)−d
(n = 0, 1, . . . ). (3.7)

We define

β(n) :=
∞∑

v=0

ψvφv+n+1 (n = 0, 1, . . . )

and

B(n) :=
∞∑

v=0

|ψv| · |φv+n+1| (n = 0, 1, . . . ).

Since ∫ ∞

0

dv

v−d(v + x)2+d
=

1
x(1 + d)

(0 < x <∞),

we can apply (3.6) and (3.7) to obtain

|β(n)| ≤ B(n) ≤ C

(n+ 1)
(n = 0, 1, . . . ). (3.8)

For k ∈ N and n, p,m ∈ N ∪ {0}, we define Dk(n, p,m) inductively by

D1(n, p,m) := B(n+ p+m),

Dk+1(n, p,m) :=
∞∑

mk=0

B(m+mk + n)Dk(n, p,mk) (k = 1, 2, . . . ).
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Lemma 3.1. For k ∈ N, we have

∞∑
m=0

Dk(n, p,m)2 <∞ (n, p ∈ N ∪ {0}). (3.9)

Proof. We use induction. By (3.8), we find that (3.9) holds for k = 1.
We assume that (3.9) holds for k ≥ 1. Then by (3.8), we have

Dk+1(n, p,m) ≤ C

∞∑
mk=0

1
m+mk + 1

Dk(n, p,mk).

Since the operator T defined by

(Tu)m :=
∞∑

i=0

ui

m+ i+ 1
(u = (ui) ∈ l2)

is a bounded linear operator from l2 to l2 (see Hardy et al. [5, Chap. IX]),
the inequality above implies (3.9) for k+ 1. Thus the lemma follows by in-
duction on k.

For k ∈ N and n, p,m ∈ N ∪ {0}, we define δk(n, p,m) inductively by

δ1(n, p,m) := −β(m+ n+ p),

δk+1(n, p,m) := −
∞∑

mk=0

β(m+mk + n)δk(n, p,mk) (k = 1, 2, . . . ).

By (3.8) and Lemma 3.1, δk(n, p,m) are well-defined and the following
inequality holds

|δk(n, p,m)| ≤ Dk(n, p,m) (k ∈ N, n, p,m ∈ N ∪ {0}).

For k ∈ N and n, p,m ∈ N ∪ {0}, we define dk(n, p,m) also inductively by

d1(n, p,m) :=
∞−∑
v1=0

bmv1+n+pcv1 ,

dk+1(n, p,m) :=
∞−∑

mk=0

bmmk+ndk(n, p,mk). (k = 1, 2, . . . ).

We notice that Theorem 2.2 includes the assertion that these sums con-
verge.



10 INOUE AND KASAHARA

Proposition 3.2. For k ∈ N, we have

dk(n, p,m) =
m∑

v=0

cvδk(n, p,m− v) (p ≥ 0, m ≥ 0, n ≥ 2). (3.10)

Proof. We use induction. By (3.3) and summation by parts, we have

d1(n, p,m) =
∞−∑
v1=0

(
m∑

v=0

cvan+p+v1+m−v

)
cv1

= −
∞−∑
v1=0

(
m∑

v=0

cvφn+1+p+v1+m−v

)
ψv1 ,

which, by (3.8) and Fubini’s theorem, implies (3.10) with k = 1.
Now we assume (3.10) for k ≥ 1. From (3.4), (3.5), and Lemma 3.1, we

find that, for m ≥ 0,

∞∑
vk+1=0

|cvk+1 |
∞∑

mk=0

|an+mk+vk+1+m| · |δk(n, p,mk)|

≤ C

(∑∞
vk+1=0

|cvk+1 |
) ∞∑

mk=0

1
(mk + 1)1+d

Dk(n, p,mk) <∞.

Hence, by Fubini’s theorem, we obtain

dk+1(n, p,m) =
∞−∑

mk=0

(
m∑

v=0

cvan+mk+m−v

)
mk∑

vk+1=0

cvk+1δk(n, p,mk − vk+1)

=
m∑

v=0

cv

∞∑
vk+1=0

cvk+1

∞∑
mk=vk+1

an+mk+m−vδk(n, p,mk − vk+1)

=
m∑

v=0

cv

∞∑
vk+1=0

cvk+1

∞∑
mk=0

an+mk+vk+1+m−vδk(n, p,mk).

Applying summation by parts to this, we get

dk+1(n, p,m)

= −
m∑

v=0

cv

∞−∑
vk+1=0

ψvk+1

∞∑
mk=0

φn+1+mk+vk+1+m−vδk(n, p,mk),
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which, together with Lemma 3.1 and Fubini’s theorem, implies (3.10) for
k + 1. Thus the proposition follows by induction on k.

Recall dk(n, p) from Section 2. The next theorem, combined with Theo-
rem 2.2, gives the desired representation of ε(n) in terms of φk and ψk.

Theorem 3.3. For n = 2, 3, . . . and p ∈ N ∪ {0}, we have

d1(n, p) = −β(n+ p),

d2(n, p) =
∞∑

m1=0

β(m1 + n)β(m1 + n+ p),

and, for k ≥ 3,

dk(n, p) = (−1)k
∞∑

mk−1=0

β(mk−1 + n)
∞∑

mk−2=0

β(mk−1 +mk−2 + n)

· · ·
∞∑

m2=0

β(m3 +m2 + n)
∞∑

m1=0

β(m2 +m1 + n)β(m1 + n+ p),

the sums converging absolutely.

Proof. Since dk(n, p, 0) = c0dk(n, p), the theorem follows immediately
from Proposition 3.2.

4. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 1.1. We assume that {Xn} is a frac-
tional ARIMA(p, d, q) process with (3.1). Let Φ(z), Θ(z), an, cn, φn, and
ψn be as in the previous section.

As in [8, Sect. 2], for δ ∈ R, n ∈ N ∪ {0}, and a real sequence (λk)∞k=0,
we define λn(δ) by the following equality for formal power series:

(1 − z)δ
∞∑

k=0

λkz
k =

∞∑
k=0

λk(δ)zk (|z| < 1).

Using the binomial coefficients, we can write λn(δ) as

λn(δ) =
n∑

k=0

λk(−1)n−k

(
δ

n− k

)
(n = 0, 1, . . . ).
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We notice that

λn(δ) − λn−1(δ) = λn(δ + 1) (δ ∈ R, n ∈ N). (4.1)

We define two real sequences (λn)∞n=0 and (µn)∞n=0 by

−Φ(z)
Θ(z)

=
∞∑

n=0

λnz
n (|z| < 1)

and

Θ(z)
Φ(z)

=
∞∑

n=0

µnz
n (|z| < 1),

respectively. One can easily show that both (λn) and (µn) decay exponen-
tially.

Lemma 4.1. For n = 0, 1, . . . ,

φn = λn(d+ 1), (4.2)
ψn = µn(−d− 1). (4.3)

Proof. Let |z| < 1. Then by (3.2), we have

∑
n=0

anz
n = (1 − z)d

∑
n=0

λnz
n =

∞∑
n=0

λn(d)zn,

hence an = λn(d) for n ≥ 0. Therefore, using (4.1), we obtain (4.2).
Similarly, it follows from (3.2) that

∑
n cnz

n = (1 − z)−d
∑

n µnz
n.

Therefore, using (3.6), we obtain

(1 − z)−d−1
∑∞

n=0
µnz

n =
(∑∞

n=0
zn
)(∑∞

n=0
cnz

n
)

=
∑∞

n=0
ψnz

n,

whence (4.3).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Using Theorems 2.2 and 3.3, and Lemma 4.1, we
run through the arguments in [8, Sect. 3 and 4] with d, an, and cn replaced
by d + 1, φn, and ψn, respectively. Then, as in [8, Theorem 4.3], we find
that

lim
n→∞nε(n) =

1
π2

arcsin2 {sin((d+ 1)π)} = d2
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or

ε(n) ∼ d2

n
(n→ ∞) (4.4)

(this result has its own interest and we refer to [7, Theorem 6.4] and [9, 10,
11] for relevant work). We also find that, as in [8, Proposition 4.4],

∀λ > 1, lim sup
n→∞

sup
n≤m≤λn

n2 {δ(m) − δ(n)} ≤ 0 (hence= 0), (4.5)

where

δ(n) := ε(n) − ε(n+ 1) (n = 2, 3, . . . ).

Notice that

∞∑
k=n

δ(k) = ε(n) (n = 2, 3, . . . ). (4.6)

By (4.4)–(4.6), the Monotone Density Theorem (see Bingham et al. [1,
Sect. 1.7.6]) gives

δ(n) ∼ d2

n2
(n→ ∞).

Since the Durbin–Levinson algorithm implies

α(n)2 ∼ δ(n) (n→ ∞)

(see [7, p. 101]), (1.6) follows.

5. ESTIMATION OF THE DIFFERENCING PARAMETER

For a fractional ARIMA(p, d, q) process with d ∈ (−1/2, 1/2) \ {0}, The-
orem 1.1 and [8, Theorem 1.1] imply that

lim
n→∞n|α(n)| = |d|. (5.1)

The question arises if (5.1) gives an efficient method for estimation of the
important parameter d (cf. [2, §13.2] and Chong [3]). We leave this question
open here. See Tables 1 and 2 for the values of nα(n) for various n and
d. It should be noticed that the values of α(n) there are not statistically
estimated ones via, say, computer simulation. They are the exact values
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(modulo figures of order 10−4) that are calculated from the exact values of
the autocovariance function γ(·) via the Durbin–Levinson algorithm. The
values of γ(·) are, in turn, obtained using the analytic representations of
γ(·) for the fractional ARIMA(1, d, 0) and (0, d, 1) processes (Lemmas 1
and 2 in [6, Sect. 5]).

TABLE 1.

Values of nα(n) for FARIMA(1, d, 0) with Θ(z) = 1 and Φ(z) = 1 − 0.3z

d n=1 n=10 n=20 n=50 n=100

-0.4 -0.048 -0.355 -0.376 -0.390 -0.395

-0.3 0.025 -0.268 -0.284 -0.293 -0.297

-0.2 0.106 -0.181 -0.190 -0.196 -0.198

-0.1 0.198 -0.091 -0.095 -0.098 -0.099

0.1 0.414 0.093 0.096 0.099 0.099

0.2 0.542 0.187 0.194 0.197 0.199

0.3 0.682 0.284 0.292 0.297 0.298

0.4 0.835 0.382 0.391 0.396 0.398

TABLE 2.

Values of nα(n) for FARIMA(0, d, 1) with Θ(z) = 1 − 0.5z and Φ(z) = 1

d n=1 n=10 n=20 n=50 n=100

-0.4 -0.535 -0.488 -0.436 -0.413 -0.407

-0.3 -0.509 -0.373 -0.329 -0.311 -0.305

-0.2 -0.479 -0.255 -0.220 -0.207 -0.204

-0.1 -0.443 -0.133 -0.111 -0.104 -0.102

0.1 -0.345 0.123 0.112 0.104 0.102

0.2 -0.271 0.256 0.225 0.209 0.205

0.3 -0.156 0.394 0.340 0.314 0.307

0.4 0.071 0.536 0.455 0.420 0.410
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