PREDICTION OF FRACTIONAL BROWNIAN
MOTION-TYPE PROCESSES

A. INOUE AND V.V. ANH

ABSTRACT. We introduce a class of continuous-time Gaussian processes with
stationary increments via moving-average representation with good MA coef-
ficient. The class includes fractional Brownian motion with Hurst index less
than 1/2 as a typical example. It also includes processes which have different
indices corresponding to the local and long-time properties, repsectively. We
derive some basic properties of the processes, and, using the results, we estab-
lish a prediction formula for them. The prediction kernel in the formula is given
explicitly in terms of MA and AR coefficients.

1. INTRODUCTION AND MAIN THEOREM

Fractional Brownian motion (By(t) : t € R) with Hurst index H € (0,1)\ {1/2}
can be defined by the following “moving-average” representation: for ¢ € R,

1 o0
Fr | @90 ()T faw )
where (W(t) : t € R) is a standard Brownian motion on a probability space
(Q,F,P) and (z)+ := max(z,0) for x € R. This process, abbreviated fBm, is
a centered Gaussian process with stationary increments. It has been widely used
to model various phenomena in hydrogy, network traffic, finance etc, which exhibit
self-similarity. When 1/2 < H < 1, fBm has also long-range dependence. We refer
to Samorodnitsky and Taqqu [13] for its background.

In this paper, we consider a natural class of centered Gaussian processes with
stationary increments, which includes fBm with H € (0,1/2) as a typical example.
The case 1/2 < H < 1, which requires a different approach, is considered in a
subsequent paper [4]. Thus we consider a Gaussian process (X (¢) : ¢ € R) with
stationary increments that admits the following moving-average representation:

o
(1.2) X(t) = / {c(t —s) — c(—s)}dW (s) (teR),
—00
where the MA (moving-average) coefficient ¢(-) is a function of the form
oo
(1.3) o(t) = / eu(ds) (t>0), =0 (t<0)
0

with v being a Borel measure on (0, co) satisfying

(1.4) /Ooo 0 j_ Su(ds) < 0o

(11)  Bu(t) =
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and some extra conditions. In particular, in the main theorem (Theorem 1.1), we
will assume

(1.5) tgrg1+ c(t) = oo,
(1.6) c(t) = O(t?) as t — 0+ for some ¢ > —1/2,
1 1
1.7 c(t) ~ ———— =Gyt t — 00),
(1.7 O~ Frym! T e
where /(-) is a slowly varying function at infinity and H is a constant such that
(1.8) 0<H<L1)/2
A typical example of such v is
H
(1.9) v(ds) = Ms*(%ﬂq)db’ on (0,00)
T
with (1.8) (Example 2.5). For this v, we have
1 1

1.10 c(t) = Ijp ooy (t) ————t (7 H) teR),
(1.10) 0= Tooo O 5 (teR)

whence (X (t)) reduces to (Bg(t)). We can also choose v so that the resulting
process (X (¢)) has two different indices Hy and H corresponding to the local prop-
erties (such as path properties) and the long-time behavior, respectively (Example
2.6).

The central concern of this paper is the prediction of the process (X (¢)). More
specifically, our problem is to represent the conditional expectation

E[X(T)| U(X(S) : —to S S S tl)],

by an integral consisting of the segment (X (u) : —tg < u < t1) of the process and
some deterministic quantities, where %y, t1, and T are real constants such that

(1.11) —0< -t <0<t <T < oo, —ty < t1.

The conditional expectation above stands for the predictor of the future value X (7')
based on the partial data X (u) (—t9 < u < t1). It should be noticed that computing
such a finite-past predictor of a given process is generally a difficult problem (cf.
Dym and McKean [6]). In fact, it has been computed explicitly only for very special
processes. The result for fBm with 1/2 < H < 1 by Gripenberg and Norros [10]
and that for fBm with 0 < H < 1/2 by Nuzman and Poor [11] (see also Anh and
Inoue [2]) are among such results. The proofs in these references, however, cannot
be applied to the process (X (t)) since they rely on special properties of fBm.

It turns out that, for the process (X(t)), the existence of a good AR (autore-
gressive) coefficient, in addition to the MA coefficient ¢(-), is a key to our solution
to the problem above. Here we define the AR coefficient a(-) by

da

S dt
where the function a(-) on (0,00), in turn, is defined by

(1.13) —iz ( /0 ” emc(t)dt> ( /0 ” ema(t)dt> =1 (S2>0).

We will see that a(-) has a good integral representation similar to (1.3) (Corollary
3.3). In particular, a(+) is a positive decreasing function on (0, c0).
2
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To state the main theorem, we introduce some functions which are given explic-
itly in terms of ¢(-) and a(-). We define b(t, s) by

(1.14) b(t,s) := / c(w)a(t + s — u)du (t,s > 0).
0
We will see that b(-,-) is the kernel of the predictor based on the infinite past. We
put
(1.15) to:=tyg+1t1, t3:=T —1t.
For t,s € (0,00) and n € N, we define b, (t, s) = b, (¢, s;t2) iteratively by

by (t,s) := b(t, s),

(1.16) bt ) i /000 b(t, )by 1 (£ -+ 1, 3)du (n=2,3,...).

We define by, (s) = by (s;ts, t2) by
(1.17) by () := by (s, t3) (s >0, n=1,2,...),

and a nonnegative function h(s) = h(s;ts,t2) by

o0

(1.18) h(s):=> {bar-1(ta —5) +bak(s)} (0 <s<to).
k=1

For s > 0, we define D,,(s) = Dy(s;t3,t2) by

c(ts — s) (n =0),
(119)  Dals):= /0 Tl s+ o))y (n=1,2,...)

and k(s) = k(s;t3,t2) by

(1.20) k(s) = Du(s)>  (s>0).
n=0

Here is the main theorem.

Theorem 1.1. We assume (1.2)~(1.8). Then

(1.21) /0 h(t)dt =1,
(1.22) EX(T)| o(X(s): =tg <s<t)]= /: h(s +to) X (s)ds,
(1.23) E|Xp —E[X(T)| o(X(s): —tg < s < t)]]> = /000 k(s)ds.

The prediction formula (1.22) and the corresponding result (1.23) for the mean-
squared prediction error are explicit in the sense that both h(-) and k(-) are given
explicitly by infinite series made up of the MA coefficient ¢(-) and the AR coefficient
a(+). These explicit representations of h(-) and k(-) will be useful for, e.g., deriving
precise asymptotics of h(:) and k() as the length of observation to = ty+ 1 goes to
infinity (cf. Inoue and Kasahara [9]). It is interesting that the equality (1.21) for
the predictor kernel h(-), which has been known to hold for fBm with 0 < H < 1/2
(see [11] and [2]), also holds for general (X (¢)).
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The proof of Theorem 1.1 is based on a method which involves alternating pro-
jections associated with the infinite past and the infinite future, which we now
explain. We write M (X) for the real Hilbert space spanned by {X(¢) : ¢ € R} in
L?(Q, F,P), and || - || for its norm. Let I be a closed interval of R such as [—tg, t1],
(—o0,t1], and [—tg,00). Let M;(X) be the closed subspace of M (X) spanned by
{X(t) : t € I'}. We write Py for the orthogonal projection operator from M (X) onto
M;(X), and P for its orthogonal complement: P17 = Z — Py Z for Z € M(X).
Notice that since (X(t)) is a Gaussian process, we have

P[—to,tl]Z =F [Z| U(X(S) =1y < s < tl)] (Z € M(X))
In this method, the first priority is to show the following equality (Theorem 4.11):
(1.24) Mi—0,,](X) = M(—00,1,](X) 0 M]_y5,00) (X).

By von Neumann’s alternating projection theorem (cf. Pourahamadi [12, Section
9.6.3]), this is equivalent to

(125) P[ to,tl} = S- lim {P to, oo)P(foo,tl}}na

n—00

where s-lim denotes strong limits. The equality (1.25) enables us to represent
quantities related to P_y; ;1 in terms of the MA and AR coefficients since P_ 4]
and Py o) themselves admit such representations. For example, we show that

P_o g X (T) is of the form ffoo b(t—s,T—t)X(s)dt with b(-,-) in (1.14) (Theorem
3.7), an analogue of Wiener’s prediction formula (see Wiener and Masani [14]).

Notice that the prediction formula (1.22) is given by an ordinary integral rather
than a stochastic integral. The absolute convergence of this integral is not trivial,
and a large part of this paper is devoted to showing it (see, e.g., Proposition 4.3).

We derive basic properties of (X (¢)) in Section 2. In Section 3, we consider
prediction of (X (¢)) from an infinite part of the past. We prove Theorem 1.1 in
Section 4, using the results in Sections 2 and 3. Finally, in Section 5, we prove an
L?-boundedness theorem which we need in the proof of Theorem 1.1.

2. BASIC PROPERTIES

The purpose of this section is to study basic properties of the process (X(t))
defined by (1.2). Throughout the section, we assume (1.3), (1.4) and

1
(2.1) / c(t)?dt < oo.
0
We put fi(s) :=c(t —s) —c¢(—s) for t,s € R.
Lemma 2.1. We have [%_|fi(s)*ds < oo for t € R.
Proof. Since [ |fi(s)|?ds = [*°_|f—¢(s)|*ds, we may assume ¢ > 0. Then

o0 t
/ |f:(s)2ds = / |e(t + 5) — ¢(s)|2ds +/ c(s)%ds.
_ 0 0
By (2.1), we have fo )2ds < 0o. Since c(s) — c(t + s5) < —tc/(s) for s > 0 and

/too d(s)%ds < —c'(t) /too(—c'(s))ds = —c'(t)e(t) < oo,

we have [;¥[c(t + s) — ¢(s)[*ds < oo. O



Let (W (t) : t € R) be a one-dimensional standard Brownian motion such that
W(0) = 0. Lemma 2.1 allows us to have the next definition.

Definition 2.2. We define a centered Gaussian process (X (¢) : ¢ € R) with sta-
tionary increments by (1.2).

We define

F(z):= /Ooos_lizu(ds) (Sz >0, z#0).

Lemma 2.3. Let t € R. Then, in L*(R,d¢),

N

(2.2) (e ™ —1)F(€) = lim e 8 f,(s)ds.
N—oo J_ N

In particular, (e7" — 1)F(¢) € L*(R, d).

Proof. By Lemma 2.1, the limit on the right-hand side of (2.2) exists in L?(R, d¢).
Hence we may prove (2.2), for £ # 0, in the sense of pointwise convergence. For
N > |t] and € £ 0,

N
/ T fi(s)ds = (e = DF () — eI, N +1) +1(¢, N),
-N

where I(¢,u) == [;° e (5=10u /(s — i€)v(ds) for u > 0. By the dominated conver-
gence theorem, I(§,u) — 0 as u — co. Thus we obtain (2.2) for £ # 0. O

The Brownian motion (W (¢)) has the following spectral representation as a pro-
cess with stationary increments:

B 00 (1 _ e—itﬁ)
W= [ S aug  en),

where Zj is a C-valued Gaussian random measure such that

Bl20(A) Z0(B)] = = /A e

" or

By (1.2), Lemma 2.3 and the Parseval-type formula for integrals involving Z(d¢),
we have the following spectral representation for (X (¢)):

°© 1 _ e—itf )
(2.3 X(t)= [ e COF©Z) (e R).
— 00
We recall some notation on random distributions (cf. [8, Section 2] and [3, Section
2]). We write D(R) for the space of all ¢ € C*°(R) with compact support, endowed
with the usual topology. We define the real Hilbert space M by

M := {a’ € LQ(Qaj:a P) : E[CL] = 0}7 (aaa) = E[ZIZZ] ) ||a’“ = (aaa)l/Q'
A random distribution Y (with expectation zero) is a linear continuous map from

D(R) to M. We write DY for its derivative. For a closed interval I of R, we write
M;(Y) for the closed linear hull of {X(¢) : ¢ € D(R), supp ¢ C I} in M.

Proposition 2.4. The derivative DX of (X (t)) is a purely nondeterministic sta-
tionary random distribution, and the representation (1.2) is canonical in the sense
that M(_ )(DX) = M(_so y(DW) for every t € R.

Proof. Since RF(z) > 0 for z = x + iy with y > 0, F(z), whence —izF(z), is an
outer function on Rz > 0. Thus the proposition follows. O
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Example 2.5. For H € (0,1/2), let v be as in (1.9). Then we have (1.10); and so
(1.4)-(1.8) are satisfied. The resulting process (X (¢)) is the fractional Brownian
motion (By(t)) which has the representation (1.1).

We define the positive constant v(H) by

B _ T(2—2H) cos(nH)
o(H) = |By(1)]% = TH(1 - 2H)

Example 2.6. Let f(-) be a nonnegative, locally integrable function on (0, cc). For
Hy, H € (0,1/2) and slowly varying functions ¢y(-) and £(-) at infinity, we assume

(2.4 Flo) ~ T 34

(2.5) fls) ~

cos(mHy)
7r
We put v(ds) = f(s)ds on (0,00), so that c(t) = [;°e ! f(s)ds for ¢ > 0. By
Abelian theorems for Laplace transforms (cf. Bingham et al. [5, Section 1.7]), (2.4)
and (2.5) imply (1.7) and

(0 < H<1/2).

Me)s) (s — 0+),

57(%+H°)€0(s) (s = 00).

1 1
(2.6) e(t) ~ ————¢ @ Hlg1/8)  (t— 04),
I'(3 + Hy) /
respectively. In particular, (1.4)—(1.8) are satisfied. We put
o(t) = B[|X(t+s)— X(s))*]Y?2 (>0, se€R).
Then, by arguments similar to those of the proof of Lemma 2.7 below, (2.6) implies
o(t)? /1 c(tu)? /°° c(t(l+w) cltu)]?
te(t)?  Jo () 0 c(t) c(t)

1 00
S / W10=0/2) gy, 1 / {14 )07 — 0=/ = (i)
0 0

as t — 0+, or

du

o(t) ~t"0y(1/t)/v(Hy)  (t — 04).
In particular,
Hy = sup{B: o(t) = o(t’) (t = 0+)} = inf{B : ¥ = o(c(t)) (t — 0+)}.

Thus Hy is the index that describes the path properties of (X (¢)) (cf. Adler [1,
Section 8.4]). On the other hand, the index H describes the long-time behavior of
(X (t)) (cf. Lemma 2.7 below).

We need the next lemma in Sections 3 and 4.

Lemma 2.7. We assume (1.7) and (1.8). Then | X (t)| ~ t"¢(t)\/v(H) ast — oo.
Proof. For t > 0, we have | X (t)||* = fo 2du+f0 c(t+u) —c(u)|*du. It follows

from (1.7) with (1.8) that fo )2du ~ te(t fo u?"=1du as t — co. We claim
o0
(2.7) / le(t + u) — c(u)>du ~ te(t)*w(H) (t = o),
0
where w(H) := [°{(1 +u)~ 2 — uf~2}2du. This claim implies

1/2
X (@)]| ~ t/%c(t) [/01 w1t + wH] ~tHot)\Jo(H)  (t — oo),
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whence the lemma.
We complete the proof by proving (2.7). By the monotone density theorem
(cf. [5, Theorem 1.7.5]), we have

i_H 1
2.8 )~ =G gy 22 (— —H) t=Le(t t
CONST0 0w~ o) (¢ )
where v(t) := —dc(t)/dt for t > 0. We put F(t) := (1) for 0 < ¢t < 1, and

7(t) :==(t) for 1 <t < co. Then, by (2.1), we have, for t > 1,

0< h le(t + u) — c(u)>du — cL ¥ (v)dv
0 0o |Ju

1
= /0 {|c(u) —c(t+u)? = le(l) —c(t +u) + (1 - u)7(1)|2} du

2
du

1

= /0 {e(w) = e(1) = (1 = w)y(D) He(w) +e(1) = 2¢(t + u) + (1 = u)y(1) }du
1

< /0 {e(w) = c(1) = (1 = w)y(D) He(w) +¢(1) + (1 = u)y(1) }du < oo

Thus, instead of (2.7), we may prove

(2.9) /0 h { / o 7@)@}2 du ~ te(® wn  (t — 00).

Choose € > 0 so that € < max(H, (1/2) — H). By applying [5, Theorem 1.5.6 (ii)]
(Potter’s theorem) to the slowly varying function (1 4 )3/2~H3(t), we easily find
that there exists a positive constant A satisfying

F(tv) /7 (t) < Amax(v=G/2AFe HH=B/2=ey (1 > 1, v > 0).

The dominated convergence theorem now yields, as ¢ — oo,

/000 {/um 7(@)(1@}2 du = t35(t)? /OOO {/uuﬂ %(tv)/&(t)dv}Z "
~(3- H)th(w? [ " UH_(3/2)dv}2du,

which implies (2.9). O

3. PREDICTION FROM AN INFINITE SEGMENT OF THE PAST

In this section, we consider prediction of (X (¢)) from an infinite segment of the
past. We need such results in the proof of Theorem 1.1. Throughout the section,
we assume (1.2)-(1.5), (1.7), (1.8), and (2.1). Notice that the processes (X (¢)) in
Examples 2.5 and 2.6 satisfy all these conditions.
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Lemma 3.1. Let b(-) and f(-,-) be nonrandom real measurable functions such that

(3.1) /_oo |b(T)]dT < o0,

(3.2) /_ Z 1b()| (7:: f(u,T)Qdu> dr < oo,

(3.3) /_Z 1b()| (/_Z f(u,T)2du> 7 i < oo.

Then we have, almost surely,

(3.4) / Z ( / Z b(r) f(u,T)dT> AW (u) = / Z b(r) ( / Z f(u,T)dW(u)> dr.

By (3.3), the integral on the right-hand side of (3.4) is well-defined as a Bochner
integral taking values in L2(Q, F, P). On the other hand, (3.1) and (3.2) imply

(/_Z |b(T)f(u,T)|dT>2 < </_Z |b(7’)|d7’> </_Z |b(T)|f(u,T)2dT> < oo,

Thus the integral on the left-hand side of (3.4) is also well-defined. We can prove
this Fubini-type lemma in the same way as the proof of [7, Lemma 4.5]; so we omit
the details.
We define
M p is a Borel measure on (0, c0) satisfying (1.4)
H* and 1(0,00) = [7°s tu(ds) = oo. '

We consider the correspondence between i € M and v € M through the relation

35)  —iz {/Ooo S _lizu(ds)} {/Ooo : _lizu(ds)} 1 (32>0).

Theorem 3.2. The relation (3.5) defines a one-to-one and onto map 0 : M > pu —
O(p) =veM.

Proof. We write Fr(z) for the Stieltjes transform [;°(s —iz)~'7(ds). Let p € M.
By [8, Theorem 3.1], there exist finite Borel measures v, (n = 1,2,...) on (0, c0)
such that —izF, (2){(1/n) + F,(2)} = 1 for Iz > 0. Then, putting z = i, we
find that sup,, 7[0, co] < oo, where we define the measure 7, on [0, co] by 7, (ds) =
I (9,50 (5) (14+s)~'v,(ds). By the Helly selection principle, there exists a subsequence
n’ such that 7, converges weakly to 7, say, on [0, 00]. It follows that

—iz [-0{0}/(iz) + v{oo} + F,(2)] Fu(2) =1 (Sz > 0),
where v is the measure on (0, 00) defined by v/(ds) := I(g o) (s)(1 + s)P(ds). Since
limy 04 [y~ y/(s + y)v(ds) = 0 and limyo4 [;° 1/(s + y)u(ds) = oo, we see that
7{0} = 0. In the same way, we have 7{oo} =0 and [;°s™'v(ds) = v(0,00) = oo.
Thus there exists v € M satisfying (3.5). Since F,, determines v, and (3.5) is
symmetric in v and pu, the theorem follows. O

It follows from (1.5) that v(0,00) = ¢(0+) = oo, while (1.7) and (1.8) imply
I s tv(ds) = [3° c(t)dt = 0o. Recall a(-) and a(-) from (1.13) and (1.12), respec-
tively. From Theorem 3.2, we immediately obtain the next corollary.
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Corollary 3.3. Define p € M by p = 0(v). Then we have a(t) = [~ e *pu(ds)
and a(t) = [ e ¥su(ds) for t > 0.

Recall b(-,-) from (1.14).
Lemma 3.4. We have

(3.6) /0 c(u)a(t —u)du =1 (t>0),
(3.7) /Oo bts)dt=1 (s> 0),
0
(3.9) ot +5) = / ot — wpb(u,s)du (£, > 0).
0

Proof. For Sz > 0, we have —1/(iz) = [;° ¢’**ds and

(/OOO = ()dt) (/UOO et ()dt) /Uooeizt (/Otc(u)oz(t—u)du> dt.

Hence (3.6) follows from (1.13) and the uniqueness of the Laplace transform. Since

JoS blt, s)dt = fo a(s — u)du = 1 for s > 0, we obtain (3.7). From (3.6), we
see that fo c(t —|— s —u)du = 1 — [J c(u)a(t + s — u)du for s,¢ > 0, whence
Jo et (fo (t +s— u)du) dt is equal to

1 o0 . S
(3.9) - = / el (/ c(u)a(t + s — u)du) dt.

12 0 0

Since limy_,o0 €% [§ c(u)a(t + s — u)du = 0, we see by integrating by parts that
(3.9) is equal to (—iz) "' [ €"*b(t, s)dt. Therefore [ e"“c(t + s)dt is equal to

( /0 ” eitzc(t)dt> (—i2) < /0 ” eitza(t)dt> ( /0 ” et + s)dt)
_ (/Ooo itz ()dt)( ){/Oooeitz (/Ota(u)c(t—i-s—u)) dt}
= /OOO et </0tc(t - u)b(u,s)du> dt.

This and the uniqueness of the Laplace transform imply (3.8). O
Lemma 3.5. For s > 0, we have

H+1 s ¢=(+3)
b(t,s) ~ 1_‘(17_;[) </0 c(u)du) D) (t — o00).

2

Proof. By putting z = iy in (1.13), we get

(3.10) y ( /0 h e_ytc(t)dt> ( /0 b e—yta(t)dt> 1 (y>0)

Using Karamata’s Tauberian theorem (cf. [5, Theorem 1.7.6]), we see from (3.10),
(1.7) and (1.8) that

(3.11) a(t) ~



This and the monotone density theorem imply

=) (H 4 1)

(3.12) a(t) ~ : (t — 00).

(t)  T(z—H)
Since a(t + s) fo u)du < b(t, s) fo u)du and a(t + s) ~ a(t) as t — oo, we
obtain the lemma. g

Since the map [0,00) 3 s — || X (¢)| is continuous, the next proposition follows
immediately from (3.7) and Lemmas 2.7 and 3.5.

Proposition 3.6. For s > 0, we have [;° b(t, s)|| X (t)||*dt < oo.

Recall Py from Section 1. Notice that P_, X (7T') is equal to the condi-
tional expectation F [X(T')| o(X(s): —oo < s <t)]. The Wiener-type prediction
formula can now be given.

Theorem 3.7. Let 0 <t <T. Then

P ooy X(T) = / "Bt s T — )X (s)ds.

—00
the integral converging absolutely in L?(Q, F, P).

Proof. By Proposition 2.4 and [3, Proposition 2.3 (2)], we have

Py X(T) — X(t) = / {c(T —u) —c(t —u)} dW (u).

For 7,u € R, we put f(u,7) = c(t —u—7)—c(t —u) and b(7) = [ (g o0\ (7)b(7,T —1).
Then, by Lemma 2.7, Proposition 3.6 and the estimate

[ flu = (= 1) - X < {16 - DI+ X1
(3.2) and (3.3) hold. By (3.7) and Lemma 3.1, we have
/000 b(r, T — )X (t — 7)dr — X (t) = /000 b(r, T — 1) {X(t — 7) — X(£)} dr
:/0 b(r. T — 1) [/OO (et —u—7) —c(t—u)}dW(u)] dr
_ /oo [/Ooob(T,T—t) {e(t —u—7) —c(t—u)}dT] AW (u).

—00

Now ¢(t —u—17) —¢(t —u) =0 for u > ¢ and 7 > 0. By Lemma 3.4, we have
c(T—u)—c(t—u):/ b(r, T —t){c(t —u—7) —c(t —u)}dr (u < t).
0

Hence [;°b(r,T —t)X(t —7)dr — X(t) = ffoo {c(T —u) —c(t —u)} dW(u). Thus
the theorem follows. O

Using the Hilbert space isomorphism 6 : M (X) — M (X) defined by §(X(s)) =
X (—s) for s € R, we easily obtain the next corollary to Theorem 3.7.
10



Corollary 3.8. Let 0 <t <T. Then

o

P_i00)X(=T) = / b(t+ s, T —t)X(s)ds,

—t
the integral converging absolutely in L?(Q, F, P).
Example 3.9. As in Example 2.5, we consider (Bg(t)) with 0 < H < 1/2 as
(X(#)). Then [ elc(t)dt = (—iz)~H=1/2) for Sz > 0. It follows from (1.13) that
[ e ta(t)dt = (—iz)"T=(/2) or a(t) = INCE H)*lt_(H“'%) for ¢ > 0. Hence

1
Hts —m+)

a(t) = ——=— (t > 0).
I'(3 — H)
By change of variable u = sv, [;(s — u)H*% (t+ u)*Hfgdu is equal to
1 1
H+l,_g-3 H-1 ~H-2% ; 1 <5>H+§ 1
t 1- 1 t dv = -

stta 2/0( v)7 2 {1l + (s/t)v} 2 dv VDAY -

where we have used the equality
1
1

3.13 / 1—o)P A +a0) P o= ——— p>0, > -1),
(3.13) i (1 —v)P~( ) o PR ( )

which, in turn, is obtained by change of variable (z 4+ 1)u = ¢/(1 — ). Thus

cos(mH) (3>H+§ 1
s t t+s

From Theorem 3.7, we see that, for 0 <t < T,
H) [t (T—+\"t: B
EBu(T)| o(Bu(s) : —o0 < s < 1)] = 2 >/ ( t) u(s)
™ —00 t—s T —s

This prediction formula for fractional Brownian motion with 0 < H < 1/2 was
obtained by Yaglom [15, (3.41)] by a different method.

b(t,s) = (t>0, s>0).

4. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1. Throughout the section, we assume
(1.2)—(1.8). Notice that (1.6) implies (2.1). Let to, t1, and T be as in (1.11).
Recall to, t3, and by (¢, s) = by(t, s;t2) from (1.15) and (1.16). We define

o

B (1) ::/ by (s, u)ds (u>0,n=1,2,...).
2

By (3.7), we have, for n =2,3,... and u > 0,

o o o
/ (/ b(s,v)ds) bp—1(t2 + v,u)dv < / bp—1(t2 +v,u)dv
0 to 0

or By (u) < fBp—1(u). Hence the sequence (8, (u))s2; is decreasing for every u > 0.
In particular, lim,,_,o fn(u) exists and is finite. Recall h(s) = h(s;ts,t2) from
(1.18).

Lemma 4.1. We have
to

(4.1) / h(s)ds =1 — lim f,(t3).
0 n—oo

In particular, ng h(s)ds < 1.
11



Proof. We claim that, for v > 0,

to 0
/ bi(s,u)ds =1 — / by (s, u)ds,
0

(4.2) &

/Otz bu(s, u)ds = /00 b 1(5,w)ds — /Oo bo(s,u)du (n=2,3,...).

t2 to

In fact, the first assertion follows immediately from (3.7), while we have

o.¢] oo oo o.¢]
/ b(s,u)ds = / </ b(s,v)ds) bp_1(t2 +v,u)dv = / bn—1(s,u)ds,
0 0 0 to

whence the assertions for n = 2,3, ... follow. From (4.2), it follows that
to n to
/0 h(s)ds = nll{go;/() br(s,t3)ds =1 — nll)rglo B (t3).
Thus we obtain the lemma. 0

For simplicity, we put

B =0, B = /Bn(t3) (n:1a2a---)'
Recall by, (s) = by(s;t3,t2) from (1.17). We define the random variables Gy, by
t1
/ bn(tl —S)X(S)ds _ﬁnle(tl) +BnX(—t0) (TL = 1,3,...),
—t
G, = t10
/ ba(to + $)X (5)ds — Buo1 X (—to) + X (1) (n=2,4,...).

—to

We also define the random variables €, (n =0,1,...) by € := X (T') and

/to b(t — $)X (s)ds — BuX(—to)  (m=1,3,...),

o0

/too bn(to + 5) X (s)ds — B, X (t1) (n=2,4,...).

Recall P_ ) and P_4; ) from Section 1. We set

P o= P(foo,tl] (TL: 133a5a"')a
n =
P[—to,oo) (n = 2,4,6, [P )

Proposition 4.2. Let n € N. Then
n
(4.3) PPy PLX(T) =en+ Y _ Gy
k=1

Proof. We use induction. By Theorem 3.7, (4.3) holds for n = 1. Suppose that
(4.3) holds for n = m € N. Recall M;(X) from Section 1. Since

(4.4) Mi_ty,1,1(X) C M(_04,1(X) N M4 5)(X)

and Gy € M[_y,1(X) for k = 1,2,..., we have Py 1Gy = Gy for k = 1,2,....
Thus

m m
Ppi1 Py PLX(T) = Py (em T Zk:l Gk) = Pntiem + Zkzl G-
12



If m is odd, then, by Corollary 3.8, we have

—to
Prsrem = / (1 — W) Pr_gy ooy X () — B X (—t0)

o0

_ /__tO bon (1 — 0) (/oo b(to + 5, —u — tO)X(s)ds> du — B X (—to)

00 —to
o0
- / bt (to + )X ()ds — B X (—t0) = G + em1,
—to
whence (4.3) with n = m 4+ 1. If m is even, then, using Theorem 3.7, we have
similarly Py11€m = Gyl + €ne1- Thus again we have (4.3) with n = m + 1. By
induction, the proposition follows. O

Proposition 4.3. We have [;° b(s,u)|| X (s)[|?ds ~ | X (u)||* as u — oo.

Proof. We put

a*(r) := a(l) for 0 < z < 1 and a*(x) := a(z) for 1 < x < oo.
Notice that a(x)

a*(x) for x > 0. By (3.7), we have, for u > 0,
u

la(s +u—7) —a"(s+u— 7')|c(7')d7'> “X(S)“2d8

S
8
S

/0 ( Ou la(s +u—7) —a*(5+u—7)|c(7)d7-> I1X (s) [ %ds

<2 (Ori% ||X(s)||2> /01 (/Oua(s - T)C(T)d7> ds

2 (s IXI) [ b u)ds < 2 (s 1X 1)

0<s<1

VAN

By this and Lemma 2.7, we may assume that a(-) is a positive constant on (0, 1].
We put ¢*(z) := ¢(1) for 0 < z < 1 and ¢*(z) := ¢(z) for 1 < 2 < oo. In the
same way as above, we have, for u > 0,

1 u
/ (/ e(r) — ¢ (7)|als +u — T)dT> 1 (5)[2ds < 2 (max ||X(s)||2> .
0 0 0<s<1
On the other hand, by Lemma 2.7 and (3.12), we have
0
(4.5) / a(s)||X(s)||2ds < 00,
1

whence, for u > 1,

/100 (/0 e(r) = " (Dlals u - T>dT) X (s) %
- (/01 e(r) = e (r)lats +u - T)df) 1X(s)]12ds

<(/ () - car) ([ aoIx k) <.

Thus we may also assume that ¢(-) is a positive constant on (0, 1].
By the substitutions s = us’ and 7 = u7r’, we see that [;° b(s,u)|| X (s)||*ds is
equal to

) ) [ el afu(s £1-7) Y X
wewal X [ </ ) T al d) X ™




Choose § > 0 so that H + 36 < 1/2. By applying [5, Theorem 1.5.6 (ii)] to the
slowly varying functions a(t)(1 +)7+3, c(t)(1+ )27 and || X (£)||2(1 +¢) 27, we
see that there exists a positive constant M such that, for u > 1,
c(ur)fe(u) < MrT=370  (0< 1< 1),
a(u(s+1—r7))/a(u) < Mfi(s,1) (s>0,0<7<1),
IX (sw)llP/IX ()|* < Mfa(s) (s> 0),

where we define f1(s,7) := max{(s+1—7)_H_%+‘5, (s+1—7)_H_%_‘5} and fy(s) :=
(14 5)?" max(s?, s7?9). By (3.13), we have

/100 (/01 TH“fl(s,T)dT> fa(s)ds

o] 1
:/ (/ TH%6(8+1—T)H%+5> (14 s)2s%ds
1 0

1 -1 0087H7%+5 ol s
=(H+=--9§ —(1 d .
( +2 > /1 159 (14 5)°"s%ds < oo

In the same way,

/01 (/08 TH_%—éfl(s,T)(h') fa(s)ds

1 s
= / / TH_%_(S(S +1- T)_H_%—HS) (14 5)2Hs7%ds
0

0
1 T ptsTos 2H .~
<|H+=-9 /714—3 s %ds < oo.
<(ueg=0) [ g aee
Moreover,

/01 (/1 TH—%—ﬁfl(s,T)dT> fols)ds
- /01 (/1 =305 11 T)—H—%—5> (1 + 5)2570ds

1 1
< (/ TH_%_(S(I — T)_%(H+%+6)d7> (/ 3_%(H+%+5)(1 + 3)2H3_5d3> < o0.
0

0
By the dominated convergence theorem, we obtain

() a(u(s +1-7) ) X2,
2, (/ (u) o) d) X"

00 1
:/ </ THé(S—i—l—T)Hng) s* ds
0 0

1 o 1 o T
= T -5 ds = e -
(H+3)Jo (1+4s)si+t3 (H + 5)sin(r(H + 3))

Thus the proposition follows. O
Proposition 4.4. Forn=1,2,..., we have
o0
(4.6) / bn(s,u)|| X (s)]|?ds < oo (u>0).
0
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Proof. We use induction. The assertion (4.6) with n =1 follows from Proposition
3.6. Suppose (4.6) holds for n = k > 1. Then

/OOO b1 (s, u) | X ()] *ds = /OOO (/000 b(s,7’)||X(s)||2ds> br.(ts + 7, u)dr.

Now b(s,7) = [ c(v)a(s + T —v)dv < a(s) [; c(v)dv for s,7 > 0, whence we get

[ ssmxonras < ([ atnxneas) [

By (3.7) fo s, T HX (s)|I?ds < maxo<s<i || X(s)||?>. Thus, by (4.5), the function
7 [77b(s, 7)|| X (s)]|?ds is locally bounded on [0, 00). From this, Lemma 2.7 and
Proposition 4.3, we obtain (4.6) with n =k + 1. O

Proposition 4.5. We have, forn =1,3,5,...,

/_—to bn(t1 — 5) X (s)ds = /°° (/‘tO bn(t — 8) [—c(u — ) + c(u)] ds) AV (u),

oo —00 —00

and, forn =2,4,6,...,
/:o bn(to + )X (s)ds = /Z (/Oo bn(to + 5) [c(s — u) — c(~u)] ds) AW (w).

ty
Proof. Suppose that n = 1,3,5,.... We put f(u,s) := —c(u — s) + ¢(u) and
b(s) := I(—oo,—t5)(8)bn(t1 — 5) for s,u € R. Then since [ flu,s)?ds = [| X (=s)||%,
we see from Lemma 2.7 and Proposition 4.4 that (3.1)—(3.3) hold. Hence Lemma
3.1 implies the first assertion. The proof of the second assertion is similar. O

Recall Dy, (s) = Dy (s;ta,t3) from (1.19).
Proposition 4.6. We have

ooDn(s—tl)dT/V(s) (n=0,2,4,...),

(47) Phie,={ 7"

—to
— D, (—tg — s)dW*(s) (n=1,3,5,...).
Proof. Tt is easy to see that (4.7) holds for n = 0. Suppose that n = 1,3,.... Then,
by Proposition 4.5 and [3, Proposition 2.3 (7)], Pn%rlen is equal to
—to u —to
—/ (/ b (ti — s)c(u — s)ds) dW*(u) = — D, (—to — s)dW*(s),
whence (4.7) for n =1,3,.... The proof of (4.7) for n = 2,4,... is similar. O
Proposition 4.7. For s >0 and n=0,1,..., we have
(4.8) bn+1(s) = / a(s + u) Dy (u)du.
0

Proof. We easily find that (4.8) holds for n = 0 and s > 0. We assume that n > 1.
Then, by the Fubini-Tonelli theorem, we see that, for s > 0, b,1(s) is equal to

/000 b(s,u)by,(to + u)du = /Ooo </0“ c(u —v)a(s + U)dv) by (to + u)du
_ /000 a(s +v) (/Ooo b (t2 +u+v)c(u)du> dv = /000 a5 + ) Dy (0)do.
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Thus (4.8) holds. O
We define

K(z,y) = /Ooo (c(@) — clz+ ) alts+ 5 +y)ds (2,5 > 0).

Proposition 4.8. We have

/Oo </Ooo K(to + SaU)Dnl(u)du> dW*(s)  (n=1,3,5,...),

—to
Pn+1€n =

_ /t; (/000 Kt - s,u)Dn_l(u)du> dW(s)  (n=2,4,6,...).

Proof. We assume n = 1,3,.... Then, by [3, Proposition 2.3 (7)], we have

Priien = P_g 00) /oo {/_to bp(t1 — s) [e(u + to) — c(u — )] ds} dW*(u)

—00 —o0

_ /oo {/to bty — ) [e(u + to) — c(u — )] ds} AW (u).

—to —0o0

By Proposition 4.7, for u > —ty, f:cfg bp(ti — s) [c(u +to) — c(u — s)] ds is equal to
/ ds[c(u + to) — c(u +to + s)] / a(te + s+ v)Dy_1(v)dv
0 0

o0
:/ K (to + u,v)Dy_1(v)dv.
0
This proves the case n = 1,3, .... The proof of the case n = 2,4, ... is similar. [
Proposition 4.9. We have lim,_,s fooo Dy (s)%ds = 0.

Proof. We write @ for the orthogonal projection operator from M (X) onto the
closed subspace M(_u 1,1(X) N M[_¢; 50)(X). Then, by von Neumann’s alternating
projection theorem (cf. Pourahamadi [12, Section 9.6.3]), we have

(4.9) Q =s-lim P,P,_1--- P,.
n—oo
From this and Propositions 4.6 and 4.2, we have

D 2d = || P. ? = || P, Py, Py, _ P X (T ?
Qn(S) S o2n+1€2n (—o0,t1] 2nd2n—-1 """ 171 ( )
0

- HP({OQMQX(T)H2 —0  (n— o0).
Similarly, we have lim,, oo fooo Doy, 1(5)%ds = 0. Thus the proposition follows. [
Here is a key lemma.
Lemma 4.10. We have lim,,_,¢ ||e,|| = 0.

Proof. By integration by parts, we have K(z,y) = [;°v(z + s)a(ty + s + y)ds
for z,y > 0, where v(t) := —dec(t)/dt for t > 0 as in the proof of Lemma 2.7.

Since y(t) = [;° e ¥ sv(ds) for t > 0, v(-) is a positive and decreasing function

0
on (0,00). By (2.8), (3.11) and (1.6), the conditions of Theorem 5.1 in the next
section are satisfied with p = (1/2) — H. Hence the integral operator K f(z) =
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Jo° K(z,y) f(y)dy is a bounded operator on L?*((0,00),dx). By Propositions 4.6,
4.8 and 4.9, we have

H%W:iAwDA@%s+Am<ﬂqu&MDnﬂmmOZM

< / D, (s)%ds + ||KH2/ Dy, 1(s)%ds — 0 (n — 00).
0 0
Thus the lemma follows. O

Recall from Section 1 that P;_; ;) is the orthogonal projection operator from
M(X) onto M[—to,tl}(X)'

Theorem 4.11. We have (1.24) and the following equalities:
(410) P[*tO,tl} = %—l}g}_ P’I’LPTlfl P P17

2 X 2
(411) [P, 207 = HP&ZH +3° H(Pnﬂ)an : --P1ZH (Z € M(X)).
n=1

Proof. Let @ be as in the proof of Proposition 4.9. For ¢ € (#1,00), we claim
P[fto,tl}X(t) = QX(t) In fact, (44) implies P[*to,tl] = P[fto,tl}PnPn—l ---Pl,
whence P, P, 1---P; — Py = P[fto mPnPn,l .-+ P;. On the other hand, we
have P[fto tl]Gk = (0 for £ € N. Hence, it follows from Proposition 4.2 and Lemma,

4.10 that
|PuPa 1o PLX(E) = Py g X0 = || Py PP 1 LX)

= HP[fto,tl] (en + ZT Gk) H = HP[J;tO,tl}en

This and (4.9) imply the claim above. The rest of the proof is the same as that of
[3, Theorem 4.6], and so we omit it. O

<llen|| = 0 (n — 00).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By (4.10), Proposition 4.2 and Lemma 4.10, we have
n

(4.12) Py ) X(T) = lim_ ]; G, in M(X).

It holds that

. /hm%+gX@ﬁ+&XPm (n=1,3,5,...),
Z G = 7tt10
k=i / hn(to + )X (5)ds + BaX (1) (n=2,4,6,...),

—to
where, for 0 < s < ty, we define
bl(tQ—8)+b2(8)+"'bn(t2—8) (n:1,3,5,...),
hn(s) =

bi(to — s) + ba(s) + - - bp(s) (n=2,4,6,...).
17



Notice that hp(s) 1 h(s) as n — oo. From (4.12) and Lemma 4.1, we see that
Pi_45,1,1X(T) has the following two kinds of representations:

t1

t1
/ Bt + 5)X ()ds + foo X (—t0) = / Wto + )X (s)ds + oo X (1),

—to —to
where (o 1= lim,,_, o B,. However o must be zero since X (—%9) and X (¢1) are
linearly independent. Thus (1.22) follows. The assertion (1.21) follows from (4.1).
By (4.11) and Propositions 4.2 and 4.6, ||P[J;t0 tﬂX(T)H? is equal to

9 oo 9 oo 0o
HPILX(T)H +3 H(Pnﬂ)lpn . PlX(T)H - Z/ Da(s)%ds
n=1 n=0 0
Thus we obtain (1.23). O

5. L?>-BOUNDEDNESS THEOREM

In this section, we prove the L?-boundedness theorem that we need in the proof
of Lemma 4.10.

Theorem 5.1. Let p € (0,1/2) and let £(-) be a slowly varying function at infinity.
Let C(+) and A(-) be nonnegative and decreasing functions on (0,00). We assume

(5.1) A~ L),
() T'(p)
_ P p

We also assume A(0+) < oo and
[ C(s)ds =0(t) (t —0+) for some q > —1/2.

Then
o
(5.3 swp [ K(ay) (afy) 2 dy < o,
0<z<00 JO
o0
(5.4) sup / K(z,y) (y/2)"/? dz < oo,
0<y<oo
where K(z,y) := [;°C(z +u A(u + y)du for x y > 0. In particular, the inte-
gral operator K deﬁned by (Kf)(z) := fo (y)dy for x > 0 is a bounded
operator on L?((0,00),dy).
Proof. Step 1. Since K (z,vy) y) [° C(s)ds, we have
> Aly)
/0 K(z,y)(x/y)?dy < z'/? (/m C’(s)ds) </0 i dy) -0 (z— 0+),
whence
> 12, _
(5.5) Jim [ K(y)(o/y) Py = 0.
We have
sup / K(z,y)z ?da S/ K(z,0)z /?da
0<z<00 /0 0

gA(o+)/01 (/oo C(s)d) 1/2dx+/ (/ Clz +u)A )du) V2.



By (5.1) and (5.2), [;° C(z+u)A(u)du ~ 7 ' sin(rp)az ! as 2 — oo (cf. [8, Propo-
sition 4.3]), whence

o0
(5.6) sup / K(z,y)z~"?dz < cc.
0<y<oo JO
Step 2. We claim
00 102
5.7 I K 1/2 gy — S0,
(5.7) Jm | K@) @fy) cos(p)

The assertion (5.3) follows from this and (5.5). We have

/ T K (e,y) (o/9) 2 dy

e [ ([ CE ) At
— e [ ([TALE) A ) g,

By standard arguments that involve Theorem 1.5.6 (ii) of [5] and the dominated
convergence theorem (cf. the proofs of Lemma 2.7 and Proposition 4.3), we get

wlggo (/ C(z 1—i—u ‘A(mlgzz;; y))du> 2y

- /0 (/0 (1+ u)1+p1(u n y)l—pdu> y—1/2dy

/ R S / ” ! d T tan(pr)
— u | = — tan(pm).
o A+t 2\ Jy U+ w)ttea2 s p P

Since (5.1) and (5.2) imply

(5.8) lim 22C(x) A(z) = 2500

’
Tr—r0o0 s

we obtain (5.7).
Step 3. We claim

2
im T )2 dy = Ln (pm)
(59) Jim [ () () e = S,

The assertion (5.4) follows from this and (5.6). We put C*(z) := C(1) for0 < z < 1,
and C*(z) := C(x) for 1 < 2 < co. Then

/0°° (/ooo Cl@ +u) = C7(@ +u)|A(u + y)du) (y/x)"/? da
< yM2A(y) /01 </01 [C(x +u) + C*(z + u)] du) 120

< y'2 A(y) {/01 (/:o C(u)du) 7 V2dx + C(1) /01 ml/Zdaz} =0 (y— ).

Thus, to prove (5.9), we may assume that C(-) is a positive constant on (0, 1]. As
in Step 2, [;° K(z,y) (y/ac)l/2 dzx is equal to

) (1RO ) A@rD) Y s,
vOwAW | (/0 Cty A(y) d) -




By

[5, Theorem 1.5.6 (ii)] and the dominated convergence theorem, we have

[ [T Catw) Alylutl) N iy
yl%o 0 </0 C(y) A(y) ! ) ¢

I A 1 T
_/0 </0 (1+U)1_p(m+u)1+pdu>x dac—ptan(pﬂ).

Thus, from (5.8), we obtain (5.9) as desired. O
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