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Abstract. For a nonnegative integrable weight function w on the unit circle
T , we provide an expression for p = 2, in terms of the series coefficients of
the outer function of w, for the weighted Lp distance inff

�
T |1 − f |pwdµ,

where µ is the normalized Lebesgue measure and f ranges over trigonometric
polynomials with frequencies in [{. . . ,−3,−2,−1}\{−n}]∪{m}, m ≥ 0, n ≥ 2.
The problem is open for p �= 2.

1. Introduction

Many prediction problems of stationary stochastic processes (cf. [2, 7, 10, 14])
are equivalent to finding the distance from the constant function 1 to a subspace
M(S) = sp{ek : k ∈ S} in Lp(w), where S is a subset of the integers Z, ek = e−ikλ,
w is a nonnegative integrable function on the unit circle T , 0 < p < ∞, and Lp(w)
is the weighted Lp space on T with norm ‖f‖p = {∫

T
|f |pwdµ}1/p. Here µ is the

Lebesgue measure on T , so normalized that µ(T ) = 1. Write

σp(w,S) = inf
f∈M(S)

‖1 − f‖p

for the distance. For example, M(S) is populated by polynomials f = a1z +a2z
2 +

· · · + anzn, z = eiλ, and their limits in Lp(w) when the index set S is the halfline
S0, i.e.,

S0 = {. . . ,−3,−2,−1}.
In this case, the well-known Szegö theorem asserts that, for p > 0,

σp(w,S0) = exp
{

1
p

∫
T

log wdµ

}
(1.1)

if log w ∈ L1, otherwise σp(w,S0) = 0 (see, e.g., Gamelin [5, p. 156]). The work
in Nakazi [10] for the index set S1 = S0 ∪ {1, 2, . . . , n}, n ≥ 1, has generated
considerable interest in computing σp(w,S) when the index set S is S0 with finitely
many points of Z added or deleted. To name some related contributions, let us
mention here Cheng et al. [2], Frank and Klotz [4], Klotz and Riedel [6], Kolmogorov
[7], Miamee and Pourahmadi [9], Pourahmadi [13, 14], and Urbanik [15]. At present,
the best known general result is Theorem 2 of Cheng et al. [2] which states that, for
such an S, σp(w,S) is positive if and only if log w ∈ L1(dµ). However, the problem of
computing σp(w,S) and the function f0 in M(S) attaining it has remained largely
elusive, even for p = 2, except in a few special cases enumerated in Section 2. In
this paper we solve the problem for a reasonably general index set S that could shed
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light on some difficulties commonly encountered in this area of research. Section
3 presents the results for p = 2 and contains some open problems for the general
p. It seems that a successful solution of prediction problems for the p = 2 case
can be traced to striking the right balance between duality and orthogonalization.
Unfortunately, the collapse of this balance does occur often in the p �= 2 case, since
the notion of orthogonality is not well developed here.

2. duality and orthogonalization

Throughout the paper we assume log w ∈ L1(dµ), so that w(eiλ) = |φ(eiλ)|2 for
some outer function φ in the Hardy class H2. Let bk’s and ak’s be the coefficients
in the following series expansions:

φ(z) =
∞∑

k=0

bkzk,
1

φ(z)
=

∞∑
k=0

akzk, |z| < 1.

Note that |b0|2 = exp{∫T log wdµ} = |a0|−2 and that

b0a0 = 1,

l∑
k=0

bkal−k = 0, l = 1, 2, 3, . . . .(2.1)

Explicit expressions for the bk’s and ak’s in terms of the Fourier coefficients of log w
can be found in Nakazi and Takahashi [11] and Pourahmadi [12].

For the index set S0−n = {. . . ,−n−3,−n−2,−n−1}, n ≥ 0, which corresponds
to removing the first n frequencies from S0, it is known that

σ2
2(w,S0 − n) =

n∑
k=0

|bk|2(2.2)

(see [7, 11, 2]). This is the so-called (n +1)-step prediction variance. For the index
set S1 = S0 ∪ {1, 2, · · · , n}, which corresponds to adding the next n frequencies to
S0, it is shown in Nakazi [10] that

σ2
2(w,S1) =

(∑n

k=0
|ak|2

)−1

(2.3)

if w−1 ∈ L1(dµ). The rather curious “inverse” relationship between the distances
in (2.2) and (2.3), and also the need for the unnatural condition w−1 ∈ L1(dµ)
were explained by establishing a duality between L2(w) and L2(w−1) as Banach
spaces (see [9, 2]) and noting that the complement Sc

1 = Z0 \ S1 of S1 in Z0 is
equivalent to the halfline S0 − n, where Z0 = Z \ {0}. Consequently, a general
and more challenging prediction problem based on S1 in L2(w) was reduced to an
ordinary prediction problem in L2(w−1). More generally, for any index set S ⊂ Z0

with finitely many points of Z added or deleted, let Sc = Z0 \S be the complement
of S in Z0, and for a fixed p ∈ (1,∞), define q and r by (1/q) + (1/p) = 1 and
r = 1/(1 − p), respectively. Then the same duality argument shows that

σp(w,S) = σq(wr , Sc)−1(2.4)

if wr ∈ L1(dµ). Though the latter unnatural restriction can be weakened [2] to
log w ∈ L1(dµ), the quantity σq(wr , Sc) might not be well-defined. Fortunately, for
the index set S1, this difficulty was resolved in [2, Theorem 3] using another dual
extremal problem in [3] related to the projection of Lp onto the Hardy space Hp.
However, for the general S, defining the right hand side of (2.4) remains an open
problem. Ideally one would like to apply (2.4) when one problem is simpler than
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the other, but (2.4) is of no use when the prediction problems corresponding to S
and Sc are equally difficult or even identical. In the former situation, a suitable
orthogonalization coupled with (2.4) seems to provide a good recipe for solving some
prediction problems. For example, for n ≥ 2, the complement of S2 = S0 \ {−n}
in Z0 is equivalent to S3 = S0 ∪ {n}, corresponding to deleting and adding a single
observation to S0, respectively. Neither problem is particularly simple but the
latter seems simpler. In [2, Theorems 5, 6], an orthogonalization method is used to
compute σ2(w,S3), then the duality relation (2.4) to give σ2(w,S2), yielding

σ2
2(w,S3) = |b0|2

∑n−1
k=0 |bk|2∑n
k=0 |bk|2 , σ2

2(w,S2) = |a0|−2

∑n
k=0 |ak|2∑n−1
k=0 |ak|2

.(2.5)

In this paper, we compute σ2(w,S4) for the more general index set S4 = S2∪{m}
with n ≥ 2 and m ≥ 0, i.e.,

S4 = {. . . ,−n − 3,−n − 2,−n − 1} ∪ {−n + 1, . . . ,−1} ∪ {m}.
This index set has features of both S2 and S3. In fact, it reduces to S2 when
m = 0, while its complement Sc

4 in Z0 has the same form as S4, so that the duality
relation (2.4) is of no use. Here, too, we show that an orthogonalization technique,
the key step of which is to compute the projection P em

M of em onto the subspace
M = M(S2), can be used to solve the problem. To set the notation, let êk stand
for the orthogonal projection of ek onto the subspace M1 = M(S0 − n). Since
ek − êk, k = −n + 1, . . . ,−1, are orthogonal to M1, the subspaces M and M(S4)
can be written as the following orthogonal sums:

M = M1 ⊕ sp{ek − êk : k = −n + 1, . . . ,−1},

M(S4) = M⊕ sp{em − P em

M }.
(2.6)

Thus, computing P em

M , its coprojection and norm are the first priority. The following
identity which is a generalization of [2, Theorem 6] is of independent interest and
curious so far as its relation with σ2

2(w,S0 − m) and σ2
2(w, S̃1), where S̃1 = S0 ∪

{1, . . . , n − 1} (which is S1 with n − 1 instead of n), is concerned:

‖em − P em

M ‖2 = σ2
2(w,S2 − m) = Q−1|cm,n|2 +

m∑
j=0

|bj |2

= |cm,n|2σ2
2(w, S̃1) + σ2

2(w,S0 − m),

(2.7)

where ‖ · ‖ = ‖ · ‖2 and

Q =
n−1∑
i=0

|ai|2, cm,n = −
m∑

k=0

bm−kan+k.(2.8)

The constant cm,n is indeed the coefficient of e−n in the formal series expansion of
the (m + 1)-step predictor P em

M(S0)
(see [16]). Finally, the desired distance is

σ2
2(w,S4) = σ2

2(w,S2) − |b0|2 |b̄m − ᾱman|2
‖em − P em

M ‖2
,(2.9)

where

αm = Q−1cm,n.(2.10)

In contrast to (2.2), (2.3) and (2.5), where the distances depend either on {bk}
or {ak} alone, those in (2.7) and (2.9) do depend on both. Explicit forms of these
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distances provide useful tools for assessing the impacts of adding (deleting) a vector
to decreasing (increasing) such distances. In particular, it follows from (2.7) that
removing e−n from S0 will not increase the distance of em from M if cm,n is zero.
Similarly, from (2.9), adding em to S2 will not decrease σ2

2(w,S2) if b̄m = ᾱman.
These phenomena are bound to have interesting prediction-theoretic interpretations
and statistical consequences (cf. [16, 14]). It would be useful and instructive to have
a few concrete examples of weight functions w or stationary processes displaying
these phenomena.

3. The results and proofs for p = 2

Throughout this section, for a complex matrix A = (aij), we write Ā, A′ and
A∗ for the matrices (āij), (aji) and (āji), respectively. Using the outer function
φ ∈ H2, we define ξk = e−ikλ/φ(eiλ) and note that {ξk : k ∈ Z} is a complete
orthonormal basis for L2(w) such that sp{ek : k ≤ n} = sp{ξk : k ≤ n}, n ∈ Z, and
that en =

∑∞
j=0 bjξn−j , n ∈ Z. We express various (co)projections in terms of ξk’s.

Theorem 3.1. Suppose w is a nonnegative integrable function with log w ∈ L1(dµ).
Then we have the following:

(1) P em

M = êm+
∑n−1

k=1 βk,m(e−k− ê−k), where βm = (βn−1,m, . . . , β1,m)′ satisfies
(3.3) below.

(2) em − P em

M = αm

∑n−1
i=0 āiξi−n +

∑m
j=0 bjξm−j , where αm is as in (2.10).

(3) ‖em − P em

M ‖2 = Q−1|cm,n|2 +
∑m

j=0 |bj |2, where Q and cm,n are as in (2.8).

For m = 0, Theorem 3.1 gives the explicit form of P e0
M, which is needed for

projecting e0 on M(S4). In view of (2.6), we also need to project e0 on the one-
dimensional subspace sp{em − P em

M } or determine the coefficient

γ =
(e0, em − P em

M )
‖em − P em

M ‖2
,(3.1)

where (·, ·) is the inner product of L2(w), i.e., (f, g) =
∫

T
f ḡwdµ. The relevant

results are summarized in the next theorem.

Theorem 3.2. Suppose w is a nonnegative integrable function with log w ∈ L1(dµ).
Then the following hold:

(1) γ = b0(b̄m − ᾱman)‖em − P em

M ‖−2.
(2) P e0

M(S4)
= ê0 +

∑n−1
k=1 βk,0(e−k − ê−k) + γ(em − P em

M ), where βk,0 is as in
(3.3) but with m = 0.

(3) e0 − P e0
M(S4) = (α0 − γαm)

∑n−1
i=0 āiξi−n + (b0 − γbm)ξ0 − γ

∑m−1
j=0 bjξm−j .

(4) ‖e0 − P e0
M(S4)

‖2 is as in (2.9).

Let e = (e−(n−1), . . . , e−1)′ and ê = (ê−(n−1), . . . , ê−1)′. For computing the
projection of em onto the (n − 1)-dimensional span of the entries of e − ê, the
(n − 1) × (n − 1) matrix A = (aij) and (n − 1)-vector c = (c1, . . . , cn−1)′ with the
following components are needed:

aij =
(
e−(n−i) − ê−(n−i), e−(n−j) − ê−(n−j)

)
, i, j = 1, 2, . . . , n − 1,

ci =
(
e−(n−i) − ê−(n−i), em

)
, i = 1, 2, . . . , n − 1.
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We define the (n − 1)-vector b by b = (b1, b2, . . . , bn−1)′ and the (n − 1) × (n − 1)
lower triangle matrix T by

T =




b0 0 · · · 0
b1 b0 · · · 0
...

...
. . .

...
bn−2 bn−3 · · · b0


 .

Then, since e−k − ê−k =
∑n−k

j=0 bjξ−k−j , the following representation of e − ê is
immediate:

e − ê = ξ−nb + Tξ,(3.2)

where ξ = (ξ−(n−1), . . . , ξ−1)′. From this, we obtain

A = TT ∗ + bb∗, c = b̄m+nb + T b̄r,m,

where br,m = (bm+n−1, . . . , bm+1)′ is a reversed and shifted version of the vector b
above. With these notations, the normal equation for βm in Theorem 3.1 (1) is

Aβ̄m = c.(3.3)

Further, we define a = (a1, . . . , an−1)′. Then, by (2.1), (2.8) and (2.10),

cm,n = bm+na0 + b′r,ma, αm = Q−1(bm+na0 + b′r,ma).

Also, Q = |b0|−2(1 + |b0|2a∗a), in view of a∗a =
∑n−1

i=1 |ai|2.
Since the matrix A is a rank-one perturbation of G = TT ∗, it can be inverted

easily using the inverse of G and the relationship between ak’s and bk’s described
in (2.1). The inverse of A and other relevant results are summarized in the next
lemma.

Lemma 3.3. (1) We have b = −b0Ta and b∗G−1b = |b0|2a∗a.
(2) A−1 = G−1 − (1 + |b0|2a∗a)−1G−1bb∗G−1 = (T−1)∗[I − Q−1aa∗]T−1.
(3) β̄m = A−1c = (T−1)∗[I − Q−1aa∗](b̄r,m − b0b̄m+na).
(4) β′

mb = Q−1(bm+na∗a − ā0b
′
r,ma).

(5) bm+n − β′
mb = Q−1(bm+na0 + b′r,ma)ā0 = αmā0.

(6) b′r,m − β′
mT = Q−1(bm+na0 + b′r,ma)a∗ = αma∗.

The proofs of the assertions in Lemma 3.3 are straightforward; so we omit them.

Proof of Theorem 3.1. The derivation of (3.3) above already proves (1). Using the
representation in (3.2) and the definition of em − êm, we have

em − P em

M = em − êm − β′
m(e − ê) =

m+n∑
k=0

bkξm−k − β′
m(bξ−n + Tξ)

= (bm+n − β′
mb) ξ−n +

(
b′r,m − β′

mT
)
ξ +

m∑
k=0

bkξm−k.

The assertion (2) follows from this and Lemma 3.3 (5), (6). Finally, we obtain (3)
from (2).

Proof of Theorem 3.2. Using Theorem 3.1 (2) and the latter identity in (2.1), we
get

(e0, em − P em

M ) = b0b̄m + ᾱm

∑n

k=1
bkan−k = b0(b̄m − ᾱman),
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whence (1). By (2.6) and (3.1), P e0
M(S4)

= P e0
M + γ(em − P em

M ). So (2) follows from
Theorem 3.1 (1), and (3) is obtained by applying Theorem 3.1 (2) to

e0 − P e0
M(S4)

= (e0 − P e0
M) − γ(em − P em

M ).

This identity is also needed for the proof of (4). Since P e0
M ⊥ em − P em

M ,

(e0, em − P em

M ) = (e0 − P e0
M, em − P em

M ),

which, in view of (3.1), gives

γ(em − P em

M , e0 − P e0
M) = γ̄(e0 − P e0

M, em − P em

M ) = |γ|2‖em − P em

M ‖2.

Thus,

‖e0 − P e0
M(S4)

‖2 = ‖(e0 − P e0
M) − γ(em − P em

M )‖2

= ‖e0 − P e0
M‖2 − |γ|2‖em − P em

M ‖2.

Now, ‖e0 −P e0
M‖2 = σ2

2(w,S2) because M = M(S2). On the other hand, from (1),
we have

|γ|2‖em − P em

M ‖2 = |b0|2|b̄m − ᾱman|2‖em − P em

M ‖−2.

Therefore, we obtain (4) establishing the desired distance formula (2.9).

Of course, it is of great interest to compute σp(w,Si), i = 0, 1, 2, 3, 4, for p �= 2.
For i = 0, the (n + 1)-step prediction problem has been solved [1, 10] under the
additional assumption that Pn(z) =

∑n
k=0 ckzk �= 0, for all |z| < 1, where ck’s are

defined by

φp/2(z) =
(∑∞

k=0
bkzk

)p/2

=
∞∑

k=0

ckzk.

Using this result and the duality relation (2.4), σp(w,S1) is found in [2]. It seems
quite likely that the one-dimensional orthogonalization technique used in [2, The-
orem 5] can be extended to the Lp(w) setting, and then using the duality relation
(2.4), one can also compute σp(w,S2). Along this line the extension to S4 may
require assumptions on the location of zeros of Pn(z) for several n, which raises the
question of existence of nontrivial weight functions w satisfying such conditions.
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