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Local martingale and quadratic variation

(Ω,F , P) complete prob. sp., (Ft)t≥0 with usual condition.

Processes are assumed to be adapted.

• For càdlàg processes X and Y their cross variation [X, Y] is
a finite variation càdlàg process q s.t.

∑i(Xti+1∧t − Xti∧t)(Yti+1∧t − Yti∧t) converges to qt
in probability as max |ti+1 − ti| → 0.

• We say a stopping time τ deduces a càdlàg process X
if Xt∧τ1τ>0 is an martingale. We call X a local martingale
if ∃τ(n) reducing sequence s.t. τ(n) ↗ +∞.

If M is a continuous local martingale then quadratic variation
[M] := [M, M] exists and it is an increasing continuous process.
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Cross-variation as compensator

• X = Y means they are indistinguishable (Xt = Yt for all t a.s.).

Polarization If M and N are continuous local martingales then
[M, N] exists and [M ± N] = [M]± 2[M, N] + [N].

Let M and N be cont. loc. mart. and q cont. finite variation process.
Then q = [M, N] iff q0 = 0 and Mt Nt − qt is a local martingale.

For continuous local martingales M and N,

1 If [M] = 0 then Mt = M0 for all t ≥ 0 a.s.

2 If M is of finite variation then Mt = M0 for all t ≥ 0 a.s.

3 If [M, X] = [N, X] for all bdd. cont. mart. X and M0 = N0
then M = N.
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Cross-variation and Itô integral

• ϕ : [0,+∞)× Ω → R is said to be progressive if for all t ≥ 0
it is B([0, t])⊗Ft-measurable on [0, t]× Ω.

Adapted càdlàg process and left continuous process are progressive.

Let M cont. loc. mart. and ϕ progressive. If
∫
(0,t] |ϕ|2 d[M] < +∞

for all t ≥ 0 a.s. then ∃! cont. loc. mart. I (
∫

ϕ dM) s.t. I0 = 0
and [I, N]t =

∫ t
0 ϕ d[M, N] for all cont. loc. mart. N.

• For general local martingales we consider σ-field on [0, ∞)× Ω

generated by all adapted left continuous processes. We say ϕ
predictable if it is measurable with respect to the σ-filed above.
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Path-wise integral and Itô integral

If A and B are càdlàg processes of finite variation then

AtBt − ∑0<s≤t(As − As−)(Bs − Bs−)
= A0B0 +

∫
(0,t] As− dBs +

∫
(0,t] Bs− dAs.

For continuous local martingales M and N,

1 Mt Nt − [M, N]t = M0N0 +
∫ t

0 M dN +
∫ t

0 N dM.

2 If A is an adapted càdlàg process of finite variation then∫ t
0 A dM = Mt At −

∫
(0,t] M dA − M0A0.
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Brownian motion and Poisson process

• d-dimensional (Ft)-Brownian motion (Wt)t≥0 :
adapted d-dimensional continuous process, W0 = 0,
Wt − Ws obeys N(0, t − s), independent of Fs for 0 ≤ s < t

W i continuous local martingale and [W i, W j]t = δijt.

• (Ft)-Poisson process (Nt)t≥0:
adapted càdlàg process, N0 = 0, Nt − Ns obeys Poisson with
mean t − s, independent of Fs for 0 ≤ s < t

Nt − t finite variation local martingale.
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Purely discontinuous martingales

• A local martingale X is said to be purely discontinuous
if XY is a local martingale for any continuous local martingale Y .

If cont. loc. mar. M is purely discontinuous then Mt = M0 for all t.

Recall for adapted finite variation càdlàg A and cont. loc. mar. Y

AtYt = A0Y0 +
∫ t

0 A dY +
∫
(0,t] Y dA

The above suggests if A is a local martingale in addition then A is
purely discontinuous (see next sheet).

• A process ϕ is said to be locally bounded if ∃τ(n) ∃Kn s.t.
τ(n) ↗ ∞ and |ϕt∧τ(n)1τ(n)>0| ≤ Kn.

If Y adapted càdlàg process then Yt− locally bounded predictable.
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Finite variation martingale is purely discontinuous

Suppose that A is a finite variation local martingale.

Let ϕ locally bounded and predictable.

1
∫
(0,t] ϕ dA is a local martingale of finite variation.

2 It =
∫
(0,t] ϕ dA iff I is a purely discontinuous loc. mart.,

I0 = 0 and It − It− = ϕt(At − At−) for all t > 0 a.s.

In particular local martingale A is purely discontinuous.

1 A2
t − ∑0<s≤t(As − As−)2 is a purely discontinuous loc. mart.

2 If A is a square integrable martingale then
E[A2

t ] = E[A2
0] + E[∑s≤t(As − As−)2]
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Square integrable martingale

Suppose that X is a square integrable martingale.

1 Continuous part ∃! continuous square integrable martingale M
such that X − M is purely discontinuous.

2 If X is purely discontinuous then ∃An square integrable
martingales such that each An is of finite variation and
limn→∞ E[sups≤t |Xs − An

s |2] = 0 for all t ≥ 0.

Suppose that X is a purely discontinuous square integrable mart.

1 E[∑0<s≤t(Xs − Xs−)2] < +∞.

2 X2
t − ∑0<s≤t(Xs − Xs−)2 is a purely discontinuous mart.

3 E[X2
t ] = E[X2

0 ] + E[∑0<s≤t(Xs − Xs−)2].
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Locally square integrable martingale

• We call an adapted càdlàg process X locally square integrable
martingale if ∃τ(n) such that Xt∧τ(n)1τ(n)>0 is a square
integrable martingale and τ(n) ↗ ∞.

Any continuous loc. mart. is a locally square integrable martingale.

Let X purely discont. loc. square integrable mart., ϕ loc. bdd. pred.

1 ∃! purely discontinuous loc. mart. I =
∫

ϕ dX s.t. I0 = 0 and
It − It− = ϕt(Xt − Xt−) for all t > 0 a.s.

2
∫

ϕ dX is a locally square integrable martingale.
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Integration by parts

Suppose that X purely discontinuous locally square integrable mart.

1 If A is an adapted càdlàg process of finite variation then∫ t
0 As− dXs = Xt At −

∫
(0,t] X dA − X0A0.

2 If M is a continuous local martingale then∫ t
0 M dX = Xt Mt −

∫ t
0 X dM − X0M0.

3 X2
t − ∑0<s≤t(Xs − Xs−)2 = X2

0 + 2
∫ t

0 Xs− dXs.
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Semimartingale and σ-martingale

• A càdlàg process X is called a (classical) semimartingale if there
exist a local martingale M and an adapted càdlàg process F of
finite variation such that X = M + F.

Suppose that X is a finite variation local martingale.

If ϕ locally bounded and predictable then
∫ t

0 ϕ dX defined as purely

discont. loc. mart. coincides with path-wise integral
∫
(0,t] ϕ dX.

What if ϕ is not locally bounded but still path-wise integral survives?∫
(0,t] ϕ dX is adapted and of finite variation, so a semimartingale.

M. Emery gave example that
∫
(0,t] ϕ dX is not a local martingale.

Such semimartingale is a σ-martingale.
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Fundamental theorem of local martingales

• A càdlàg process X is said to be decomposable if there exist a
locally square integrable martingale M and an adapted càdlàg
process F of finite variation such that X = M + F.

Given loc. mart. X and ε > 0, ∃ finite variation loc. mart. F s.t.

|(X − F)t − (X − F)t−| ≤ ε for all t > 0 a.s.

The above means any local martingale is decomposable.

A semimartingale means a decomposable càdlàg process.

For ϕ locally bounded predictable and semimartingale X = M + F∫ t
0 ϕ dX =

∫ t
0 ϕ dM +

∫
(0,t] ϕ dF.

Bichteler–Dellacherie Theorem: measure free characterization of
semimartingale in terms of integrand and integrator.
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Product of semimartingales

• X is called a quadratic pure-jump semimartingale
if X = purely discont. loc. mart. + finite variation.

Continuous martingale part ∀ semimartingale X ∃! continuous local
martingale M s.t. X − M quadratic pure-jump semimartingale.

Let X and Y be semimartingales.

1 ∑0<s≤t |(Xs − Xs−)(Ys − Ys−)| < +∞ for all t ≥ 0 a.s.

2 M := cont. mart. part of X, N := cont. mart. part of Y . Then
XtYt − X0Y0 − [M, N]t − ∑0<s≤t(Xs − Xs−)(Ys − Ys−)

=
∫ t

0 Xs− dYs +
∫ t

0 Ys− dXs.

3 XtYt is a semimartingale.
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Cross-variation and Itô’s formula

Suppose that X and Y are semimartingales.
M := cont. mart. part of X, N := cont. mart. part of Y .

1 Cross-variation [X, Y] exists and
[X, Y]t = [M, N]t + ∑0<s≤t(Xs − Xs−)(Ys − Ys−).

2 [X, Y]c (continuous part) coincides with [M, N].

Why do they write as follows?
[X, Y]t = X0Y0 + [M, N]t + ∑0<s≤t(Xs − Xs−)(Ys − Ys−),

If X d-dimensional semimartingale and f ∈ C2(Rd) then

f (Xt) = f (X0) +
∫ t

0 f ′(X·−) dX + 1
2

∫
(0,t] f ′′(X) d[X]c

+∑0<s≤t{ f (Xs)− f (Xs−)− f ′(Xs−)(Xs − Xs−)}.
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Itô’s formula – example

If M continuous local martingale and Xt := Mt − M0 − [M]t/2
then exp{Xt} = 1 +

∫ t
0 exp{X} dM.

Given a quadratic pure-jump semimartingale L s.t. L0 = 0 and
1 + Ls − Ls− > 0 for all s > 0 a.s.

1 ∑s≤t | log(1 + Ls − Ls−)− Ls + Ls−| < ∞ for all t a.s.

2 Xt := Lt + ∑s≤t{log(1 + Ls − Ls−)− Ls + Ls−} is

quadratic pure-jump, exp{Xt} = 1 +
∫ t

0 exp{Xs−} dLs and

exp{Xt} = exp{Lt}∏s≤t(1 + Ls − Ls−)e−Ls+Ls− .

∵ exp{Xs}− exp{Xs−}− exp{Xs−}(Xs − Xs−)
= − exp{Xs−}{log(1 + Ls − Ls−)− Ls + Ls−}
= exp{Xs−}(Ls − Ls−)− exp{Xs−}(Xs − Xs−)
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Continuous martingale part of Itô integral

Let M continuous martingale part of X and ϕ loc. bdd. predictable.

1
∫

ϕ d(X − M) quadratic pure-jump semimartingale.

2
∫

ϕ dM continuous martingale part of
∫

ϕ dX

Suppose that X and Y are semimartingales. We have

XtYt = X0Y0 +
∫ t

0 Xs− dYs +
∫ t

0 Ys− dXs + [X, Y]t.
Consider the situation that [X, Y] = 0.

If X cont. loc. mart. and Y quadratic pure-jump semimartingale then

1 XtYt = X0Y0 +
∫ t

0 Xs dYs +
∫ t

0 Ys− dXs.

2
∫ t

0 Ys− dXs continuous martingale part of XtYt.
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Doléans-Dade exponential

Given semimartingale X with X0 = 0 consider

▷ ZX
t := exp{Xt − [X]ct/2}∏s≤t(1 + Xs − Xs−)e−Xs+Xs− .

Let M be continuous martingale part of X and L := X − M.

1 ZM
t = exp{Mt − [M]t/2}.

2 ZL
t = exp{Lt}∏s≤t(1 + Ls − Ls−)e−Ls+Ls− .

3 ZM
t ZL

t = ZX
t and ZX

t = 1 +
∫ t

0 ZX
s− dXs.

∵ [M] = [X]c and Ls − Ls− = Xs − Xs−.

ZM continuous local martingale and ZM
t = 1 +

∫ t
0 ZM

s− dMs.

ZL quadratic pure-jump and ZL
t = 1 +

∫ t
0 ZL

s− dLs.

ZM
t ZL

t = 1 +
∫ t

0 ZM
s− dZL

s +
∫ t

0 ZL
s− dZM

s .
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Non-vanishing semimartingale

• We say càdlàg process Z non-vanishing (positive) if Zt ̸= 0
(Zt > 0) for all t ≥ 0 and Zt− ̸= 0 (Zt− > 0) for all t > 0.

Let X semimart. s.t. X0 = 0, 1 + Xs − Xs− ̸= 0 for all s > 0.

1 ZX non-vanishing semimartingale and Xt =
∫ t

0 (1/ZX
s−) dZX

s .

2 Let X⋆
t := −Xt +

∫
(0,t](ZX

s−/ZX
s ) d[X]s. Then

1 + X⋆
s − X⋆

s− ̸= 0 for all s > 0 and ZX
t ZX⋆

t = 1.

For non-vanishing semimartingale Z let Lt :=
∫ t

0 (1/Zs−) dZs.

1 1 + Ls − Ls− ̸= 0 for all s > 0 and Zt = Z0ZL
t .

2 1/Zt is a semimartingale and 1/Zt = ZL⋆

t /Z0.
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Yor’s formula

X, Y semimartingales, X0 = 0, 1 + Xs − Xs− ̸= 0 for all s > 0
and Y0 = 0, 1 + Ys − Ys− ̸= 0 for all s > 0.

1 Lt := Xt + Yt + [X, Y]t is a semimartingale, L0 = 0,
1 + Ls − Ls− ̸= 0 for all s > 0 and ZX ZY = ZL.

2 [X, Y] = 0 if and only if ZX ZY = ZX+Y .
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Deflator

Let X semimart. s.t. X0 = 0, 1 + Xs − Xs− ̸= 0 for all s > 0.
1 ZX is positive if and only if 1 + Xs − Xs− > 0 for all s > 0.
2 ZX local martingale if and only if X local martingale.

• We call Z a deflator if it is a positive semimartingale.

Recall that non-negative local martingale is a supermartingale.

Suppose that Z càdlàg supermartingale and Zt ≥ 0 a.s.

1 Let ζ := min{inf{t ≥ 0 : Zt = 0}, inf{t > 0 : Zt− = 0}}
(approach time to {0}) and Z∞ := 0. Then Zt∨ζ = 0.

2 If Zt > 0 a.s. for all t ≥ 0 then Z is a deflator.
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