Doléans-Dade exponential

Koichiro Iwata

Hiroshima University

Probability seminar, January 23 2024

Local martingale and quadratic variation

 (Ω, \mathcal{F}, P) complete prob. sp., $(\mathcal{F}_t)_{t \ge 0}$ with usual condition. Processes are assumed to be adapted.

- For càdlàg processes X and Y their cross variation [X, Y] is a finite variation càdlàg process q s.t. ∑_i(X_{ti+1∧t} - X_{ti∧t})(Y_{ti+1∧t} - Y_{ti∧t}) converges to q_t in probability as max |t_{i+1} - t_i| → 0.
- We say a stopping time τ deduces a càdlàg process X if X_{t∧τ}1_{τ>0} is an martingale. We call X a local martingale if ∃τ(n) reducing sequence s.t. τ(n) ∧ +∞.

If M is a continuous local martingale then quadratic variation [M] := [M, M] exists and it is an increasing continuous process.

• X = Y means they are indistinguishable ($X_t = Y_t$ for all t a.s.).

Polarization If M and N are continuous local martingales then [M, N] exists and $[M \pm N] = [M] \pm 2[M, N] + [N]$.

Let M and N be cont. loc. mart. and q cont. finite variation process. Then q = [M, N] iff $q_0 = 0$ and $M_t N_t - q_t$ is a local martingale.

For continuous local martingales M and N,

- 1 If [M] = 0 then $M_t = M_0$ for all $t \ge 0$ a.s.
- 2 If M is of finite variation then $M_t = M_0$ for all $t \ge 0$ a.s.
- **3** If [M, X] = [N, X] for all bdd. cont. mart. X and $M_0 = N_0$ then M = N.

Cross-variation and Itô integral

• $\phi : [0, +\infty) \times \Omega \to \mathbb{R}$ is said to be progressive if for all $t \ge 0$ it is $\mathcal{B}([0, t]) \otimes \mathcal{F}_t$ -measurable on $[0, t] \times \Omega$.

Adapted càdlàg process and left continuous process are progressive.

Let M cont. loc. mart. and ϕ progressive. If $\int_{(0,t]} |\phi|^2 d[M] < +\infty$ for all $t \ge 0$ a.s. then $\exists !$ cont. loc. mart. $I(\int \phi dM)$ s.t. $I_0 = 0$ and $[I,N]_t = \int_0^t \phi d[M,N]$ for all cont. loc. mart. N.

 For general local martingales we consider σ-field on [0,∞) × Ω generated by all adapted left continuous processes. We say φ predictable if it is measurable with respect to the σ-filed above. If A and B are càdlàg processes of finite variation then

$$A_t B_t - \sum_{0 < s \le t} (A_s - A_{s-}) (B_s - B_{s-}) \\= A_0 B_0 + \int_{(0,t]} A_{s-} dB_s + \int_{(0,t]} B_{s-} dA_s.$$

For continuous local martingales M and N,

1
$$M_t N_t - [M, N]_t = M_0 N_0 + \int_0^t M \, dN + \int_0^t N \, dM.$$

2 If A is an adapted càdlàg process of finite variation then $\int_0^t A \, dM = M_t A_t - \int_{(0,t]} M \, dA - M_0 A_0.$

Brownian motion and Poisson process

d-dimensional (*F_t*)-Brownian motion (*W_t*)_{t≥0}: adapted *d*-dimensional continuous process, *W*₀ = 0, *W_t* − *W_s* obeys *N*(0, *t* − *s*), independent of *F_s* for 0 ≤ *s* < *t*

 W^i continuous local martingale and $[W^i, W^j]_t = \delta_{ij}t$.

• (\mathcal{F}_t) -Poisson process $(N_t)_{t \ge 0}$: adapted càdlàg process, $N_0 = 0$, $N_t - N_s$ obeys Poisson with mean t - s, independent of \mathcal{F}_s for $0 \le s < t$

 $N_t - t$ finite variation local martingale.

Purely discontinuous martingales

• A local martingale X is said to be purely discontinuous if XY is a local martingale for any continuous local martingale Y.

If cont. loc. mar. M is purely discontinuous then $M_t = M_0$ for all t.

Recall for adapted finite variation càdlàg A and cont. loc. mar. Y

$$A_t Y_t = A_0 Y_0 + \int_0^t A \, dY + \int_{(0,t]} Y \, dA$$

The above suggests if A is a local martingale in addition then A is purely discontinuous (see next sheet).

• A process ϕ is said to be locally bounded if $\exists \tau(n) \exists K_n$ s.t. $\tau(n) \nearrow \infty$ and $|\phi_{t \land \tau(n)} \mathbf{1}_{\tau(n) > 0}| \le K_n$.

If Y adapted càdlàg process then Y_{t-} locally bounded predictable.

Suppose that A is a finite variation local martingale.

- Let ϕ locally bounded and predictable.
 - 1) $\int_{(0,t]} \phi \, dA$ is a local martingale of finite variation.
 - 2 $I_t = \int_{(0,t]} \phi \, dA$ iff I is a purely discontinuous loc. mart., $I_0 = 0$ and $I_t - I_{t-} = \phi_t (A_t - A_{t-})$ for all t > 0 a.s.

In particular local martingale A is purely discontinuous.

Suppose that X is a square integrable martingale.

• Continuous part \exists ! continuous square integrable martingale M such that X - M is purely discontinuous.

2 If X is purely discontinuous then $\exists A^n$ square integrable martingales such that each A^n is of finite variation and $\lim_{n\to\infty} E[\sup_{s\leq t} |X_s - A_s^n|^2] = 0$ for all $t \geq 0$.

Suppose that X is a purely discontinuous square integrable mart.

1
$$E[\sum_{0 \le s \le t} (X_s - X_{s-})^2] < +\infty.$$

2 $X_t^2 - \sum_{0 \le s \le t} (X_s - X_{s-})^2$ is a purely discontinuous mart.
3 $E[X_t^2] = E[X_0^2] + E[\sum_{0 \le s \le t} (X_s - X_{s-})^2].$

Locally square integrable martingale

 We call an adapted càdlàg process X locally square integrable martingale if ∃τ(n) such that X_{t∧τ(n)}1_{τ(n)>0} is a square integrable martingale and τ(n) ∧∞.

Any continuous loc. mart. is a locally square integrable martingale.

Let X purely discont. loc. square integrable mart., $\pmb{\phi}$ loc. bdd. pred.

- \exists ! purely discontinuous loc. mart. $I = \int \phi \, dX$ s.t. $I_0 = 0$ and $I_t I_{t-} = \phi_t (X_t X_{t-})$ for all t > 0 a.s.
- **2** $\int \phi \, dX$ is a locally square integrable martingale.

Suppose that X purely discontinuous locally square integrable mart.
If A is an adapted càdlàg process of finite variation then ∫₀^t A_{s-} dX_s = X_tA_t - ∫_{(0,t]} X dA - X₀A₀.
If M is a continuous local martingale then ∫₀^t M dX = X_tM_t - ∫₀^t X dM - X₀M₀.
X_t² - ∑_{0≤s≤t}(X_s - X_{s-})² = X₀² + 2 ∫₀^t X_{s-} dX_s.

Semimartingale and σ -martingale

• A càdlàg process X is called a (classical) semimartingale if there exist a local martingale M and an adapted càdlàg process F of finite variation such that X = M + F.

Suppose that X is a finite variation local martingale.

If ϕ locally bounded and predictable then $\int_0^t \phi \, dX$ defined as purely discont. loc. mart. coincides with path-wise integral $\int_{(0,t]} \phi \, dX$.

What if ϕ is not locally bounded but still path-wise integral survives? $\int_{(0,t]} \phi \, dX$ is adapted and of finite variation, so a semimartingale. M. Emery gave example that $\int_{(0,t]} \phi \, dX$ is not a local martingale. Such semimartingale is a σ -martingale.

Fundamental theorem of local martingales

• A càdlàg process X is said to be decomposable if there exist a locally square integrable martingale M and an adapted càdlàg process F of finite variation such that X = M + F.

Given loc. mart. X and $\varepsilon > 0$, \exists finite variation loc. mart. F s.t. $|(X - F)_t - (X - F)_{t-}| \le \varepsilon$ for all t > 0 a.s.

The above means any local martingale is decomposable.

A semimartingale means a decomposable càdlàg process.

For ϕ locally bounded predictable and semimartingale X = M + F $\int_0^t \phi \, dX = \int_0^t \phi \, dM + \int_{(0,t]} \phi \, dF.$ Bichteler–Dellacherie Theorem: measure free characterization of

semimartingale in terms of integrand and integrator.

Iwata (Hiroshima)

Doleans-Dade exponential

Product of semimartingales

 X is called a quadratic pure-jump semimartingale if X = purely discont. loc. mart. + finite variation.

Continuous martingale part \forall semimartingale $X \exists !$ continuous local martingale M s.t. X - M quadratic pure-jump semimartingale.

Let X and Y be semimartingales.

$$\mathbf{0} \, \sum_{0 < s \le t} |(X_s - X_{s-})(Y_s - Y_{s-})| < +\infty \text{ for all } t \ge 0 \text{ a.s.}$$

- 2 M := cont. mart. part of X, N := cont. mart. part of Y. Then $X_t Y_t - X_0 Y_0 - [M, N]_t - \sum_{0 < s \le t} (X_s - X_{s-}) (Y_s - Y_{s-})$ $= \int_0^t X_{s-} dY_s + \int_0^t Y_{s-} dX_s.$
- **3** $X_t Y_t$ is a semimartingale.

Cross-variation and Itô's formula

Suppose that X and Y are semimartingales. M := cont. mart. part of X, N := cont. mart. part of Y.

• Cross-variation
$$[X, Y]$$
 exists and
 $[X, Y]_t = [M, N]_t + \sum_{0 \le s \le t} (X_s - X_{s-})(Y_s - Y_{s-}).$

2 $[X, Y]^{c}$ (continuous part) coincides with [M, N].

Why do they write as follows? $[X,Y]_t = \frac{X_0Y_0}{V_0} + [M,N]_t + \sum_{0 < s \le t} (X_s - X_{s-})(Y_s - Y_{s-}),$

If X d-dimensional semimartingale and $f \in C^{2}(\mathbb{R}^{d})$ then $f(X_{t}) = f(X_{0}) + \int_{0}^{t} f'(X_{-}) dX + \frac{1}{2} \int_{(0,t]} f''(X) d[X]^{c} + \sum_{0 < s \le t} \{f(X_{s}) - f(X_{s-}) - f'(X_{s-})(X_{s} - X_{s-})\}.$

ltô's formula – example

If M continuous local martingale and $X_t := M_t - M_0 - [M]_t/2$ then $\exp\{X_t\} = 1 + \int_0^t \exp\{X\} dM$.

Given a quadratic pure-jump semimartingale L s.t. $L_0 = 0$ and $1 + L_s - L_{s-} > 0$ for all s > 0 a.s.

1 $\sum_{s \le t} |\log(1 + L_s - L_{s-}) - L_s + L_{s-}| < \infty$ for all t a.s. 2 $X_t := L_t + \sum_{s \le t} \{\log(1 + L_s - L_{s-}) - L_s + L_{s-}\}$ is quadratic pure-jump, $\exp\{X_t\} = 1 + \int_0^t \exp\{X_{s-}\} dL_s$ and $\exp\{X_t\} = \exp\{L_t\} \prod_{s \le t} (1 + L_s - L_{s-}) e^{-L_s + L_{s-}}$.

$$\exp\{X_s\} - \exp\{X_{s-}\} - \exp\{X_{s-}\}(X_s - X_{s-}) = -\exp\{X_{s-}\}\{\log(1 + L_s - L_{s-}) - L_s + L_{s-}\} = \exp\{X_{s-}\}(L_s - L_{s-}) - \exp\{X_{s-}\}(X_s - X_{s-})$$

Iwata (Hiroshima)

Continuous martingale part of Itô integral

Let M continuous martingale part of X and φ loc. bdd. predictable.
① ∫ φ d(X - M) quadratic pure-jump semimartingale.
② ∫ φ dM continuous martingale part of ∫ φ dX

Suppose that X and Y are semimartingales. We have

 $X_t Y_t = X_0 Y_0 + \int_0^t X_{s-} dY_s + \int_0^t Y_{s-} dX_s + [X, Y]_t.$ Consider the situation that [X, Y] = 0.

If X cont. loc. mart. and Y quadratic pure-jump semimartingale then **1** $X_tY_t = X_0Y_0 + \int_0^t X_s \, dY_s + \int_0^t Y_{s-} \, dX_s.$ **2** $\int_0^t Y_{s-} \, dX_s$ continuous martingale part of X_tY_t .

Doléans-Dade exponential

Given semimartingale X with $X_0 = 0$ consider $\geq Z_t^X := \exp\{X_t - [X]_t^c/2\} \prod_{s \le t} (1 + X_s - X_{s-})e^{-X_s + X_{s-}}$.

Let *M* be continuous martingale part of *X* and
$$L := X - M$$
.
1 $Z_t^M = \exp\{M_t - [M]_t/2\}$.
2 $Z_t^L = \exp\{L_t\} \prod_{s \le t} (1 + L_s - L_{s-})e^{-L_s + L_{s-}}$.
3 $Z_t^M Z_t^L = Z_t^X$ and $Z_t^X = 1 + \int_0^t Z_{s-}^X dX_s$.

 $\therefore [M] = [X]^{c} \text{ and } L_{s} - L_{s-} = X_{s} - X_{s-}.$ $Z^{M} \text{ continuous local martingale and } Z^{M}_{t} = 1 + \int_{0}^{t} Z^{M}_{s-} dM_{s}.$ $Z^{L} \text{ quadratic pure-jump and } Z^{L}_{t} = 1 + \int_{0}^{t} Z^{L}_{s-} dL_{s}.$ $Z^{M}_{t} Z^{L}_{t} = 1 + \int_{0}^{t} Z^{M}_{s-} dZ^{L}_{s} + \int_{0}^{t} Z^{L}_{s-} dZ^{M}_{s}.$

Non-vanishing semimartingale

- We say càdlàg process Z non-vanishing (positive) if $Z_t \neq 0$ ($Z_t > 0$) for all $t \ge 0$ and $Z_{t-} \neq 0$ ($Z_{t-} > 0$) for all t > 0.
- Let X semimart. s.t. $X_0 = 0$, $1 + X_s X_{s-} \neq 0$ for all s > 0. **1** Z^X non-vanishing semimartingale and $X_t = \int_0^t (1/Z_{s-}^X) dZ_s^X$. **2** Let $X_t^* := -X_t + \int_{(0,t]} (Z_{s-}^X/Z_s^X) d[X]_s$. Then $1 + X_s^* - X_{s-}^* \neq 0$ for all s > 0 and $Z_t^X Z_t^{X^*} = 1$.

For non-vanishing semimartingale Z let $L_t := \int_0^t (1/Z_{s-}) dZ_s$. **1** $+ L_s - L_{s-} \neq 0$ for all s > 0 and $Z_t = Z_0 Z_t^L$. **2** $1/Z_t$ is a semimartingale and $1/Z_t = Z_t^{L^*}/Z_0$. X, Y semimartingales, $X_0 = 0$, $1 + X_s - X_{s-} \neq 0$ for all s > 0and $Y_0 = 0$, $1 + Y_s - Y_{s-} \neq 0$ for all s > 0.

- 1 $L_t := X_t + Y_t + [X, Y]_t$ is a semimartingale, $L_0 = 0$, $1 + L_s - L_{s-} \neq 0$ for all s > 0 and $Z^X Z^Y = Z^L$.
- **2** [X, Y] = 0 if and only if $Z^X Z^Y = Z^{X+Y}$.

Deflator

- Let X semimart. s.t. $X_0 = 0$, $1 + X_s X_{s-} \neq 0$ for all s > 0.
 - **1** Z^X is positive if and only if $1 + X_s X_{s-} > 0$ for all s > 0.
 - **2** Z^X local martingale if and only if X local martingale.

• We call Z a deflator if it is a positive semimartingale. Recall that non-negative local martingale is a supermartingale.

Suppose that Z càdlàg supermartingale and $Z_t \ge 0$ a.s.

- Let $\zeta := \min\{\inf\{t \ge 0 : Z_t = 0\}, \inf\{t > 0 : Z_{t-} = 0\}\}$ (approach time to $\{0\}$) and $Z_{\infty} := 0$. Then $Z_{t \lor \zeta} = 0$.
- **2** If $Z_t > 0$ a.s. for all $t \ge 0$ then Z is a deflator.

- K. Bichteler, Stochastic Integration with Jumps, Cambridge UP 2002
- I. Karatzas S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer 1991
- P. E. Protter, Stochastic Integration and Differential Equations.
 2nd ed corr 3rd pr, Springer 2005
- L. C. G. Rogers D. Williams, Diffusions, Markov Processes, and Martingales : Foundations Vol. 1, Cambridge Univ. Press, 2000
 - L. C. G. Rogers D. Williams, Diffusions, Markov Processes, and Martingales : Ito Calculus Vol. 2, Cambridge Univ. Press, 2000
- D, Revuz, M. Yor, Continuous martingales and Brownian motion, Springer 1999