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Abstract— Friction force is cumbersome in numerical simula-
tions due to its discontinuity at zero velocity. Fixed-step simu-
lation techniques are especially desirable for control purposes,
such as haptic friction rendering and friction compensation.
Previous techniques have difficulties especially in numerical
robustness and extensibility to multidimensional cases. This paper
proposes two discrete-time friction models that can be used in
fixed-step simulations. They can be used in multidimensional
space, and can capture arbitrary velocity-dependent friction
phenomena. The first one is a discrete-time discontinuous model.
This model determines the friction force so that the velocity
reaches zero in finite time by using the values of the mass and
the timestep size. The second one is a discrete-time continuous
model, which is a serial coupling of the discontinuous model
and a linear viscoelastic element. This model is useful for haptic
rendering because it is formulated as a velocity-input, force-
output system. The second model can be extended into a more
sophisticated friction model, which exhibits a hysteresis behavior
in the presliding regime. Results of numerical simulations and
an experiment are presented.

I. INTRODUCTION

Friction exists in all mechanical systems and everything
in our everyday lives. Modeling of friction is important for
simulation of mechanical systems, for model-based control,
and for displaying realistic sense of touch through a haptic
device. Friction force is highly nonlinear especially at very low
velocity. This gives rise to difficulty in fixed-step numerical
simulation of friction phenomena for the purposes of control
and haptic rendering.

Numerous models of friction force have been proposed by
researchers [1], [2]. These models can be mainly classified
into two types: the discontinuous type and the continuous type.
In discontinuous models, the friction force is discontinuous at
zero velocity, and when the velocity is zero (i.e., in the sticking
regime), the friction force acts to balance the other forces
to maintain zero velocity. Continuous models consider small
elastic displacement (presliding displacement) in the sticking
regime [3]–[6]. Modeling of nonlinearity and hysteresis in the
presliding displacement is attracting interest.

An advantage of discontinuous models is their intuitive
simplicity. However, these models are mathematically cum-
bersome because their definition at zero velocity and that at a
nonzero velocity are completely different. One approach is to
use the threshold velocity as the boundary between zero and
nonzero velocity regions [7], [8]. However, the selection of the
threshold strongly influences the behaviors of models [9], and
an inappropriate threshold causes energy-generating friction
forces. Another approach is to use a finite state machine
based on the detection of zero-velocity crossings (i.e., velocity

reversals) [10]. This approach, however, is difficult to be ap-
plied to multidimensional cases [11] because velocity reversals
cannot be defined strictly in multidimensional space. Adaptive
timestep approaches for accurate zero-crossing detections are
not suitable for realtime computation for control purposes.

Continuous models are more accurate than discontinuous
models provided that various parameters regarding micro-
scopic dynamics of the surfaces are adequately given. The
equations defining these models are difficult to interpret phys-
ically because they are based on empirical data. One of their
advantages is that they are mathematically convenient because
they are formulated as a velocity-input, force-output system.

This paper presents discrete-time representations of discon-
tinuous and continuous friction models for the purpose of
fixed-step simulations. First, we present a new discrete-time
discontinuous model. This model determines the friction force
so that the velocity reaches exactly zero in finite time by using
the values of the mass and the timestep size. This friction
force is always dissipative. This model does not include
arbitrariness of the threshold setting, and it is easily extended
into multidimensional cases. Moreover, it can easily include
velocity-dependent friction phenomena, such as Stribeck and
viscous effects. Next, we present a discrete-time continuous
friction model, which is a serial coupling of the discontinuous
friction model and a linear viscoelastic element. This model
can be further expanded into a more sophisticated continuous
friction model, which exhibits a realistic hysteresis behavior
in the presliding regime.

In the rest of this paper, we start from a brief review on
previous friction models in section II. Next, we propose a
new discrete-time discontinuous friction model in section III.
Further, in section IV, we expand this model into continuous
models. We perform 4 sets of simulations in section V and an
experiment of haptic friction rendering in section VI. Section
VII provides the conclusion.

II. PREVIOUS MODELS OF FRICTION

A. Discontinuous Models

Assume that a rigid object is in contact with a fixed surface
and moving at a velocity v with respect to the surface, as
shown in Fig. 1(a). The equation of motion of the object is
described as

Mv̇ = h + f, (1)

where M is the mass of the object, f is the friction force,
and h is the gross force acting on the object from all other
sources.
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Fig. 1. Schematic representations of friction models. (a) a discontinuous
model, and (b) a continuous model.
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Fig. 2. Force-velocity relations in discontinuous friction models: (a) the
Coulomb friction force, (b) Coulomb plus viscous friction force, and (c)
Coulomb friction force plus Stribeck effect.

In discontinuous friction models, the friction force, f , is
generally described as f = Φ(v, h) where

Φ(v, h) =




−h if v = 0 ∧ |h| ≤ |φ(±0)|
−sgn(h)|φ(±0)| if v = 0 ∧ |h| > |φ(±0)|
φ(v) otherwise.

(2)

Here, φ(v) is a function that satisfies φ(v)v ≤ 0 for all v �= 0
and has limits as v → +0 and v → −0. For simplicity of fur-
ther discussion, we assume limv→−0 φ(v) = − limv→+0 φ(v).
Hereafter, we write |φ(±0)| = limv→−0 φ(v).

The simplest friction model is the Coulomb friction model,
which is illustrated in Fig. 2(a). Its representation can be
obtained by specializing (2) by

φ(v) = −sgn(v)F, (3)

where F > 0 is called the kinetic friction force. In general,
the friction force depends on the velocity due to the sur-
face mechanics and the lubricants between the two surfaces.
Fig. 2(b) depicts the case when the viscous friction is present,
and Fig. 2(c) depicts the so-called Stribeck effect [1], [2].

In usual dry friction, the maximum static friction force is
larger than the kinetic friction force, namely,

f =




−h if v = 0 ∧ |h| ≤ FS

−sgn(h)FS if v = 0 ∧ |h| > FS

φ(v) otherwise,
(4)

where FS > |φ(±0)|. This representation is mathematically
troublesome though it is more general than (2). In stead of
this, we can use steep Stribeck curves (shown in Fig. 2(c)) to
represent the large friction force in the neighborhood of zero
velocity. By taking this approach, we can include the static
friction phenomena in (2), without using (4). In this paper, we
use (2) as the general description of discontinuous models.
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Fig. 3. Discontinuous friction models: (a) Coulomb friction model. (b)
Karnopp’s model [7], defined by (5) and (3), (c) viscosity approximation [14],
defined by (6), (d) Quinn’s model [8], defined by (7), and (e) the proposed
discontinuous model, defined by (13). The thick black lines represent the value
of f at v = 0. As ε → 0 or T → 0 , (b), (d), and (e) converge to (a).

B. Discrete-Time Discontinuous Models

Difficulty in using the discontinuous friction models in
digital computation is rooted in the definition of Φ(v, h)
(defined in (2)) at v = 0. Fig. 3(a) shows the function
Φ(v, h) in the case of Coulomb friction (3). Function Φ(v, h)
is discontinuous with respect to v at v = 0, and Φ(v, h)
depends on h exclusively when v = 0. Karnopp [7] avoided
this problem by specifying a velocity region of a finite width
as the zero-velocity region. This method can be described as
follows:

f =




−h if |v| ≤ ε ∧ |h| ≤ |φ(±0)|
−sgn(h)|φ(±0)| if |v| ≤ ε ∧ |h| > |φ(±0)|
φ(v) otherwise,

(5)

where ε is a small velocity below which the velocity is
considered zero. This method has been widely used especially
in the field of haptic display [12], [13]. However, it has
been recognized that the behavior of the system is strongly
dependent on the choice of the value ε [9]. Moreover, the
threshold velocity cannot hold any physical meanings.

The plot of Karnopp’s model, (5), is shown in Fig. 3(b). As



seen in this plot, Φ(v, h) is discontinuous at v = ±ε. A method
to remove this discontinuity is to approximate the friction force
by a very high viscous friction force in the small velocity
region [14]. This approach can be described as follows:

f =
{ −Fv/ε if |v| ≤ ε

−sgn(v)F otherwise. (6)

As illustrated in Fig. 3(c), this model is continuous but its
behavior at v = 0 is completely different from that of the
Coulomb friction model. That is, the friction force does not
balance the external force, h, at v = 0.

In order to remove the discontinuities while maintaining
consistency with the Coulomb friction model, Quinn [8]
proposed the model equivalent to the following:

f =
{ −F v̄/ε if |v̄| ≤ ε

−sgn(v̄)F otherwise, (7a)

where
v̄ =

{
v + εh/F if |h| ≤ F
v + sgn(h)ε otherwise. (7b)

This model is illustrated in Fig. 3(d). Its behavior is also
influenced by the value ε, and unfortunately its optimal choice
is not provided. Inclusion of arbitrary velocity-dependent
friction (arbitrary φ(v)) is not addressed in Quinn’s paper.

In any methods mentioned above, the velocity does not
reach zero in finite time even in the absence of external
forces. This is an important difference from the continuous-
time discontinuous friction models defined by (2). The velocity
can be zeroed by using the detection of sign changes in the
velocity [10], [11]. However, this approach is not suitable for
multidimensional systems.

C. Continuous Models

Continuous friction models consider small elastic displace-
ment (presliding displacement) in the sticking regime, as
shown in Fig. 1(b). This elastic displacement is nonlinear and
has hysteresis. The boundary between the sticking (presliding)
regime and the sliding regime is usually ambiguous.

Most of modern continuous models have their roots in Dahl
model [3]. Dahl model defines the friction force as

f = −Kz, ż = v (1 − sgn(v)Kz/F ) , (8)

where z is a state variable that can be interpreted as the elastic
displacement, and K correspondents to the initial stiffness
coefficient in the presliding regime. The signs of v and f
are chosen as Fig. 1(b). This model exhibits a continuous
transition from the presliding regime to the sliding regime.
Dahl model was unified with the Stribeck and viscous effects
into the LuGre model [5]. One drawback of the Dahl and
LuGre models is that they exhibit unbounded displacement
under small forces. This drawback is eliminated from further
improved models, the elastoplastic model [4], Leuven model
[6], and the GMS (generalized Maxwell slip) model [15].

Modeling of hysteresis behavior in the presliding regime is
also a matter of interest. The Maxwell slip model, which is
illustrated in Fig. 4, is known to be effective for describing
hysteresis behavior in mechanical systems [16]. This model is
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Fig. 4. The Maxwell slip model. Each element is massless and perfectly
elastoplastic, having different friction forces.

the parallel connection of multiple ideal elastoplastic elements.
A modified version of Leuven model [17] and the GMS model
are based on the Maxwell slip model.

The GMS model is an extension of the Maxwell slip model
to include arbitrary velocity-dependent friction forces. This
model uses the following definition of the friction force:

f = −∑N
i=1 Kizi (9a)

żi =
{

v if sticking
sgn(v)(αiQ/Ki) (1 + Kizi/(αiφ(v))) if sliding.

(9b)

Here, Q is a constant and αi is the fraction of the friction
force exerted by the i-th element to the gross friction force,
satisfying

∑N
i=1 αi = 1. Equation (9b) is chosen so that f

becomes equal to φ(v) when v is constant. Though (9b) is
supported by simulation results of a more detailed physical
model [18], there is no physical interpretation for this equation.
A transition from the sliding regime to the sticking regime is
triggered by the zero-crossing of the velocity v. Thus, this
model is not easy to be used in multidimensional space.

III. NEW DISCRETE-TIME DISCONTINUOUS MODEL

A. Simplest Case: Coulomb Friction

The friction force defined by (2) acts to make the object
velocity reach zero in finite time. In this section, we propose
a new discrete-time representation of (2) that guarantees
convergence to zero-velocity in finite time and that does not
contain arbitrariness of non-physical thresholds.

As shown in (1), the acceleration of the object is given by
v̇ = (h + f)/M . Therefore, in a discrete-time system, the
velocity at the next time step is determined as

v := v + T (h + f) /M, (10)

where T is the timestep size. The value of v in the left-hand
side of (10) becomes zero if and only if

f = −h− Mv/T. (11)

In the Coulomb friction model, defined by (2) and (3), the
upper limit of the magnitude of f is F . Therefore, it is
reasonable to define f as follows:

f =
{ −h − Mv/T if |−h − Mv/T | ≤ F

sgn (−h − Mv/T )F otherwise. (12)

The above definition can be rewritten as follows:

f =
{ −Mv̄/T if |v̄| ≤ TF/M

−sgn(v̄)F otherwise, (13a)



where

v̄ = v + Th/M. (13b)

This new model sets the velocity to be zero when |h +
Mv/T | ≤ F is satisfied, and includes no arbitrariness such as
threshold settings. A plot of (13) is shown in Fig. 3(e). This
model is identical to the Coulomb friction model at v = 0, and
is simpler than Quinn’s and Karnopp’s models. Moreover, it
is interesting that the model (13) also reduces to the Coulomb
friction model as T → 0.

Let us use subscripts to denote time indices. Then, by using
(10) and (13), we can determine vk and fk, the velocity and
the friction force at time kT , respectively, as follows:

v̄ = vk−1 + Thk/M (14a)

fk =
{ −Mv̄/T if |v̄| ≤ TF/M

−sgn(v̄)F otherwise (14b)

vk = v̄ + Tfk/M. (14c)

B. Discrete-Time Discontinuous Model with Arbitrary
Velocity-Dependent Friction

Due to the simplicity of (14b), it can easily be generalized
to include arbitrary velocity-dependent friction laws. In (14b),
note that sgn(v̄) is equal to sgn(vk) because it is used under
the condition |v̄| > TF/M . Therefore, we can see that vk and
fk satisfy the relation fk = φ(vk) when φ(·) is defined by
(3). This is an important difference of our model from both
Karnopp’s and Quinn’s models, in which fk ≈ φ(vk−1) is
intended to be satisfied.

Bearing this difference in mind, a natural generalization of
(14b) can be written as follows:

fk =
{ −Mv̄/T if |v̄| ≤ T |φ(±0)|/M

φ(vk) otherwise. (15)

Unfortunately, because of (14c) and (15), vk and fk are
mutually dependent and fk is written as an implicit function
of v̄. This cyclic dependency can be removed by rewriting (15)
as fk = Φ∗(v̄) where

Φ∗(a) =
{ −Ma/T if |a| ≤ T |φ(±0)|/M

φ∗(a) otherwise (16a)

φ∗(a) = f s.t. f = φ (a + Tf/M) . (16b)

Namely, we now have a generalization of (14) as follows:

v̄ = vk−1 + Thk/M (17a)
fk = Φ∗(v̄) (17b)
vk = v̄ + Tfk/M. (17c)

Fig. 5 illustrates the relation between φ(·) and Φ∗(·). In
order to avoid solving the nonlinear algebraic equation (16b),
we can practically assume

φ∗(v) ≈ φ (v − sgn(v)T |φ(±0)|/M) (18)

if φ(v) is sufficiently smooth in v > 0 and v < 0.
In (17), v̄ can be interpreted as the velocity that could have

been achieved if no friction force acted. It is straightforward
to see that |vk| < |v̄| if |v̄| > 0, and that vk = 0 if v̄ = 0.
This means that, in (17), the friction force, fk, always acts
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Fig. 5. Definition of Φ∗(v) to guarantee fk = φ(vk). The black curve
represents f = Φ∗(v).
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Fig. 6. A linear continuous model. The input is v, and the output is f .

to decrease the kinetic energy. That is, this friction model is
guaranteed to be dissipative with any T .

Equations (16) and (17) can be generalized to multidimen-
sional cases because they are still valid even if v, v̄, h, and
f are vectors. Especially in the case of Coulomb friction, we
can simply use (14) by interpreting sgn(·) as the normalization
function sgn(a) = a/|a|. One difficulty is that the algebraic
equation (16b) is sometimes difficult to be solved. Adequate
approximations for (16b) need to be sought. Also, if M
is a matrix, not a scalar, (16) and (17) will need further
modifications. This remains for future study.

The dependence on the knowledge of M may be seen as
a drawback of the proposed method. However, M is always
known as long as it is a virtual mass set in the simulator. If
M is a real mass, it has to be given in advance. The model’s
sensitivity to the error in M should be clarified in continuing
study.

IV. NEW DISCRETE-TIME CONTINUOUS MODEL

A. Linear Continuous Model

Next, we consider to utilize the proposed discontinuous
model of section III-B to construct a continuous model of
friction. A serial connection of the discontinuous model and
a linear viscoelastic element, which is shown in Fig. 6, is
the simplest example of a continuous model. Let x and
v denote the position and velocity of the end-point of the
viscoelastic element, respectively. Let w denote the position
of the mobile object. Let f and g denote the reaction force



from the viscoelastic element and the force applied to the
mobile object by the fixed surface, respectively. The input to
this system is v or x, and the output from the system is f .
The variable w is the state variable of this system. In haptic
rendering, x corresponds to the position of the haptic device,
and f corresponds to the force to be generated by the haptic
device.

The force f , which is determined by the viscoelastic ele-
ment, can be written as follows:

f = −K(x − w) − B(ẋ − ẇ). (19)

where K and B are the stiffness and viscosity of the viscoelas-
tic element. These parameters determine the model’s behavior
in the presliding regime. The equation of motion of the mobile
object is:

Mẅ = g − f. (20)

Here, g is determined as g = Φ(ẇ,−f), depending on the
relative velocity, ẇ, and the external force, −f . The discrete-
time representation of (20) is

∆wk = ∆wk−1 + T 2(gk − fk)/M, (21)

where ∆wk = wk − wk−1.
By directly using the method in section III-B, we can write

a discrete-time representation of this system as follows:

fk = −K(xk − wk−1) − B (∆xk − ∆wk−1) /T (22a)
v̄ = ∆wk−1/T − Tfk/M (22b)

gk = Φ∗(v̄) (22c)
∆wk = T v̄ + T 2gk/M, (22d)

where Φ∗(·) is that defined by (16a) and ∆xk = xk − xk−1.
This representation is straightforward to understand. However,
it cannot be used if M = 0 because of the divisions by M .

In stead of using (22a), we here consider to use the
following definition of fk:

fk = −K(xk − wk) − B (∆xk − ∆wk) /T

= −K(xk − wk−1) − B∆xk/T + (K + B/T )∆wk. (23)

Notice that w is one step ahead of that in (22a). In other words,
(23) is based on the backward difference scheme, while (22a)
is based on the forward difference scheme. Because of (21)
and (23), ∆wk and fk are mutually dependent. Algebraically
solving (21) and (23) yields

∆wk = T ū + T 2gk/C, (24)

where

ū =
∆xk

T
+

TK

C
(xk−1 − wk−1) − M(∆xk − ∆wk−1)

TC
(25)

C = M + TB + T 2K. (26)

There is a similarity between (17c) and (24). When ∆wk �=
0, the force gk is determined by the relative velocity, i.e.,
gk = φ(∆wk/T ). On the other hand, substituting (24) by
∆wk = 0 yields gk = −Cū/T , and this can hold only if

|gk| ≤ |φ(±0)|. Therefore, in the same manner as we wrote
(15), we can write

gk =
{ −Cū/T if |ū| ≤ T |φ(±0)|/C

φ(∆wk/T ) otherwise. (27)

In the same manner as we replaced (15) by (17b), we can
replace (27) by gk = Φc(ū) where

Φc(a) =
{ −Ca/T if |a| ≤ T |φ(±0)|/C

φc(a) otherwise, (28a)

φc(a) = f s.t. f = φ (a + Tf/C) . (28b)

By using this, we can write another discrete-time representa-
tion of this system as follows:

ū = vk +
TK

C
zk−1 − M

C

(
vk − vk−1 +

∆zk−1

T

)
(29a)

gk = Φc(ū) (29b)
∆zk = Tvk − T (ū + Tgk/C) (29c)

fk = −Kzk − B∆zk/T, (29d)

where vk = ∆xk/T , z = x − w, and zk = zk−1 + ∆zk.
Unlike the system (22), the system (29) can be used even if

M = 0. If we set M = 0, B = 0, and φ(v) = −sgn(v)F , this
system reduces to a perfect elastoplastic, massless element,
and becomes equivalent to a model presented by Hayward
and Armstrong [19].

B. Compound Continuous Model with Presliding Hysteresis

The linear continuous model of section IV-A exhibits a
linear viscoelastic behavior in the presliding regime. Inclusion
of hysteresis in this model is not straightforward. However,
recall that the Maxwell-slip model, which exhibits a hys-
teresis behavior, is a parallel connection of multiple per-
fect elastoplastic, massless elements. The linear continuous
model of section IV-A is a viscoelasto-plastic element that
allows nonzero mass and velocity-dependent friction forces.
Therefore, a parallel compound of multiple instances of the
linear continuous model is a generalization of the Maxwell-
slip model.

Lampaert et al.’s GMS model [15] is also a generalization
of the Maxwell-slip model. As we pointed out in section II-C,
the GMS model has difficulties in its physical interpretation
and extensibility to multidimensional cases. On the contrary,
our compound continuous model is physically intuitive and
extensible to multidimensional cases. One of its weakness is
that it does not include the frictional lag, which is a time
lag between the velocity and the velocity-dependent friction
[2]. This phenomenon, however, is peculiar to lubricated
friction, and may be included by considering the dynamics of
lubricants. Nevertheless, this model needs some improvements
and validations to be an accurate model of real frictional
phenomena.

At this point, we can mention that the compound continuous
model can be useful for haptic rendering of friction. When the
linear continuous model is used, transitions from the presliding
regime to the sliding regime are instantaneous, and this can
cause somewhat unnatural sensations. To the contrary, the
compound continuous model with hysteresis can generates



TABLE I
FRICTION MODELS USED IN SIMULATIONS I AND II

K1 : Karnopp’s model with ε = 1 m/sec
K2 : Karnopp’s model with ε = 0.01 m/sec
K3 : Karnopp’s model with ε = 0.0001 m/sec
Q1 : Quinn’s model with ε = 1 m/sec
Q2 : Quinn’s model with ε = 0.01 m/sec
Q3 : Quinn’s model with ε = 0.0001 m/sec
P : Proposed discontinuous model

M

K
v

V t( )

f 0<

Fig. 7. Simulation I.

smooth, continuous transitions, causing a natural feeling of a
frictional surface. Psychophysical experiments to validate the
usefulness are subject to continuing work.

V. NUMERICAL SIMULATIONS

A. Simulation I: Comparison of the Proposed Discontinuous
Model with Karnopp’s and Quinn’s models

The proposed discontinuous model was compared to
Karnopp’s and Quinn’s models in numerical simulations. As
illustrated in Fig. 7, an object with a mass of M = 1 kg was
attached to a spring with stiffness 90 N/m, and the end of the
spring was moved with a time-varying velocity V (t), which
was 2 m/sec before t = 2 sec, and zero otherwise. A Coulomb
friction force of F = 10 N acted on the object. The timestep
size was 0.001 sec.

Table I lists seven models used in the simulation. Three are
Karnopp’s models with different ε values, another three are
Quinn’s models with different ε values, and the last one is the
proposed model. With each of the seven models, the velocity,
v, and the friction force, f , are shown in Fig. 8. The gray lines
in the velocity graph represent the plots of V (t).

The result of Model K1 is clearly inappropriate. Model Q1,
which has a large ε, asymptotically approaches zero velocity,
but is too slow in convergence. Models K3 and Q3, which
have a very small ε, show oscillation in the force at and after
the stop (t ≥ 2 sec). Model K2 maintains a positive nonzero
velocity even after t = 3, which causes a change in the spring
force to the negative direction, and consequently the friction
force changes to the positive direction.

Results of Models Q2 and P are almost identical to each
other. This is because Quinn’s model with ε = TF/M and
the proposed model are identical in the region |h| ≤ F , as
illustrated in Fig. 3. These results do not demonstrate the
advantage of Model P over Model Q2. However, it should
be noted that this is because ε = 0.01 m/sec is the optimal
value for Quinn’s model in this case.

B. Simulation II: Comparison of the Proposed Discontinuous
Model with Optimized Quinn’s model

By comparing Fig. 3(d) and (e), one can see that the
proposed discontinuous model (Model P) and the optimized
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Fig. 8. Results of Simulation I: Comparison of discontinuous friction models.

Quinn’s model (Model Q2) are different only in the region
where the external force is larger than the friction force
(|h| > F ) and the velocity is close to zero. In order to exhibit
this difference, we performed another simulation. A mobile
object with a mass of M = 1 kg was used. The object was
given an initial velocity of v = −0.13 m/sec, and was pulled
to the positive direction with the force of 40 N. The friction
force was F = 10 N, and the timestep size was 0.001 sec.

The results are shown in Fig. 9. The gray lines represent
analytical values (accurate values obtained by the continuous
time representation). Notice that the scales of time and velocity
are very different from that of Fig. 8. As shown in Fig. 9,
Models P and Q2 exhibit different behaviors at the instant
of zero-velocity crossing. After the zero-velocity crossing
(t ≥ 0.004 sec), the velocity of Model Q2 is larger than the
analytical value. This is because, at the time of zero-velocity
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crossing (t = 0.003 sec), the friction force of Model Q2
acted to increase the kinetic energy. On the other hand, the
friction force of Model P always decreases the kinetic energy.
Therefore, the proposed discontinuous model is a slightly
overdissipative approximation of the analytical model. A
slightly overdissipative approximation is preferable to energy-
generating approximations especially in haptic rendering.

The difference demonstrated here may be criticized as
too small. However, we emphasize that our model has no
arbitrariness in the parameter setting, while Quinn’s model has
to be tuned so that it can behave in a stable, realistic manner.

C. Simulation III: Two-Dimensional Friction

Another simulation was performed to validate the discon-
tinuous model in multidimensional space. An object (M = 1
kg) was placed on a frictional surface. It was connected to
a spring (spring constant 3 N/m, natural length 0 m) whose
other end was fixed at the origin. At t = 0 sec, the object was

placed at the position of (10, 0) m, and was given the initial
velocity of (0, 30) m/sec. The friction force of F = 10 N
acted in the opposite direction of the velocity, and the spring
force acted to pull the object to the origin. Fig. 10 shows the
results. The object completely stops at t = 4.5 sec with no
vibratory behaviors.

D. Simulation IV: Hysteresis Behavior

The compound continuous model of section IV-B was also
tested by a simulation. Ten instances of the linear continuous
model with K = 10 N/mm, B = 0.1 Ns/mm, M = 0 kg, and
F = 1, 2, · · · , 10 N were connected in parallel. The position
signal shown in Fig. 11(a) was provided to the system, and
the resultant force was recorded. The timestep size was 0.001
sec. Fig. 11(b) shows the resultant position-force plot. This
shows that this model exhibits a smooth hysteresis behavior.
All loops are closed. This is an important characteristic of the
hysteresis in real mechanical systems.

VI. EXPERIMENT: HAPTIC RENDERING OF PLANAR
FRICTION

We performed a preliminary experiment using the 2-DOF
parallel link manipulator shown in Fig. 12. We used this ma-
nipulator as a haptic device. AC servomotors with Harmonic
drive gearings were mounted on the joints. A 6-axis force
sensor (Nitta IFS) was attached to the end of the manipulator.
The experimenter grasped and moved the grip attached to the
force sensor. This manipulator has large friction in its joints
(approximately 10 Nm).

We used the discontinuous model of two-dimensional ver-
sion. In this model, the mass of the (virtual) object was 2 kg,
and the magnitude of Coulomb friction force was 6 N. The
timestep size (sampling interval) was 0.001 sec. The force
measured by the force sensor was provided to the model, and
the friction force was calculated. The position of the virtual
object was updated according to these forces. The position of
the manipulator was controlled to follow the position of the
virtual object by using PD controllers on the joint angles.

Fig. 13 shows the results. The thick curve represents the po-
sition trajectory of the end-effector, and the thin line segments
represent the force measured by the force sensor every 0.02
sec, which are the forces applied by the experimenter. In the
region from a through d, the force is in the same direction of
the motion because the trajectory is straight. At the point c, the
force from the experimenter’s hand is lower than the friction
force, and thus the end-effector is stationary. In the region
from d to e, the experimenter’s force resists the friction force
and the centrifugal force. Thus, the vectors are slanted to the
inside of the curve.

One might assume that the forces in Fig. 13 may be
attributed to the friction in the manipulator joints. However,
the end-effector forces caused by the joint friction would be
anisotropic and dependent on the manipulator configuration,
while the forces in Fig. 13 are isotropic and homogeneous.
The joint friction torques are almost totally annihilated by the
stiff PD position controllers.
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Because of the large friction in the joints, there are some dif-
ficulties in using the continuous model with this manipulator.
The continuous model, which requires a velocity input, will
be effectively implemented in low-friction, low-inertia haptic
devices, such as PHANToM interfaces.

VII. CONCLUSION

We have presented two discrete-time models of friction
for the purpose of fixed-step numerical simulations. The
first one is a Coulomb-like discontinuous model. This model
determines the friction force so that the velocity reaches zero
in finite time. The second one is a serial connection of a
discontinuous friction model and a linear viscoelastic element.
These models are numerically robust and easily extended into
multidimensional cases. They can include arbitrary velocity-
dependent friction forces. The second model can be extended
into a more sophisticated friction model, which exhibits a hys-
teresis behavior in the presliding regime. Results of numerical
simulations and an experiment have been presented.

The presented models will be useful for haptic rendering
of friction. Another potential application is the use as a
friction compensator in control systems. Some improvements
regarding modeling of lubricant behaviors are topics of future
research. The influence of the errors and noises in velocity
measurement also remains to be investigated.

We intend to apply the presented technique to power-assist
devices for conveying heavy components in the automobile
industry [20]. Coulomb friction forces implemented by the
presented technique will be suitable for accurate positioning
[12].
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P. Lischinsky, “Friction models and friction compensation,” European
J. of Control, vol. 4, pp. 176–195, 1998.

[3] P. R. Dahl, “A solid friction model,” Aerospace Corporation, Tech. Rep.
TOR-0158(3107-18)-1, 1968.

[4] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Single state
elastoplastic friction models,” IEEE Trans. on Automatic Control,
vol. 47, no. 5, pp. 787–792, 2002.

[5] C. Canudas de Wit, H. Olsson, K. J. Åström, and P. Lischinsky, “A new
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