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This paper describes a computationally-efficient formulation and an algorithm for tetrahedral finite-element simulation of elastic objects
subject to Saint Venant-Kirchhoff (StVK) material law. The number of floating point operations required by the algorithm is in the
range of 15% to 27% for computing the vertex forces from a given set of vertex positions, and 27% to 38% for the tangent stiffness
matrix, in comparison to a well-optimized algorithm directly derived from the conventional Total Lagrangian formulation. In the new
algorithm, the data are associated with edges and tetrahedron-sharing edge-pairs (TSEPs), as opposed to tetrahedra, to avoid redundant
computation. Another characteristic of the presented formulation is that it reduces to that of a spring-network model by simply ignoring
all the TSEPs. The technique is demonstrated through an interactive application involving haptic interaction, being combined with a
linearized implicit integration technique employing a preconditioned conjugate gradient method.
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1. INTRODUCTION

Fast simulation of deformable soft objects is an important issue for
interactive applications such as computer games, virtual reality-
based surgery training, and interactive 3D model editing, which
can involve haptic interaction. Among many models for simulat-
ing deformable continuums, spring network (SN) models and finite
element (FE) models are two of the most popular classes of defor-
mation models. The SN models are generally faster and simpler
in computation while FE models have better consistency with the
continuum mechanics. There are many types of FE models ranging
from simple tetrahedral linear models to many variations of higher-
order nonlinear models. Appropriate modeling schemes should be
chosen considering the balance between computational efficiency
and numerical accuracy required by the application.

The linear FE models constitute the simplest class of FE models,
but they are disadvantageous in that they distort the shape of the
simulated object under rigid rotations and, worse, do not allow rota-
tions of greater than π/2. Saint Venant-Kirchhoff (StVK) material
law is the simplest continuum constitutive law that allows arbitrary
rigid rotations without affecting the overall shape of the model. Ar-
bitrary rigid rotation can be treated even with SN models, which are

generally much faster, and some other material laws are more ac-
curate, although computationally slower. Therefore, the StVK ma-
terial law can be useful for some applications where a compromise
between the speed and the accuracy is necessary, which include
some classes of interactive applications such as surgery simulators.
Although it is attracting attention from researchers, the nonlinear
nature of StVK-based FE models tends to make themselves look
complicated, having been hindering mathematical sophistication.

This paper presents an alternative formulation of the tetrahedral
FE model subject to the StVK material law. The formulation analyt-
ically describes the connections from vertex positions to the vertex
forces and to the global tangent stiffness matrix. The formulation
is practically useful because its computation requires smaller num-
ber of floating point operations compared to previous formulations
in the literature. Besides, by simply skipping a few computational
loops, the presented algorithm becomes equivalent to the algorithm
for simulating a network of nonlinear springs. This feature might
be convenient in some situations where the user tentatively needs to
accelerate the computation by sacrificing the accuracy.

The derivation of the new formulation starts by writing the strain
energy of the whole mesh as a concise quadratic function of the
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Fig. 1. Interactive simulation of a deformable object involving haptic feed-
back. The object is the mesh MB (the Stanford Bunny composed of 4064
tetrahedra) introduced in section 5. The timestep size for the simulation was
30 ms while the sampling interval for the force feedback was 1 ms. Detailed
information on this demonstration is found in section 5.

squared edge lengths. Such an approach is not novel with two-
dimensional membranes [Delingette 2008] but cannot be found with
three-dimensional solids in the literature. The energy is then an-
alytically differentiated twice to yield vertex forces and a global
tangent stiffness matrix. The obtained expressions employ a new
class of geometric primitives named tetrahedron-sharing edge pairs
(TSEPs). The material and geometric properties of the mesh are as-
sociated to the edges and the TSEPs, as opposed to the tetrahedra,
to remove the redundancy in computation. The presented method
is conceptually different from previous “edge-based” FE methods
[Martins et al. 1997; Coutinho et al. 2001], which are for efficient
storage and use of given stiffness matrices, not for efficient assem-
bly of stiffness matrices.

The rest of this paper is organized as follows. Section 2 describes
an overview of previous studies. Section 3, which is the main part
of this paper, derives a new formulation and computational proce-
dure for the StVK-based tetrahedral FE model. Section 4 shows
that the fictitious equilibrium, which is a major drawback of the
StVK material law, can be avoided by the conventional idea of us-
ing volume-preserving forces without introducing much increase in
the number of floating-point operations. Section 5 demonstrates
the presented method through an interactive application involving
haptic interaction, as shown in Fig. 1. Section 6 provides the con-
cluding remarks.

2. PREVIOUS STUDIES

2.1 FE Models and SN Models

Since the early work by Terzopoulos et al. [1987], there have been
many models and techniques for computing object deformations:

FE methods, SN models [Van Gelder 1998; Duysak and Zhang
2004; Lloyd et al. 2007], boundary element methods [James and Pai
1999], finite volume methods [Teran et al. 2003], and many types
of mesh-free methods, as detailed in excellent reviews [Gibson and
Mirtich 1997; Nealen et al. 2006]. The present paper mainly fo-
cuses on FE models except some remarks on their relations to SN
models.

In both of SN models and FE models, the continuum of interest is
discretized into a mesh composed of many edges and polyhedral el-
ements (in the simplest case, tetrahedra), and the force and position
are evaluated at the vertices of the mesh. In SN models, the edges
are substituted by tensile springs that produce forces only in the
direction of their lengths. In FE models, the polyhedral elements
are considered as filled solids that apply forces on their vertices
according to the theories of the continuum mechanics. An attrac-
tive feature of SN models is that they are conceptually simple and
generally fast in computation. Attractive features of FE techniques
are that they have better consistency with the continuum mechanics
and that they can capture spatial inhomogeneity and anisotropy of
continuums.

Several studies have been carried out to find better SN models
to approximate FE models, but such models have been success-
ful only in limited cases [Van Gelder 1998; Lloyd et al. 2007].
Delingette [2008] has presented a formal relation between an StVK
material law and an SN model but his formulation is limited to
two-dimensional triangular surface meshes like thin membranes or
shells.

2.2 Linear and Nonlinear FE Models

In FE models, the vertex forces can be computed by taking the
sums of the contributions of individual elements. In the linear FE
techniques, however, element-by-element computation of the ver-
tex forces is not necessary because the vertex forces are linearly
related to the vertex positions through constant stiffness matrices
of elements, which can be assembled into a global stiffness matrix
in the precomputation phase. The global stiffness matrix is usually
very large but sparse. In the precomputation phase, it can be con-
densed into a dense, smaller matrix to accelerate the runtime com-
putation [Bro-Nielsen and Cotin 1996] and can be inverted (under
appropriate constraint conditions) to allow implicit methods [Hi-
rota and Kaneko 2001; Nakao et al. 2006]. Besides, the memory
usage can be reduced by storing only non-zero off-diagonal blocks
of the sparse stiffness matrix, which can be associated with indi-
vidual edges [Martins et al. 1997; Coutinho et al. 2001]. Unfortu-
nately, such elegant mathematical techniques do not apply straight-
forwardly to nonlinear FE techniques.

Green Lagrange (GL) strain tensor is a nonlinear strain measure
that is invariant with respect to rigid rotation. An StVK material is a
material in which GL strain tensor and a 2nd Piola-Kirchhoff (PK2)
stress tensor are linearly related (i.e., materially linear although
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geometrically nonlinear). Because the use of GL strain measure
generally increases the computational cost of FE techniques, some
approximation techniques have been presented. Barbič and James
[2005] presented fast computation of StVK material based on pre-
computed reduced coordinates, exploiting the fact that the vertex
forces are described as a cubic polynomial of the vertex displace-
ments. Zhong et al. [2005] used the interpolation of precomputed
relations between surface displacements and internal displacements
to simulate materials described with GL strain measure and nonlin-
ear material laws.

There are also many studies that avoid using strong approxima-
tions in geometrically-nonlinear interactive FE simulation. In most
of previous studies, the computation is performed in element-by-
element manners; i.e., the contributions of individual elements are
computed and summed into the vertex forces. In O’Brien and Hod-
gins’s work [1999], the vertex forces are computed through the PK2
stress tensor, which is obtained from the vertex positions. This
method has been used in many scenarios such as cutting [Men-
doza and Laugier 2003] and adapting mesh refinement [Debunne
et al. 2001]. Miller et al. [2007] presented a similar methods with
hexahedral meshes, also based on an element-by-element approach.
One exception is Picinbono et al.’s work [2003], in which the ver-
tex forces are computed through an expanded cubic polynomial of
the vertex positions. They avoid using an element-by-element ap-
proach by associating the computational steps and data with dif-
ferent geometric primitives (vertices, edges, faces, and tetrahedra).
Their method is reported to be five times slower than the linear FE
method.

2.3 Tangent Stiffness Matrix

The simulation of the shape of an object, which changes over the
time, requires numerical integration over the time of the vertex ac-
celerations resulting from the vertex forces. There are many types
of numerical integration schemes, including several types of ex-
plicit and implicit methods. Explicit integration schemes only re-
quire the vertex force vectors to be computed, but generally suf-
fer from numerical instability unless the timestep size is set small
enough. On the other hand, implicit integration schemes, such as
the one used by Baraff and Witkin [1998] for cloth simulation, are
rather stable. They however require the global tangent stiffness ma-
trix to be assembled at every timestep except with linear FE mod-
els. Thus, many of previous studies on SN models and nonlinear FE
models, such as those cited above and others [Zhuang and Canny
2000; Brouwer et al. 2007], employ explicit integration schemes.

In previous studies on interactive applications employing im-
plicit integration, the runtime assembly of the global tangent stiff-
ness matrix by element-by-element computation has not been pre-
ferred due to its computational cost. Capell et al.’s [2002a] paper
provides an analytical expression of the tangent stiffness matrix in a
fully-expanded polynomial of vertex displacements. They however

are not proactive to use it in interactive applications due to its com-
putational cost. Debunne et al. [2001] described a “semi-implicit”
integration scheme, but they ignored all off-diagonal blocks. The
technique described in [Müller et al. 2001] also seems to ignore all
off-diagonal blocks of the global tangent stiffness matrix. Some re-
searchers [Müller et al. 2002; Capell et al. 2002b; 2002a; Müller
and Gross 2004] employed approximated tangent stiffness matri-
ces obtained by rotating nonzero blocks of the precomputed ini-
tial stiffness matrices. Capell et al.’s [2002a] method is specific to
models that have rigid skeletons. In contrast, the stiffness warping
method [Müller and Gross 2004] is a versatile method in which all
elements are rotated independently. This method is reported to be
stable under large strain but is still an approximation of continuum
mechanics.

2.4 Prevention of Element Inversion

A common drawback of the StVK material model and SN models
is that it is invariant with respect to reflection and thus produces
fictitious equilibrium at the inverted state. The use of volume-
preserving forces has been introduced to SN models [Van Gelder
1998; Lloyd et al. 2007] and to StVK-based FE models [Picinbono
et al. 2003]. Some researchers avoid using StVK material law and
GL strain (e.g.,[Teran et al. 2003; Irving et al. 2006]) in applications
where interactivity is not a primary concern. This problem will be
discussed later in section 4.

3. DERIVATION OF A NEW FORMULATION

3.1 Problem Formulation

In the rest of this paper, M denotes the mesh of interest, and T ,
E , and V denote a tetrahedron, an edge, and a vertex, respectively.
An edge is defined as an ordered pair of vertices. Different prim-
itives are distinguished by subscripts, e.g., Ea and Eb. A quantity
associated to a primitive or a set of primitives is denoted as, e.g.,
p(V) and L(Ea, Eb). The symbols NV , NE , NF , and NT denote
the numbers of vertices, edges, faces, and tetrahedra, respectively.
Besides, In denotes the n-dimensional identity matrix, and on and
Ok×n denote the n-dimensional zero vector and the k × n zero
matrix, respectively.

Let p(V) and f(V) (∈ R
3) denote the current position and the

force, respectively, at a vertex V . Let p and f (∈ R
3NV ) be the

global position and force vectors composed of the vectors p(V) and
f(V), respectively, from all vertices V ∈ M. Let F : R

3NV →
R

3NV be a function that relates p and f as follows:

f = F(p). (1)

In an StVK material, F(p) is a cubic polynomial of p [Capell et al.
2002a; Picinbono et al. 2003; Barbič and James 2005]. Besides, let
K : R

3NV → R
3NV×3NV be defined as follows:

K(p)
Δ
= ∂F(p)/∂p. (2)
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The matrix K = K(p) ∈ R
3NV×3NV is referred to as the global

tangent stiffness matrix. As shown in [Capell et al. 2002a], K is a
quadratic function in an StVK material.

This section focuses on the derivation of the analytical formu-
lations and the algorithms for the functions F and K. They will
be derived through sections 3.2 to 3.5. After that, section 3.6 will
compare the new algorithms to conventional methods in terms of
the numbers of floating-point operations.

3.2 Strain Energy Density of StVK Material

Deformation of a continuum can be represented by a vector-valued
vector function that maps the initial position pini of a point in the
continuum to its current position p. The GL strain tensor is defined
by using the partial derivative of the function as follows:

E
Δ
=

1

2

“
F TF − I3

”
∈ R

3×3, F
Δ
=

∂p

∂pini
∈ R

3×3. (3)

The tensor F is referred to as the deformation gradient tensor.
It follows from (3) that the GL strain tensor E is a symmetric

tensor that possesses six independent entries. For the convenience
of derivation, let us define the following vector:

"
Δ
=
ˆ
εxx εyy εzz 2εxy 2εyz 2εzx

˜T ∈ R
6, (4)

of which the entries are taken from the tensor E, which is

E =

2
4 εxx εxy εzx
εxy εyy εyz
εzx εyz εzz

3
5 . (5)

Then, in an isotropic StVK material, the strain energy density w
can be described as follows:

w
Δ
= "TD"/2 (6)

where

D
Δ
=

2
6666664

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

3
7777775
∈ R

6×6. (7)

Here, λ and μ are Lamé constants, which are λ = Eν/(1+ν)/(1−
2ν) and μ = E/2/(1 + ν) where E and ν are Young’s modulus
and Poisson’s ratio, respectively. Anisotropy can be included by
modifying the matrix D appropriately.

3.3 Formulation of Strain Energy

Consider a tetrahedron T , which includes six edges (Es) and four
vertices (Vs), in the StVK material. Let pini(V) ∈ R

3 denote the
initial position of a vertex V . Let us define the following quantities:

p̃ini(E)
Δ
= pini(Ve(E , 0)) − pini(Ve(E , 1)) (8)

p̃(E)
Δ
= p(Ve(E , 0)) − p(Ve(E , 1)) (9)

where Ve(E , j) denotes the jth (j = 0 or 1) vertex of the edge
E . The vectors p̃ini(E) and p̃(E) are edge vectors at the initial
and deformed states, respectively. Hereafter, quantities specific to
the tetrahedron T are denoted with the subscript T . Assuming the
deformation gradient F takes a constant value F T in the region
T , it satisfies F T p̃ini(E) = p̃(E). Therefore, from the definition
of E in (3), the strain tensor ET in the tetrahedron T satisfies the
following equation:

p̃ini(E)TET p̃ini(E) =
1

2
p̃ini(E)T

“
F T

TF T − I3

”
p̃ini(E)

=
1

2

“
‖p̃(E)‖2 − ‖p̃ini(E)‖2

”
. (10)

For the convenience of derivation, let us define

q̃ini(E)
Δ
=
ˆ
x̃2, ỹ2, z̃2, x̃ỹ, ỹz̃, z̃x̃

˜T ∈ R
6 (11)

where x̃, ỹ, and z̃ are taken from the vector p̃ini(E) = [x̃, ỹ, z̃]T.
Then, (10) can be rewritten as follows:

q̃ini(E)T"T =
1

2

“
‖p̃(E)‖2 − ‖p̃ini(E)‖2

”
, (12)

in which p̃ini(E) and ET are replaced by q̃ini(E) and "T .
Let the six edges of the tetrahedron T be denoted by Ei (i =

0, 1, · · · , 5). Stacking (12) with respect to the six Es into a vector
form yields QT "T = “T /2 where

QT
Δ
=
ˆ

q̃ini(E0) q̃ini(E1) · · · q̃ini(E5)
˜T ∈ R

6×6 (13)

“T
Δ
=
ˆ
ζ(E0) ζ(E1) · · · ζ(E5)

˜T ∈ R
6 (14)

ζ(E)
Δ
= ‖p̃(E)‖2 −H(E) ∈ R (15)

H(E)
Δ
= ‖p̃ini(E)‖2 ∈ R. (16)

It can be easily proven that the matrix QT has an inverse matrix
if and only if the four vertices are not on a single plane. Thus, the
strain vector " can be obtained as follows:

"T =
1

2
QT

−1“T . (17)

A similar expression, which linearly relates the GL strain tensor to
the squared edge lengths, has already been known in two-dimensional
(triangular) cases, such as thin shells [Gingold et al. 2004]. In three-
dimensional, tetrahedral cases, such an expression cannot be found
in the literature.

Based on (6) and (17), the strain energy in the tetrahedron T can
be obtained as follows:

WT
Δ
=
Cini

T
6
wT =

Cini
T

12
"T

TDT "T =
1

4
“T

TLT “T ∈ R (18)

where Cini
T is the six-fold initial volume of the tetrahedron T and

LT
Δ
=
Cini

T
12

QT
−TDT QT

−1 ∈ R
6×6. (19)
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E7E6 E8
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V3

V2

V0

V4 T 1

Fig. 2. A mesh M that contains two tetrahedra (T s), nine edges (Es), five
vertices (Vs), and 27 TSEPs (Ps).

By letting LT (Ei, Ej) denote the (i, j)-th entry of LT , (18) can be
rewritten as follows:

WT =
X
Ea∈T

X
Eb∈T

1

4
ζ(Ea)LT (Ea, Eb)ζ(Eb), (20)

in which the strain energy is represented as a quadratic function of
the squared edge lengths ‖p̃(E)‖2, as is apparent from (15).

The total strain energy in the mesh M, which is composed of
multiple T s, is written as follows:

W
Δ
=
X

T ∈M
WT =

X
Ea∈M

X
Eb∈M

1

4
ζ(Ea)

 X
T ∈M

LT(Ea, Eb)
!
ζ(Eb). (21)

Here, we used the fact that ζ(E) is an edge-specific quantity that
does not depend on a specific tetrahedron. In contrast, LT (Ea, Eb)
depends on the tetrahedron T , being unable to be taken out of
the summation over T ∈ M. However, by letting L(Ea, Eb) =P

T ∈M LT (Ea, Eb), (21) can be simplified as follows:

W =
X

Ea∈M

X
Eb∈M

1

4
ζ(Ea)L(Ea, Eb)ζ(Eb). (22)

The total strain energy of the whole mesh is now represented as a
function of the edge lengths ‖p̃(E)‖, E ∈ M.

We can rewrite the expression (22) into a more convenient form.
The definition ofL(Ea, Eb) implies that it is symmetric (i.e.,L(Ea, Eb)

force

length l
natural
length

 = K
2l0

2
l ( l 

2¡  l0
2
 )|force

force = K ( l         l0 )

0

0.2 Kl0

0.4 Kl0

 l0

¡ 0.2 Kl0

0.4 Kl0

(          )
p
H(E)l0 =

l  = k p(E)k  ~

K = 2L(E)H(E)

Fig. 3. The characteristic of the nonlinear springs that appear in (24) (solid
curve) and its linear approximation (dashed line).

= L(Eb, Ea)) and that it takes a non-zero value only if the edges Ea
and Eb belong to at least one common tetrahedron. Thus, it is conve-
nient to define such pairs of edges as a new class of geometric prim-
itives, which we name tetrahedron-sharing edge pairs (TSEPs). A
TSEP, denoted hereafter P , is an ordered pair of edges. We here-
after denote the ith (i = 0, 1) edge of the TSEP P by Ep(P , i). One
tetrahedron includes 15 TSEPs as illustrated in Fig. 2. Every non-
zeroL(Ea, Eb) can be associated with either of an edge (if Ea = Eb)
or a TSEP (otherwise), and therefore we can define the following
notational conventions:

L(E)
Δ
= L(E ,E), L(P)

Δ
= L(Ep(P , 0), Ep(P , 1)). (23)

By using them, the total strain energy W in (22) can be rewritten as
follows:

W =
X
E∈M

1

4
L(E)ζ(E)2

+
X
P∈M

1

2
L(P)ζ(Ep(P , 0))ζ(Ep(P , 1)), (24)

which describes the contribution of edges and TSEPs separately.
Some useful physical interpretations can be drawn from the ex-

pression (24). It must be noted that Delingette [2008] has already
arrived at a similar expression in formulating the deformation of
two-dimensional objects, such as shells and membranes. For three-
dimensional solids, however, similar expressions cannot be found
in the literature. Recalling that ζ(E) is the change in the squared
length of the edge E as defined in (15) and (16), one can show that
the first term of (24) represents the sum of elastic energy stored
in nonlinear springs coinciding with the edges. These springs cor-
respond to what Delingette has referred to as “tensile biquadratic
springs.” The force produced by one of these springs is a cubic func-
tion of its length, as illustrated in Fig. 3. As long as the second term
is left out of account, the energy W in (24) can be viewed as the
elastic energy of an SN model whose springs are nonlinear.

The second term of (24), on the other hand, is not straightforward
to physically interpret; it represents the energy produced by a cou-
pled effect of paired edges. The difficulty in approximating an FE
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model by an SN model has been attracting attentions of researchers
[Van Gelder 1998; Lloyd et al. 2007], but (24) shows that it can
be attributed to the second term of (24). In the two-dimensional
(triangular) case, Delingette [2008] attributes the coupled effects
of paired edges to imaginary “angular biquadratic springs,” each
of which produces a force according to the angle between two in-
tersecting edges and the lengths of them. In the three-dimensional
(tetrahedral) case, however, the concept of “angular” springs does
not apply because paired edges may or may not cross each other
in a three-dimensional SN. His equations, although successful in
two-dimensional cases, do not seem straightforward to be extended
to deal with three-dimensional cases because they depend on many
triangular-specific geometric formulas such as the sine law and the
cosine law.

3.4 Formulation and Computation of Vertex Forces

Due to the principle of virtual work, the force f(V) (∈ R
3) can be

obtained as a partial derivative of the strain energy W as follows:

f(V) =
∂W

∂p(V)T
=
X

Ea∈M

X
Eb∈M

1

2

„
∂ζ(Ea)
∂p(V)T

«
L(Ea, Eb)ζ(Eb)

=
X
E∈M

t(V, E)p̃(E)g(E)

=
X
E∈M

Ve(E,0)=V

p̃(E)g(E)−
X
E∈M

Ve(E,1)=V

p̃(E)g(E) (25)

where

g(E)
Δ
=
X

Eb∈M
L(E ,Eb)ζ(Eb) ∈ R (26)

t(V, E)
Δ
=

8<
:

1 if V = Ve(E , 0)
−1 if V = Ve(E , 1)
0 otherwise (if V is not included in E ).

(27)

The definition (9) of p̃(E) implies ∂p̃(E)/∂p(V) = t(V, E)I3,
which is used in (25).

By using the notations in (23), (26) can be written as follows:

g(E) = L(E)ζ(E) +
X

P∈M
Ep(P,1)=E

L(P)ζ(Ep(P , 0))

+
X

P∈M
Ep(P,0)=E

L(P)ζ(Ep(P , 1)). (28)

The computation of the expression (25), which depends on (28),
can be performed in the following procedure:

ALGORITHM algF [ p ]

// depending on {H(E),L(E)}E∈M, {L(P)}P∈M

FOR V ∈ M; f(V) := o3

FOR E ∈ M
p̃(E) := p(Ve(E , 0)) − p(Ve(E , 1))

ζ(E) := ‖p̃(E)‖2 −H(E)

g(E) := L(E)ζ(E)

END FOR

FOR P ∈ M
g(Ep(P , 1)) +=L(P)ζ(Ep(P , 0))
g(Ep(P , 0)) +=L(P)ζ(Ep(P , 1))

END FOR

FOR E ∈ M
f tmp := p̃(E)g(E)

f (Ve(E , 0)) += f tmp

f (Ve(E , 1))−= f tmp

END FOR

RETURN [ f , {p̃(E), g(E)}E∈M ]

The input to this algorithm is p (i.e., {p(V)}V∈M) and the main
output is f (i.e., {f(V)}V∈M). The rest two of the outputs, p̃(E)
and g(E), are used to compute the tangent stiffness matrix in the
next section.

3.5 Formulation and Computation of Tangent Stiffness Ma-
trix

The global tangent stiffness matrix K = ∂f/∂p is a 3NV × 3NV
symmetric matrix. Its 3×3 blocks are obtained by ∂f(Va)/∂p(Vb).
This partial derivative is not O3×3 only if Va and Vb share a com-
mon edge (i.e., Va = Vb or ∃E s.t. {Va,Vb} ∈ E ). Therefore, it
can be associated with either of a vertex or an edge as follows:

K(V)
Δ
=
∂f(V)

∂p(V)
, K(E)

Δ
=
∂f(Ve(E , 0))
∂p(Ve(E , 1))

=

„
∂f (Ve(E , 1))
∂p(Ve(E , 0))

«T
. (29)

The matrices K(V), V ∈ M, are diagonal blocks of the global tan-
gent matrix K , and the matrices K(E), E ∈ M, are off-diagonal
blocks. It can be easily verified (as in [Coutinho et al. 2001]) that
K(V) and K(E) are constrained by the following relation:

K(V) = −
X
E∈M

t(E,V)=1

K(E) −
X
E∈M

t(E,V)=−1

K(E)T, (30)

which allows us to focus on the problem of formulating K(E).
A tedious but straightforward derivation detailed in Appendix A

shows that

K(E) = −g(E)I3 − 2p̃(E)L(E)p̃(E)T

+
X

P∈M

X
i∈{0,1}

X
j∈{0,1}

Ep2(P,i,j)=E ∧ s(P,i,j)=1

(−1)i+jKp(P)

+
X

P∈M

X
i∈{0,1}

X
j∈{0,1}

Ep2(P,i,j)=E ∧ s(P,i,j)=−1

(−1)i+jKp(P)T (31)
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(a) Type-1 TSEP

Ep2(P,1,0)

( s(P,1,0) = ¡1 )

Ep2(P,1,1)

Ep2(P,0,1)

Ep2(P,0,0)

Ep2(P,1,0)

Ep2(P,0,1)

Ep2(P,0,0)

( s(P,0,1) = ¡1 )

( s(P,0,0) = 1 )

( s(P,1,1) = 1 )

( s(P,1,0) = ¡1 )

( s(P,0,1) = 1 )

( s(P,0,0) = 1 )

( s(P,1,1) = 0 )

(b) Type-2 TSEP

Ve(Ep(P,1),0)

Ep(P,1)Ep(P,0)

Ve(Ep(P,0),1)
   = Ve(Ep(P,1),1)

Ve(Ep(P,0),0)

Ep(P,1)Ep(P,0)

Ve(Ep(P,0),0) Ve(Ep(P,1),0)

Ve(Ep(P,0),1) Ve(Ep(P,1),1)P

P

Fig. 4. The operators s(P, i, j) and Ep2(P, i, j).

where

Kp(P)
Δ
= 2p̃(Ep(P , 0))L(P)p̃(Ep(P , 1))T (32)

Ep2(P , i, j) Δ
= Ev(Ve(Ep(P , 0), i),Ve(Ep(P , 1), j)) (33)

s(P , i, j) Δ
= t(Ve(Ep(P , 0), i), Ep2(P , i, j)). (34)

Fig. 4 illustrates the definitions (33) and (34). Here, Ev(Va,Vb)
is the edge connecting the vertices Va and Vb if such an edge ex-
ists. The integer flag s(P , i, j) in (34) indicates the orientation of
the edge; it is 1 if Ep2(P , i, j) is oriented from Ep(P , 1)-side to
Ep(P , 0)-side, is −1 if reversed, and is 0 if Ep2(P , i, j) does not
exist. As is illustrated, TSEPs can be classified into two types by
whether the edges in the TSEP share a common vertex or not. With
P being a type-1 TSEP, Ep2(P , i, j) may not exist due to the shared
vertex; in such cases, the correspondent s(P , i, j) is set to be 0.

The computation of the expression (31) can be performed in the
following procedures:

ALGORITHM algKE [ {p̃(E), g(E)}E∈M ]

// depending on: {L(E)}E∈M, {L(P)}P∈M

FOR E ∈ M
K(E) := −g(E)I3 − 2p̃(E)L(E)p̃(E)T

END FOR

FOR P ∈ M
Kp := 2p̃(Ep(P , 0))L(P)p̃(Ep(P , 1))T

FOR i ∈ {0, 1}, j ∈ {0, 1}

IF s(P , i, j) = 1

K(Ep2(P , i, j)) +=(−1)i+jKp

ELSE IF s(P , i, j) = −1

K(Ep2(P , i, j)) +=(−1)i+jKp
T

END IF

END FOR

END FOR

RETURN [ {K(E)}E∈M ] .

This algorithm algKE must be run after the algorithm algF is run
because it depends on p̃(E) and g(E), which are produced by algF.

The diagonal blocks of the matrix K can be obtained by using
the rule (30) in the following procedure:

ALGORITHM algKV [ {K(E)}E∈M ]

FOR V ∈ M; K(V) := O3×3

FOR E ∈ M
K(Ve(E , 0))−= K(E)

K(Ve(E , 1))−= K(E)T

END FOR

RETURN [ {K(V)}V∈M ] .

Considering that K(V) are symmetric matrices each of which stores
only six independent entries, the algorithm algKV only requires
12NE floating-point additions.

When the loops of “FOR P ∈ M” are removed from the algo-
rithms algF and algKE, the algorithms reduce to those for simu-
lating an SN model whose springs have the nonlinear characteristic
illustrated in Fig. 3. This means that the user or the programmer
can easily switch the FE model into the SN model by skipping this
P-loop if s/he needs to accelerate the computation by sacrificing
the accuracy to some extent. Probably these nonlinear springs are
computationally less expensive than the linear springs because they
do not require square-root operations. The physical validity of such
a nonlinear SN (NSN) model (without the P-loop) is an open prob-
lem. However, considering that linear SN models have been practi-
cally accepted in spite of its having been questioned for their phys-
ical validity, some applications will accept the reduced NSN model
in spite of its lack of physical validity. At least as long as the strain
is sufficiently small, the nonlinear springs can be approximated by
linear springs as illustrated in Fig. 3.

3.6 Comparison to previous methods

The computational cost of the presented method is now compared
to those of previous methods in terms of the number of floating
point operations (FLOPs). Although the number of FLOPs is not
the only factor that determines the time of computation, it is indeed
an important factor and its reduction is necessary before further op-
timization.
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0 500 1000 1500 2000

TL-FE

new FE

NSN

linear FE

(max)

(min)

(max)

(min)

number of  FLOPs per tetrahedron

(max)

(min)

multiplications for f
additions for f
multiplications for K
additions for K

Fig. 5. Numbers of FLOPs per tetrahedron for computing f and K; “TL-
FE”=TL-FE algorithm, “new-FE”= new FE algorithm, “NSN”= the nonlin-
ear SN model obtained by removing P-loops from the “new” method, and
“linear FE”=linear FE method.

The presented technique and many of previous nonlinear FE tech-
niques reviewed in section 2 share a common theoretical basis with
the conventional Total Lagrangian (TL) formulation [Bathe 1996],
which employs GL strain tensor and PK2 stress tensor. In appli-
cations where the interactivity is not a concern, the forces and tan-
gent stiffness matrices are usually computed by the numerical in-
tegration within polyhedral elements, which requires many FLOPs.
Most of analytical expressions (with tetrahedral meshes) found in
the literature are based on element-by-element formulations, and
thus the number of FLOPs is proportional to NT . With an algo-
rithm that can be straightforwardly derived from the standard TL
formulation (hereafter, referred to as a “TL-FE algorithm”), the re-
quired number of FLOPs for computing f and K is 1747NT as
detailed in Appendix B. This number is the sum of the numbers
of multiplications and additions (including subtractions) for com-
puting f and for computing K , which are shown in the top bar of
Fig. 5.

The number of FLOPs for the presented new FE method, on the
other hand, is not proportional to NT because it does not employ
element-by-element computation. The numbers can be summarized
as follows:1

NMLT,f ,newFE = 7NE + 6NF + 6NT (35a)

NADD,f ,newFE = 12NE + 6NF + 6NT (35b)

NMLT,K,newFE = 9NE + 36NF + 36NT (35c)

NADD,K,newFE = 15NE + 81NF + 108NT . (35d)

1Here, we used the fact that the numbers of type-1 and type-2 TSEPs (NP1

and NP2, respectively) satisfy NP1 = 3NF and NP2 = 3NT . In ad-
dition, we assume that 2L(E) and 2L(P), which appear in algKE, are
precomputed to avoid runtime multiplications between constants.

Here, NMLT,f ,newFE and NADD,f ,newFE are the numbers of mul-
tiplications and additions, respectively, to compute f . The numbers
NMLT,K,newFE and NADD,K,newFE are those to compute K. The
relations among NV , NE , NF , and NT depend on the connectivity
of the tetrahedra in the mesh. Among meshes composed of suffi-
ciently many tetrahedra (NT � 1), the most sparsely connected
one is that with an elongated structure in which all its edges are on
its border, which satisfiesNV : NE : NF : NT ≈ 1 : 3 : 3 : 1. The
opposite extreme is a densely connected mesh so that its surface-
area-to-volume ratio is small. In such a mesh, a previous study
[Gumhold et al. 1999] reports that the numbers typically become
close to NV : NE : NF : NT ≈ 0.18 : 1.18 : 2 : 1. Therefore,
we can assume that the ratios for most of meshes normally used to
model an object lie within the following ranges:

0.18 <
NV

NT
< 1, 1.18 <

NE

NT
< 3, 2 <

NF

NT
< 3. (36)

Under the assumption (36), the numbers in (35) lie within the fol-
lowing ranges:

26.27NT < NMLT,f ,newFE < 45NT (37a)

32.18NT < NADD,f ,newFE < 60NT (37b)

118.64NT < NMLT,K,newFE < 171NT (37c)

287.73NT < NADD,K,newFE < 396NT . (37d)

These numbers are shown in the second and the third bars of Fig. 5.
The figure shows that the new method is computationally much
more efficient than the TL-FE algorithm at least in terms of the
necessary numbers of FLOPs.

The FLOP counts for simpler but less accurate methods are now
shown for the sake of comparison. In the linear FE methods (in
the form of f = K(p − pini) with a given constant stiffness
matrix K ∈ R

3NV×3NV ), the numbers of FLOPs are written as
NMLT,f ,linFE = 9NV +18NE andNADD,f ,linFE = 6NV +18NE ,
where the sparsity of K is taken into account. Under the assump-
tion (36), these numbers fall within the following ranges:

22.91NT < NMLT,f ,linFE < 63NT (38a)

22.36NT < NADD,f ,linFE < 60NT , (38b)

which are shown in the bottom two bars in Fig. 5. The compari-
son between {(37a),(37b)} and (38) indicates that the inclusion of
nonlinearity may or may not increase the numbers of FLOPs for
computing f , and that the increase is at most 17% (in the sum of
multiplications and summations). As another example, the num-
bers for the NSN model, which is obtained by skipping all P-loops
from the algorithms algF and algKE, are shown in the fourth and
fifth bars in Fig. 5. The figure shows that the NSN method is even
faster than the linear FE method, although its physical validity is
debatable.

A possible alternative to the algorithm algF is Picinbono et al.’s
[2003] method. Although its precise number of FLOPs is not re-
ported, the method requires larger number of FLOPs and longer
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computational time than the linear FE method for computing f be-
cause it computes f by adding new quadratic and cubic terms to
a standard linear term. In their implementation, the method is re-
ported to require at least five times longer timestep size than the
linear FE model. Another alternative to our method is the stiffness
warping method [Müller and Gross 2004], which computes both f
and K. Their method can be viewed as a linear but rotationally-
invariant approximation of an StVK-based FE method and its com-
putation can be more stable than the StVK-based FE methods. Their
method requires the polar decomposition of 3 × 3 matrices. In ad-
dition to this, it requires rotational coordinate transformation of all
nonzero 3 × 3 blocks of the precomputed initial stiffness matrix
and force vectors for every tetrahedron, which demands more than
54× 10+9× 4 = 576 multiplications and 36× 10+6× 4 = 384
additions per tetrahedron. This means that the stiffness warping
method requires much more FLOPs than our presented method.

It must be noted that there are some other factors that influence
the computational speed: e.g., the number of indirect addressing
operations [Löhner 1994]. It must also be cautioned that most of
the implicit integration schemes require iterative computation to
solve algebraic equations after the computation of f and K. This
indeed can be a bottleneck for the acceleration of the whole simula-
tion. However, within a given timestep size that is typically around
30 ms in interactive applications, the reduced time for computing f
and K results in the increased accuracy of the iterative solver be-
cause it increases the maximum possible number of iterations. The
severity of the bottleneck of the iterative solver depends on the nec-
essary number of iterations, which highly depends on the level of
accuracy needed by the application and the system to be simulated.
For example, in simulations mainly dealing with slow motions or
systems under high viscous resistance, the computation converges
in a small number of iterations. The presented method could be ben-
eficial in such cases. Nonetheless, many of iterative computational
procedures are based on general-purpose, well-defined mathemati-
cal problems, which might be accelerated through future numerical
techniques and/or hardware-level implementation techniques (e.g.,
[Bolz et al. 2003]).

The memory requirement might be another important issue in
implementation. The presented method requiresH(E),L(E), 2L(E),
L(P), and 2L(P) to be stored in the precomputation phase, which
means that 3NE + 6NF + 6NT (21.54NT to 33NT ) floating-
point numbers must be stored. Picinbono et al’s [2003] method,
on the other hand, requires at least 10NV +26NE +18NF +6NT
(74.48NT to 148NT ) floating-point numbers to be stored, accord-
ing to Table 1 in [Picinbono et al. 2003], which is much larger than
the presented technique. The requirement of the TL-FE algorithm
is smaller than the presented FE method, being at least 3NV +3NT
(3.54NT to 6NT ) floating-point numbers, at the price of increased
number of FLOPs. The stiffness warping method [Müller and Gross
2004] requires a precomputed stiffness matrix and initial force vec-
tors for every tetrahedra, which include more than 90NT numbers.

4. ADDITIONAL VOLUMETRIC STRAIN ENERGY

One disadvantage of the StVK material law is that it is invariant
with respect to reflection, which is a drawback common to SN mod-
els. This means that these deformation models keep tetrahedra at
fictitious equilibrium when they are inverted. One simple idea to
avoid such a drawback is the use of additional forces and/or energy
terms depending on volumetric (bulk) strain. Such an approach
has been demonstrated in interactive applications [Picinbono et al.
2003; Teschner et al. 2004; Lloyd et al. 2007] and is supported
by empirical and theoretical studies [Simo and Taylor 1991; Weiss
et al. 1996; Doll and Schweizerhof 2000; Teran et al. 2003; Teran
et al. 2005]. There are some different types of approaches [Irving
et al. 2006; Irving et al. 2007], but they are not intended for inter-
active applications.

This conventional idea of additional volumetric forces is also
useful in combination with our main contribution in section 3. Here,
a precise algorithm based on an arbitrary volumetric strain energy
function is described to ease future extension and to estimate the
resultant increase in the number of FLOPs. With an additional vol-
umetric strain energy term, the strain energy density w in (6), is
rewritten as follows:

w = "TD"/2 + ψvol(θ) (39)

whereψvol(θ) is a positive definite scalar function and θ is the volu-
metric strain defined as θ = (det(F )− 1)/6. The additional strain
energy in a tetrahedron T can be described as follows:

W vol
T = Ψvol

T (CT − Cini
T ) (40)

where Ψvol
T (c)

Δ
= (Cini

T /6)ψvol(c/C
ini
T ) and CT is the current six-

fold volume of T . Based on this function, a straightforward deriva-
tion detailed in Appendix C shows that the contributions of the ad-
ditional volumetric strain energy can be added to f(V) and K(E)
in the following procedure:

ALGORITHM algBT [ f , {p̃(E),K(E)}E∈T ]

c0 := p̃(E∗) × p̃(E∗)

ΔCT := p̃(E∗)
Tc0 − Cini

T

Ψ1 := Ψvol
T

′
(ΔCT )

Ψ2 := Ψvol
T

′′
(ΔCT )

FOR j ∈ {1, 2}; cj := p̃(E∗) × p̃(E∗)

FOR i ∈ {0, 1, 2}; fvol
T (Vj) := cjΨ1

fvol
T (V3) := −fvol

T (V0) − fvol
T (V1) − fvol

T (V2)

FOR j ∈ {0, · · · , 3}; f(Vj)+= fvol
T (Vj)

FOR i ∈ {0, 1, 2}; xi := p̃(Ei)Ψ1

FOR i ∈ {3, 4, 5}; xi := x(E∗) − x(E∗)

FOR j ∈ {0, 1, 2}; yj := cjΨ2

y3 = −y0 − y1 − y2
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FOR i ∈ {0, · · · , 5}; K(Ei) += c∗yT
∗ + (−1)∗[x∗ × ]

RETURN [ f , {K(E)}E∈T ] .

Here, the subscripts ∗ denote integers appropriately chosen.
The algorithm algBT includes (102+nmψ) multiplications and

(135 + naψ) additions, where nmψ and naψ are the numbers of
multiplications and additions, respectively, for Ψvol

T
′ and Ψvol

T
′′,

which are typically a few. The comparison of these numbers to
those in Fig. 5 indicates that the use of this element-by-element
computation of algBT does not defeat the benefit of the method
in section 3, because algBT introduces roughly (237 + nmψ +
naψ)/464.82 < 53 % of increase in the FLOP count while the con-
ventional TL-FE method (without volume-preserving forces) re-
quires more than 2.60 times as many. Besides, if the function
ψvol(θ) is chosen so that ψvol(θ) = 0 if θ > 0, the amount of
computation can be reduced by skipping expanded tetrahedra.

The whole procedure of the algorithm to obtain vertex forces f
and the nonzero blocks of the global tangent stiffness matrix K
from the vertex positions p is described as follows:

ALGORITHM algALL [ p ]

[f , {p̃(E), g(E)}E∈M] := algF [ p ]

[{K(E)}E∈M] := algKE [{p̃(E), g(E)}E∈M]

FOR T ∈ M
[f , {K(E)}E∈T ] := algBT [f , {K(E), p̃(E)}E∈T ]

END FOR

[{K(V)}V∈M] := algKV [{K(E)}E∈M]

RETURN [ f ,K ]

where algBT must be used after algKE and before algKV.

5. EXAMPLES

The new FE algorithm (algALL) was implemented in a simula-
tion environment which consisted of a desktop PC (Intel Core 2
Duo E6700 processor, 2.66 GHz, and 2GB RAM) and a SensAble
PHANTOM Omni haptic device. For comparison, the TL-FE al-
gorithm (in Appendix B) and the stiffness warping (SW) algorithm
[Müller and Gross 2004]2 were also demonstrated. Besides, the
NSN algorithm, which is obtained by skipping P-loops from the
new FE algorithm, was also demonstrated. Picinbono et al.’s [2003]
method was not demonstrated because it does not include the com-
putation of the global tangent stiffness matrix.

5.1 Implementation

An example implementation of the new FE algorithm is now de-
scribed. We used four meshes listed in Table I and shown in Fig. 6(a),

2The polar decomposition in the SW algorithm was performed employing
the method of Higham and Schreiber [1990].

Table I. The numbers of the geometric primitives in the meshes.
NV NE NF NT

MC 441 1,984 2,744 1,200
MD 856 4,066 5,669 2,458
MB 1,171 6,153 9,047 4,064
MA 2,227 11,559 16,887 7,554

(a)

(d)

(c)

(f)(e)

(g) (h)

(b)

(i)

(k) (l)(j)

Fig. 6. Deformation of meshes realized with the new FE algorithm. (a)-
(c) cuboid (MC ); (d)-(f) dinosaur (MD); (g)-(i) bunny (MB ); (j)-(l) Ar-
madillo (MA). The green spheres are positions to each of which a vertex
is elastically connected.

(d), (g), and (j), which were a cuboid (MC ), a dinosaur (MD), a
bunny (MB), and an Armadillo (MA), respectively. The material
parameters for all the tetrahedra were chosen asE = 0.05 MPa and
ν = 0.4. The volumetric energy density function ψvol(θ) used in
algBT was chosen as ψvol(θ) = Kvol |min (0, θ)|3 /3 where Kvol

was chosen as Kvol = E/(4(1− 2ν)) to produce the same amount
of strain energy in the inverted state as the linear material. The cube

ACM Transactions on Graphics, Vol. x, No. x, xx 20xx.



An Edge-Based Computationally-Efficient Formulation of Saint Venant-Kirchhoff Tetrahedral Finite Elements · 11

of θ is for holding dψvol(θ)/dθ ≈ 0 when θ ≈ 0, not to influence
the linear property of the material in the small-strain region.

The equation of motion of a whole mesh M can be described as
follows:

Mp̈ + Bṗ + f = h (41)

where f = F(p) ∈ R
3NV , M and B are inertial and viscosity

matrices of R
3NV×3NV , respectively, and h ∈ R

3NV is the vec-
tor composed of external force vectors acting on the vertices. For
simplicity, M was set to be a diagonal matrix whose entries were
chosen to approximate the distributed mass of density ρ = 10−6

kg/mm3. The conventional Rayleigh damping model B = αM +
βK , where K = K(p), α = 0.5 s−1, and β = 0.1 s were used.
External forces h were determined in a penalty-based manner, i.e.,
through virtual spring-damper elements each of which connects a
vertex to the environment or to the haptic device. This means that
the force h was computed through a function that can be described
as h = H(p, ṗ, q) where q denotes the state (position and veloc-
ity) of the haptic device. Besides, the gravity of 9800 mm/s2 was
applied to all vertices. The stiffness and viscosity of the springs
that connect vertices to the environment (the haptic device) were
10 N/mm and 0.1 Ns/mm (0.3 N/mm and 0 Ns/mm), respectively.

The differential equation (41) was integrated along time through
a linearized implicit integration scheme, which is equivalent to the
one described in [Baraff and Witkin 1998]. WithT being the timestep
size, the procedure of integration can be described as follows:

FOR k ∈ {1, 2, · · · }
qdevice := GET DEVICE STATE()

h := H (p(k − 1), v(k − 1), qdevice)

KH := Hp (p(k − 1), v(k − 1), qdevice)

BH := Hv (p(k − 1),v(k − 1), qdevice)

[f ,K] := algALL [p(k − 1)]

A := K + ((1/T + α)M − TKH − BH)/(T + β)

b := (h − f + (1/T )Mv(k − 1))/(T + β)

v(k) := SOLVE BY PCGM [ Av(k) = b ]

p(k) := p(k − 1) + Tv(k)

END FOR.

Here, Hp
Δ
= ∂H/∂p and Hv

Δ
= ∂H/∂v. The algebraic equation

Av(k) = b was solved by the preconditioned conjugate gradient
method (PCGM) with the simple diagonal preconditioner [Baraff
and Witkin 1998]. The use of PCGM is based on the assumption
that A is positive definite, which is not guaranteed as discussed
in [Teran et al. 2005] but is mostly valid when the parameters are
chosen appropriately. The iterations for the PCGM were performed
for a fixed number of times, which was 20 for MA and 80 for
the others, as long as it was possible within the timestep size of
T = 30 ms. The force from the device actuators was determined at

every 1 ms through a virtual spring that connects the device to an
interpolated position of the vertex to which the device is connected.

5.2 Results

The simulation was performed as shown in the photograph of Fig. 1.
Fig. 6 shows deformed states of the meshes obtained by the new
FE algorithm. Due to the property of the StVK material law, the
meshes exhibited proper deformations even under large partial ro-
tations as shown in (b), (c), (e), (h), (k), and (l) of Fig. 6. Extreme
torsion [Fig. 6(c) and (f)] and elongation [Fig. 6(j)] were also suc-
cessful due to the volume-preserving forces. The temporal behav-
iors of the meshes were visually plausible except with the largest
mesh MA. The behavior of MA was indeed realistic but was slow,
as if it was moving in the water, probably because the number of the
PCGM iterations (which was 20) was not sufficient to simulate this
large mesh under the gravity and low viscous resistance. Increasing
this number to 30, which was close to the limit within the timestep
size T = 30 ms, slightly accelerated the motion, but it was still
slower than the other meshes. The temporal behavior of the meshes
strongly depends on the convergence speed of the iterative solver,
which falls outside the scope of the paper.

The numbers of FLOPs required by the computation can be pre-
dicted as in Fig. 7 based on the discussion in section 3.6. In con-
trast, the time used for the computation in the experiment was as
summarized in Fig. 8. For all meshes, the reduction of the FLOP
count by the new method is about 70% from the TL-FE algorithm
but the reduction of the time was only 28% to 53%. This is proba-
bly because of some overheads due to memory addressing. It must
be noted again that the overall time of simulation includes the time
for the iterative computation to solve the linear equation. The nec-
essary number of the iterations depends on many factors such as
the level of accuracy needed by the application and on the condi-
tion number of the matrix A. Nevertheless, the reduced time for
computing f and K contributes to the increased possible number
of iterations, which leads to the increased accuracy in the dynamic
response realizable within a given timestep size.

The TL-FE algorithm produced exactly the same results as the
new FE algorithm because they are analytically equivalent to each
other. Except them, the choice of the algorithms produced small
differences in the deformation. Fig. 9 shows examples of such dif-
ferences, in which the mesh MC were twisted under the same con-
straint (indicated by the green spheres) and three different meth-
ods: the SW, the new FE, and the NSN algorithms. The difference
mainly appears in the volumetric response resulted from the twist:
the width in the twisted portion and the overall length (in the verti-
cal direction of the figure) of the mesh. Fig. 9 shows that the mesh
tends to preserve its volume more with the SW algorithm than with
the new FE and the NSN algorithms. This can be attributed to the
fact that the StVK and the NSN models become softer when they
are compressed as illustrated in Fig. 3. Besides, the NSN model
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new FE
TL-FE

NSN
MC{
MD{
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MA{
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£106 number of  FLOPs 

new FE
TL-FE

NSN

new FE
TL-FE

NSN

new FE
TL-FE

NSN

computation of f
computation of K
computation of algB¿

Fig. 7. Numbers of FLOPs to obtain f and K with different methods. The
FLOP count for algBT is added to the numbers of each method because
algBT is necessary for all methods to prevent element inversion. The num-
bers are obtained based on the discussions in section 3.6 and section 4. The
numbers for SW are not shown because they are generally not constant due
to the iterative computation in the polar decomposition.

new FE
TL-FE

NSN
MC{
MD{
MB{
MA{

0 5 10 15 20 25 30
[msec] 

SW

new FE
TL-FE

NSN

SW

new FE
TL-FE

NSN

SW

new FE
TL-FE

NSN

SW

computation of f
computation of K
computation of algB¿
10 iterations in PCGM

Fig. 8. Computational time spent for individual steps of the simulation in
the experiment. The iteration count was 20 for MA and 80 for others.

produced somewhat jaggy surface as compared to the other mod-
els, which might be because of its lack of representing continuum
mechanics.

The conclusions drawn from these results are summarized as fol-
lows. The new FE algorithm produces the same result as but is
faster than the TL-FE algorithm. The new FE algorithm is also
faster than the SW algorithm although the SW algorithm is always
stable as discussed in Müller and Gross’s [2004] paper. The NSN
model, on the other hand, is much faster. The new FE algorithm
thus can be suited for some applications where a compromise be-
tween the accuracy/stability and the computational speed is neces-
sary. Its better consistency with the well-established StVK mate-

(a) (c)(b)

Fig. 9. Deformation of the mesh MC produced by the (a) SW, (b) new FE,
and (c) NSN algorithms. The TL-FE algorithm produced the same shape as
the new FE algorithm. The green spheres are positions to each of which a
vertex is elastically connected.

rial law, which is described by partial differential equations, might
count as a strength from a theoretical point of view. The NSN model
may be acceptable for some applications where physical royalty is
not a primary concern.

6. CONCLUSION AND FUTURE WORKS

This paper has presented a new formulation and an algorithm for
FE simulation specific to tetrahedral meshes subject to the StVK
material law. The algorithm computes the vertex forces and tan-
gent stiffness matrices from given vertex positions. The number of
FLOPs required for the computation is 62% to 73% smaller than
a well-optimized algorithm derived from the conventional total La-
grangian formulation. A by-product of the presented formulation
is a nonlinear spring network (NSN) model, which can be realized
by skipping particular computational steps from the proposed FE
algorithm. It is much faster than the FE models and produces vi-
sually plausible deformations although its physical royalty is de-
batable. The algorithms were demonstrated through an interactive
application with haptic feedback combined with an implicit inte-
gration scheme. In our implementation, the presented FE algorithm
was 28% faster than the conventional total Lagrangian algorithm
and 42% faster than the stiffness warping method for computing
vertex forces and tangent stiffness matrices in a mesh composed of
7554 tetrahedra.

Because the presented FE method is faster than more accurate
or stable models but is still slower than less accurate models, it is
suited for some applications where a compromise between the ac-
curacy and the speed is necessary, such as interactive surgery sim-
ulators that require moderate accuracy. The presented FE method
is probably useful also for applications that need runtime alteration
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of the mesh structure, such as cutting and fracture, because it does
not require as large amount of precomputation as some of the im-
plicit schemes [Hirota and Kaneko 2001; Nakao et al. 2006]. It
however needs some clarifications for an efficient redistribution of
the material and geometric properties to edges and TSEPs when the
connectivity of the tetrahedra is changed.

An important future topic of research is further optimization of
the algorithms considering the efficiency of memory addressing.
Parallelization of the algorithm will also be necessary for further ac-
celeration using different types of computing devices such as mul-
ticore CPUs or GPUs. In addition, more optimized numerical tech-
niques for solving algebraic equations will need to be combined
with the presented formulation. Another interesting future topic is
to include material nonlinearity. It is fortunate that the algorithm
algBT for the volumetric force allows freedom in the choice of
the energy function ψvol. Thus, it may be possible to design ψvol

according to empirical data or well-established nonlinear material
laws, making the model closer to real objects such as organs.

APPENDIX

A. DERIVATION OF TANGENT STIFFNESS MATRIX

This appendix section supplements section 3.5 by presenting the
derivation of (31), which represents an off-diagonal block of the
tangent stiffness matrix. From (29), when there exists an E con-
necting Va and Vb, ∂f(Va)/∂p(Vb) can be rewritten as follows:

K(E) = −g(E)I3 − 2p̃(E)L(E)p̃(E)T

+
X

P∈M
t(Ve(E , 0), Ep(P , 0))t(Ve(E , 1), Ep(P , 1))Kp(P)

+
X

P∈M
t(Ve(E , 1), Ep(P , 0))t(Ve(E , 0), Ep(P , 1))Kp(P)T (42)

where Kp(P) is defined in (32). The definition of t(V, E) in (27)
implies

t(V, E) =
X

i∈{0,1}
Ve(E,i)=V

(−1)i. (43)

Thus, the last two terms of (42) can be rewritten as follows:

3rd term of (42) =
X

P∈M

X
i∈{0,1}

X
j∈{0,1}

condA(E,P,i,j)

(−1)i+jKp(P) (44a)

4th term of (42) =
X

P∈M

X
i∈{0,1}

X
j∈{0,1}

condB(E,P,i,j)

(−1)i+jKp(P)T (44b)

where the conditions under the summation operators are

condA(E ,P , i, j) Δ
= { Ve(Ep(P , 0), i) = Ve(E , 0)

∧ Ve(Ep(P , 1), j) = Ve(E , 1) } (45a)

condB(E ,P , i, j) Δ
= { Ve(Ep(P , 0), i) = Ve(E , 1)

∧ Ve(Ep(P , 1), j) = Ve(E , 0) }. (45b)

When E satisfies either of these conditions, E is the edge connecting
the vertices Ve(Ep(P , 0), i) and Ve(Ep(P , 1), j). The orientation
of E determines which of the two conditions is satisfied. By using
the symbols Ep2(P , i, j) and s(P , i, j), which are defined in (33)
and (34) and illustrated in Fig. 4, (45) can be concisely rewritten as
follows:

condA(E ,P , i, j) = { Ep2(P , i, j)=E ∧ s(P , i, j)=1} (46a)

condB(E ,P , i, j) = { Ep2(P , i, j)=E ∧ s(P , i, j)=−1}.(46b)

Substituting (44) by (46) yields (31).

B. TOTAL LAGRANGIAN FORMULATION

This appendix section supplements section 3.6 by showing the TL-
FE algorithm, which is directly derived from the conventional total
Lagrangian formulation. In the conventional derivation of FE for-
mulations, both linear and nonlinear, geometric interpolation func-
tions named “shape functions” are often used [Bathe 1996]. In
tetrahedral meshes, the shape functions are linear functions described
as φT V(x)

Δ
= (¸ini

T (V)Tx + aT (V)) ∈ R where ¸ini
T (V) ∈ R

3

and aT (V) ∈ R are defined by the following:2
664

¸ini
T (V0)

T aini
T (V0)

¸ini
T (V1)

T aini
T (V1)

¸ini
T (V2)

T aini
T (V2)

¸ini
T (V3)

T aini
T (V3)

3
775

T

=

2
664

pini(V0)
T 1

pini(V1)
T 1

pini(V2)
T 1

pini(V3)
T 1

3
775

−1

. (47)

O’Brien and Hodgins [1999] use the vectors ¸ini
T (Vi) to compute

the force contribution to the vertices of the tetrahedron T as fol-
lows:3

fT (Vi) =
Cini

T
6

3X
j=0

p(Vj)
“

¸ini
T (Vj)TST ¸ini

T (Vi)
”
∈ R

3.(48)

Here, ST ∈ R
3×3 is a PK2 stress tensor, which can be obtained

through the following procedure:

F T :=
P3
i=0 p(Vi)(¸ini

T (Vi))T ∈ R
3×3. (49a)

ET := (F T
TF T − I3)/2 ∈ R

3×3 (49b)

ST := 2μET + (λtr(ET ))I3. (49c)

The tangent stiffness matrix of a single tetrahedral element, on
the other hand, can be expressed as follows:

KT =
Cini

T
6

BT
TDT BT +

2
64
gT ,00I3 · · · gT ,03I3

...
. . .

...
gT ,03I3 · · · gT ,33I3

3
75 ∈ R

12×12.

(50)

3For computing the forces, O’Brien and Hodgins [1999] use Cini
T /12 in-

stead of Cini
T /6 in (48). This is because their definition of the strain tensor

is double of the definition (49b).
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The first and second terms of (50) are often referred to as the ini-
tial displacement stiffness matrix and the initial stress stiffness ma-
trix, respectively. Here, DT ∈ R

6×6 is the one defined in (7)
and gT ,ij = (Cini

T /6)¸ini
T (Vj)TST ¸ini

T (Vi) (i, j ∈ {0, 1, 2, 3}),
which are used in computing f(Vi) in (48). The matrix BT ∈
R

6×12 is the one that satisfies

BT
Δ
= Bini

T blockdiag[F T
T ,F

T
T ,F

T
T ,F

T
T ] ∈ R

6×12 (51)

where Bini
T ∈ R

6×12 is referred to as the strain-displacement ma-
trix [Bathe 1996], which is a sparse matrix including the entries of
¸ini

T (Vi).
For computing f from p through the procedure (49), one re-

quires 214 multiplications and 173 additions, with taking the factP3
i=0 fT (Vi) = o3 into account. For computing (50) and (51),

one requires 720 multiplications and 574 additions, with taking the
sparsity of Bini

T and DT and the symmetry of KT into account
and assuming that gT ,ij are already obtained when f (Vi) are com-
puted. Moreover, one must perform 66 more additions to construct
KT s into the global tangent stiffness matrix. Thus, the computa-
tion of both f and K requires 934 multiplications and 813 addi-
tions.

C. DERIVATION OF VOLUMETRIC FORCES

This appendix section supplements section 4 by showing the deriva-
tion of the volumetric forces and the tangent stiffness matrices. By
using the energy function Ψvol

T , a vertex force and an off-diagonal
block of the tangent stiffness matrix can be respectively written as
follows:

fvol
T (V) =

∂W vol
T

∂p(V)T
= Ψvol

T
′
(ΔCT )

„
∂CT

∂p(V)T

«
(52)

Kvol
T (E) = Ψvol

T
′′
(ΔCT )

„
∂CT

∂p(Ve(E , 0))T
«„

∂CT

∂p(Ve(E , 1))T
«T

+Ψvol
T

′
(ΔCT )

∂2CT

∂p(Ve(E , 0))T∂p(Ve(E , 1))
(53)

where ΔCT = CT − Cini
T . Assuming that the orientations and

the index numbers of the edges and vertices are chosen as in the
tetrahedron T0 in Fig. 2,CT is described asCT = p̃(E2)·(p̃(E5)×
p̃(E4)). Then, the partial derivatives in (52) and (53) are written as
follows:

∂CT

∂p(V0)T
= p̃(E5) × p̃(E4),

∂2CT

∂p(V0)T∂p(V1)
= [p̃(E5)×] .

By using these relations, the contributions of the additional volume
strain energy to f(V) and K(E) can be computed by using the
algorithm algBT in section 4.
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MÜLLER, M., DORSEY, J., MCMILLAN, L., AND JAGNOW, R. 2001.
Real-time simulation of deformation and fracture of stiff materials. In
Proceedings of the Eurographics Workshop on Computer Animation and
Simulation. 113–124.
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