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SUMMARY
This paper presents new proofs of four stability properties
(semiglobal strict passivity, semiglobal asymptotic stability,
semiglobal input-to-state stability, and semiglobal uniform
ultimate boundedness with an arbitrarily reducible ultimate
bound) of a rigid-link manipulator under proportional-
integral-derivative (PID) position control. The proofs employ
a strict Lyapunov function and a novel parameterization to
provide four inequality conditions for the stability properties.
In those inequalities, arithmetic operations on physical
quantities are physically consistent if the joints are all
revolute or all prismatic. A gain selection procedure is
presented by which the ultimate bounds of velocity error,
position error, and its integral can be independently designed.

KEYWORDS: Robot dynamics; Control of robotic systems;
PID control; Stability analysis; Passivity.

1. Introduction
Proportional-integral-derivative (PID) position control is
a widely accepted method especially for industrial
manipulators. Its control law is very simple and is robust
against disturbances and uncertainties. In spite of its
prevalence in practical applications, its theoretical foundation
remains inconclusive. When it is applied to set-point control
of a robotic manipulator, the global asymptotic stability is
not guaranteed due to the existence of the centrifugal and
Coriolis terms. Lyapunov functions for stability analysis and
inequality conditions for guaranteeing stability are generally
very complicated in the literature. In addition, there is no
standard way to deal with a variable desired position in
the trajectory-tracking control. Such features of PID control
attract the attention of academic researchers in the fields of
robotics and control theory.

This paper presents a new approach for the stability
analysis of the system composed of a rigid-link manipulator
and a PID trajectory-tracking controller. This approach
is based on a strict Lyapunov function inspired by the
one by Wen and Murphy19 and that by Pervozvanski and
Freidovich.15 The function is parameterized in a novel way
to provide inequality conditions leading to the proofs of
four stability properties, including the semiglobal uniform
ultimate boundedness with an arbitrarily reducible ultimate
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bound. It also provides a procedure for selecting the
controller gains to meet the presented inequality conditions.
The gravity is not explicitly considered in the Lyapunov
function but is treated as a disturbance. Given an upper bound
of the magnitude of the disturbance including the gravity,
the gains can be chosen to achieve arbitrarily small residual
tracking error.

Main features of the presented proofs are that (i) in the
inequality conditions, the arithmetic combinations among
physical quantities are consistent with respect to physical
dimensions if the joints are either of all revolute or all
prismatic; and that (ii) the ultimate bound of the velocity
error, position error, and the position-error integral can
be independently designed according to given bounds
of the disturbance, the desired velocity, and the desired
acceleration. The combination of these features is in contrast
to previous works. In particular, the feature (i) contrasts
to most of previous works, which employ inconsistent
combinations of quantities with different physical units, such
as the addition of position and velocity. One exception is
Pervozvanski and Freidovich’s work,15 but their approach
does not share the feature (ii) because, in their approach, a
given bound of the residual tracking error is achieved only
when the desired trajectory is slow enough.

This paper is organized as follows. Section 2 provides
some preliminaries and related works. Section 3 describes a
Lyapunov function and provides three matrices (P , Q, and �)
that represent important properties of the Lyapunov function.
Section 4 provides three lemmas regarding the matrices P ,
Q, and �. Section 5 presents four theorems, which are the
main results of the work: the semiglobal strict passivity,†

the semiglobal asymptotic stability, the semiglobal input-to-
state stability, and the uniform ultimate boundedness with
the ultimate bound arbitrarily reducible by an appropriate
choice of controller parameters.‡ Section 6 shows illustrative
numerical examples and Section 7 provides the concluding
remarks. In Fig. 1, the relations among the three lemmas,
the four theorems, and some key inequality conditions in
Sections 4 and 5 are illustrated.

†The definition of the strict passivity is provided in Definition 6.3,
p. 236, of Khalil.11

‡This property is termed as a “semiglobal practical stability”
by Cervantes and Alverez-Ramirez.5 The paper avoids using the
term “practical stability” because it has been used with different
definitions by several authors. For example, Chaillet et al.’s6

definition is more strict in that it demands not only the boundedness
but also the stability in the sense of Lyapunov.
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Fig. 1. Relations among lemmas, theorems, and some representative
equations in this paper.

2. Preliminaries

2.1. Mathematical preliminaries
In the rest of this paper, R denotes the set of all real
numbers, R+ denotes the set of all nonnegative real numbers,
Dn denotes the set of all n × n diagonal matrices whose
diagonal elements are all strictly positive, Pn denotes the
set of all n × n symmetric positive definite matrices, and
Sn denotes the set of all n × n symmetric matrices. Clearly,
they are related as Dn ⊂ Pn ⊂ Sn ⊂ Rn×n and R+ ⊂ R. The
symbol 0 denotes the zero vector or the zero matrix of
appropriate dimensions and I denotes the identity matrix
of an appropriate dimension. The symbol ‖ ∗ ‖ denotes the
vector 2-norm or the corresponding induced matrix norm.
With a positive integer k and a positive scalar a, Bk(a) denotes
the k-dimensional ball with the radius a, which is defined as
follows:

Bk(a)
�= {z ∈ R

k| ‖z‖ ≤ a}. (1)

The maximum and minimum singular values of a matrix
(equivalently, eigenvalues of positive definite matrices) are
denoted by σmax(∗) and σmin(∗), respectively. In some
specified cases, σmax(∗) or its upper bound is denoted in
short by γ∗. Likewise, σmin(∗) or its lower bound is denoted
in short by λ∗.

Throughout this paper, the symbol z is used as a versatile
symbol to represent a scalar or a vector whose dimension is
specified in each case.

2.2. Rigid-link manipulator and PID control
This paper considers a class of n-dimensional nonlinear
systems that can be described in the following form:

M(q)q̈ + C(q, q̇)q̇ = f + h, (2)

where q, f, h ∈ Rn, M(q) ∈ Pn, and C(q, q̇) ∈ Rn×n. It is
assumed that the maps M(q) and C(q, q̇) satisfy

Ṁ(q) = C(q, q̇) + C(q, q̇)T , (3)

and there exist scalars λM, γM, κC ∈ R+ satisfying

γM
�= sup

q∈Rn

σmax(M(q)), λM
�= inf

q∈Rn
σmin(M(q)),

κC
�= sup

q∈Rn, q̇∈Rn

‖C(q, q̇)‖
‖q̇‖ . (4)

This class of systems includes n-dimensional rigid-link
manipulators with nonelastic joints.3, 7, 10, 14 In this case, q

denotes the vector of joint variables (angles for revolute
joints and displacements for prismatic joints), f denotes the
generalized force (torques for revolute joints and forces for
prismatic joints) produced by the joint actuators, and h ∈ Rn

denotes the sum of forces from all external sources. The
gravitational force is included in h. The matrix M(q) denotes
the inertia matrix and C(q, q̇)q̇ denotes the centrifugal and
Coriolis forces.

A PID controller applied to the system (2) can be described
as follows:

ä = q̇d − q̇, (5a)

f = Bä + Kȧ + La. (5b)

Here, f is the actuator force that appeared in Eq. (2), qd ∈ Rn

is the desired position provided to the controller, K, B, L ∈
Dn are gain matrices, and a ∈ Rn is a state vector stored in
the controller. The set-point control is a special case of the
control law (5) with q̇d being substituted by q̇d ≡ 0.

2.3. Stability analyses in the literature
The literature includes several reports on the stability
properties of the system described by the combination of
Eqs. (2) and (5). Leaving the gravity out of consideration,
Lyapunov functions for analyzing such a system in many of
previous works can be described in the following form:

V (x) = 1

2
xTP(q)x, (6)

where P(q) ∈ S3n and x = [äT , ȧT , aT ]T ∈ R3n. Many
variations of the matrix P(q) have been reported in the
literature. Some of them, such as those by Arimoto and
Miyazaki,4 Kelly,9 Meza et al.,13 and Kelly et al.,10 are
sparse (including zero block matrices), and thus the analytical
derivations are rather easy. However, the resultant V̇ becomes
negative semidefinite (instead of negative definite), and thus,
the stability proofs cannot use Lyapunov’s direct method but
require LaSalle’s Invariance Theorem.11

Some researchers proposed strict Lyapunov functions,
which are rather complicated but yield negative definite time
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derivatives. For example, Wen and Murphy19 used

P(q)
�=

⎡
⎣M(q) αM(q) αβM(q)

K + αB αβB

sym. α(L + βK)

⎤
⎦ , (7)

where α and β are positive constants appropriately chosen.
They discussed the local asymptotic stability of trajectory-
tracking control but their analysis was restricted to the case
where the desired trajectory converges to a fixed position.
They provided a set of many inequality conditions, some
of which are implicit, to assure the asymptotic stability.
Pervozvanski and Freidovich15 used

P(q)
�=

⎡
⎣M(q) αM(q) αβM(q)

K + αB − αβM(q) L + αβB

sym. α(L + βK)

⎤
⎦ ,

(8)

to show that the tracking error can be bounded as long as the
desired trajectory is slow enough. Choi and Chung7 presented
a very complicated strict Lyapunov function, in which each
block of P(q) is a product of the gain matrices. They defined
an extended disturbance, which is a quantity depending on
many quantities such as the desired acceleration and velocity,
and they discussed the input-to-state stability of the system
by considering the extended disturbance as an input.

By imposing the assumption that the norms of q̈d and q̇d are
upper-bounded, one can discuss the behavior of the system
(2)(5) in terms of the uniform ultimate boundedness.5, 6, 17, 18

To show the uniform ultimate boundedness, Rocco18 used a
strict Lyapunov function, which is defined by using a solution
of a Riccati algebraic equation and is not described explicitly.
Qu and Dorsey’s analysis17 is based on the assumption
that equal gains were chosen for all the joints. Cervantes
and Alverez-Ramirez5 have shown the semiglobal uniform
ultimate boundedness and also have shown that the ultimate
bound can be arbitrarily set smaller by an appropriate
choice of controller parameters. It must be noted, however,
that their controller includes an additional feedforward
term proportional to the desired acceleration q̈d . Chaillet
et al.6 have shown a similar but stronger property (they
termed it as “the uniform semiglobal practical asymptotic
stability”) of a rigid-link manipulator under the standard PID
controller, with taking actuator dynamics and joint friction
into account. Their analysis used a “sufficiently small”
positive parameter ε1 to make the integral gain sufficiently
small in comparison to the proportional gain. Besides, all
of the above analyses except Pervozvanski and Freidovich’s
one15 are based on physically inconsistent arithmetic, such
as addition of position and velocity.

Some other variants of PID controller have been analyzed
in the literature. Those variants involve torque saturation
(e.g., Section 3.2 in Arimoto3 and others1, 2), low-pass filtered
velocity measurements,12, 16 and delay in the integrator.12

Because they do not fall within the class of controllers
described by Eq. (5), the present paper does not consider
them any further.

3. Lyapunov Function Candidate and Its
Parameterization
For the analysis of the system composed of the robotic
manipulator (2) and the controller (5), this section provides
a candidate of a strict Lyapunov function. The proposed
Lyapunov function candidate is reparameterized in a new
way for the convenience of the analysis in the subsequent
sections.

3.1. Lyapunov function candidate
Let us define the state vector of the system (2)(5) as follows:

x
�= [äT , ȧT , aT ]T ∈ R

3n. (9)

By using this state vector, the system (2)(5) can be described
in the following state-space representation:

ẋ = A(q, q̇)x + B(q)ĥ, (10a)

y = Cx, (10b)

where

ĥ
�= h − M(q)q̈d − C(q, q̇)q̇d ∈ R

n, (11)

A(q, q̇)

�=
⎡
⎣−M(q)−1(C(q, q̇) + B) −M(q)−1K −M(q)−1L

I 0 0
0 I 0

⎤
⎦

∈ R
3n×3n, (12)

B(q)
�=

⎡
⎣−M(q)−1

0
0

⎤
⎦ ∈ R

3n×n, (13)

C �= [−I −αI −αβI
] ∈ R

n×3n. (14)

Here, α and β are positive constant scalars and y ∈ Rn is an
output that is intended to be power-conjugate to the extended
disturbance ĥ.

For the analysis of the system (10), this paper uses the
following Lyapunov function candidate:

V (x, q)
�= 1

2
xTP(q)x , (15)

where P : Rn → S3n is the map defined as follows:

P(q)
�=

⎡
⎣M(q) αM(q) αβM(q)

K + αB L + αβB

sym. α(L + βK)

⎤
⎦ . (16)

This function is similar to but different from previously
proposed functions, such as Wen and Murphy’s one (7) and
Pervozvanski and Freidovich’s one (8).

The time derivative of Eq. (15) can be described as follows:

V̇ (x, q) = −W (x, q, q̇) + yT ĥ, (17)

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 03 Dec 2012 IP address: 133.5.72.176

116 Proofs of four stability properties of PID-controlled manipulators

where W : R3n × Rn × Rn → R is defined as

W (x, q, q̇)
�= 1

2
xTQ(q, q̇)x, (18)

Q(q, q̇)

�=

⎡
⎢⎣
2(B − αM(q)) −α(C(q, q̇) + βM(q)) −αβC(q, q̇)

2α(K − βB) − 2L 0

sym. 2αβL

⎤
⎥⎦

∈ S3n. (19)

The function V is said to be a Lyapunov function if both
V and W are positive definite with respect to their first
arguments.

3.2. New parameterization
Now, let us define a blockwise norm function ψ : R3n → R3

+
as follows:

ψ

([
zT

1 , zT
2 , zT

3

]T
)

�= [‖z1‖, ‖z2‖, ‖z3‖]T , (20)

where z1, z2, z3 ∈ Rn. In addition, let γ∗ and λ∗ (∗ ∈
{K, B, L}) be the maximum and the minimum singular
values, respectively, of the subscripted matrix. Besides, let
us define the following parameters:

γ̂K
�= γK

λK

, γ̂B
�= γB

λK

, λ̂B
�= λB

λK

, γ̂L
�= γL

αβλK

,

λ̂L
�= λL

αβλK

. (21)

Then, by using γM , λM , and κC defined in Eq. (4), one can
see that the followings are satisfied for all q and q̇:

λK

2
ψ(x)T Pψ(x) < V (x, q) <

λK

2
ψ(x)T �ψ(x), (22)

λK

2
ψ(x)T Q̃(‖q̇‖, 0, 0)ψ(x) < W (x, q, q̇), (23)

where

P
�=

⎡
⎣λM/λK −αγM/λK −αβγM/λK

1 + αλ̂B −αβ(γ̂B + γ̂L)
sym. αβ(1 + αλ̂L)

⎤
⎦∈ S3, (24)

�
�= 3

⎡
⎣γM/λK 0 0

γ̂K + αγ̂B 0
sym. αβ(γ̂K + αγ̂L)

⎤
⎦∈ P3, (25)

Q̃(z1, z2, z3)

�=2

⎡
⎢⎢⎣
λ̂B − α(γM + κC(z2 + βz3))

λK

−α(κCz1 + βγM )

2λK

−αβκCz1

2λK

α(1 − β(γ̂B + γ̂L)) 0

sym. α2β2λ̂L

⎤
⎥⎥⎦

∈ S3.

(26)

Here, the condition (23) can be further rewritten by using
the following relations:

ψ(x)T Q̃(‖q̇‖, 0, 0)ψ(x) = ψ(x)T Q̃(‖q̇‖ − ‖ä‖,
‖ȧ‖, ‖a‖)ψ(x)

> ψ(x)T Qψ(x), (27)

where

Q
�= Q̃(ξ, η2, η3), (28)

if |‖q̇‖ − ‖ä‖| < ξ , ‖ȧ‖ < η2, and ‖a‖ < η3, because all
entries of ψ(x) are positive. Here, one can see that the first
condition can be replaced by ‖q̇d‖ < ξ because of

|‖q̇‖ − ‖ä‖| = |‖q̇‖ − ‖q̇d − q̇‖| ≤ ‖q̇d‖. (29)

By using Eqs. (23) and (27), one can see that

λK

2
ψ(x)T Qψ(x) < W (x, q, q̇) (30)

is satisfied if ȧ ∈ B3(η2), a ∈ B3(η3), and q̇d ∈ B3(ξ ).
The conditions (22) and (30) indicate that the matrices P ,

Q, and � can be used to investigate upper and lower bounds
of V (x, q) and W (x, q, q̇) in a lower dimension than P and
Q(q, q̇).

4. Properties of P , Q, and �

This section provides three important properties of the
matrices P , Q, and �, which were introduced in the previous
section.

4.1. Positive definiteness of P and Q

The following lemma provides a pair of explicit inequalities
that guarantee the positive definiteness of P and Q. Its
proof provides a procedure for selecting the parameter values
satisfying the positive definiteness of the matrices.

Lemma 1. Consider the matrices P ∈ S3 and Q ∈ S3

defined as Eqs.(24) and (28), respectively. Then, for any sets
of positive scalars

I1
�= {γM, λM, κC, ξ} ∪ {η2, η3}, (31)

there exists another set of positive scalars

O1
�= {λK, γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α, β}, (32)

that satisfies P ∈ P3 and Q ∈ P3.

Proof. The theorem is proven by showing that the
determinants of all their diagonal submatrices can be positive.
Let �pi and �qi (i ∈ {1, 2, 3}) denote the determinants of
the lower-right i × i submatrices of P and Q, respectively.
Those for i = 1 are trivially obtained as �p1 = αβ and
�q1 = 2α2β2λ̂L, which are always positive. Those for i > 1
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are obtained as follows:

�p2 = αβ
(
α2λ̂Bλ̂L + α((λ̂B + λ̂L) − β(γ̂B + γ̂L)2) + 1

)
,

(33)

�p3 = �p2λM

λ2
K

(λK − �A), (34)

�q2 = 4α3β2λ̂L (1 − β(γ̂B + γ̂L)), (35)

�q3 = 2�q2λ̂B

λ2
K

(
λ2

K − 2�BλK − �C

)
, (36)

where �A, �B, and �C are scalars independent from λK .
Now, it is easy to see that �p2 and �q2 are positive if

β <
λ̂B + λ̂L

(γ̂B + γ̂L)2

(
≤ 1

γ̂B + γ̂L

)
(37)

is satisfied, irrespective of the value of α. Here, �A and �C

are also positive if Eq. (37) is satisfied and �B is always
positive. Thus, one can see that �p3 and �q3 are positive if
the following condition is satisfied:

λK > max

(
�A, �B +

√
�2

B + �C

)
. (38)

Based on the discussion above, for an arbitrary set I1,
one can choose a set O1 in the following procedure. First,
choose {γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α} arbitrarily, except for γ̂B ≥
λ̂B and γ̂L ≥ λ̂L. Next, choose a small enough β to satisfy
Eq. (37). Finally, choose a large enough λK so that Eq. (38) is
satisfied. �

Wen and Murphy19 investigated the positive definiteness
of the matrices correspondent to P and Q based on their
eigenvalues, while the presented proof focuses on the
determinants. One advantage of the use of determinants lies
in the fact that the determinants of P and Q can have physical
units while the eigenvalues cannot because the entries of P

and Q have different physical dimensions from one another.
Besides, Wen and Murphy used the assumption that α and β

are so small that the higher order terms of α and β can be
ignored. The presented proof is free from such an assumption.

4.2. Involving � and {θ1, θ2, θ3}
The following lemma is to impose another restriction on the
choice of the parameter λK to satisfy another condition with
another set of given parameters {θ1, θ2, θ3}. In the upcoming
Section 5.2, this lemma will be used to yield Eq. (53) in the
proof of Theorem 2 to show that the region of attraction can
be arbitrarily enlarged.

Lemma 2. Consider the matrices P ∈ S3, � ∈ P3, and
Q ∈ S3 that are defined as Eqs. (24), (25), and (28),
respectively. Then, for any sets of positive scalars

I2
�= {γM, λM, κC, ξ} ∪ {θ1, θ2, θ3}, (39)

there exists another set of positive scalars

O2
�= {λK, γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α, β} ∪ {η2, η3}, (40)

that satisfies P ∈ P3, Q ∈ P3, and

�pi[θ1, θ2, θ3]�[θ1, θ2, θ3]T < η2
i , ∀i ∈ {2, 3}, (41)

where �pi (i ∈ {2, 3}) is the (i,i)th entry of P −1.

Proof. This lemma is proven by showing the existence
of a set O2 satisfying Eqs. (37), (38), and (41). It is easily
shown that the left-hand side of Eq. (41) is a monotonously
decreasing function of λK . Therefore, one can choose O2

satisfying only Eqs. (37) and (41) with large enough values
being chosen for λK , η2, and η3. After that, one can increase
λK to satisfy Eq. (38) because the right-hand side of Eq. (38)
is independent from λK .

In conclusions, O2 can be chosen in the following
procedure. First, choose {γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α} arbitrarily,
except for γ̂B ≥ λ̂B and γ̂L ≥ λ̂L. Second, choose a small
enough β to satisfy Eq. (37). Third, choose large enough
values for {λK, η2, η3} so that Eq. (41) is satisfied. Finally,
increase the value of λK so that Eq. (38) is satisfied. �

4.3. Another restriction on Q

The following Lemma 3 is to further refine the value λK to
satisfy another condition with another set of given parameters
{φ1, φ2, φ3}. In the upcoming Sections 5.3 and 5.4, this
lemma will be used to yield Eq. (60) in the proof of Theorem 3
and to show that the ultimate bound can be arbitrarily made
small in the proof of Theorem 4.

Lemma 3. Consider the matrices P ∈ S3, � ∈ P3, and
Q ∈ S3 that are defined as Eqs. (24), (25), and (28),
respectively. Then, for any sets

I3
�= {γM, λM, κC, ξ} ∪ {θ1, θ2, θ3, φ1, φ2, φ3}, (42)

there exists another set of positive scalars

O3
�= O2 = {λK, γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α, β} ∪ {η2, η3},

(43)

with which P ∈ P3, Q ∈ P3, Eq. (41), and

�qi[1, α, αβ]Q−1[1, α, αβ]T < λ2
Kφ2

i , ∀i ∈ {1, 2, 3}
(44)

are satisfied where �qi (i ∈ {1, 2, 3}) is the (i, i)th entry of
Q−1.

Proof. This lemma is proven by showing the existence of
a set O3 satisfying Eqs. (37), (38), (41), and (44). It is easy
to see that the left-hand side of Eq. (44) is a monotonously
decreasing function of λK for every i ∈ {1, 2, 3}. This implies
that Eq. (44) is satisfied with any λK larger than a particular
value, as is the case with Eqs. (38) and (41). Therefore, once
the set O3 is chosen so that Eqs. (37), (38), and (41) hold,
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one can increase λK so that Eqs. (37), (38), (41), and (44) are
satisfied simultaneously.

In conclusions, O3 can be chosen in the following
procedure. First, choose {γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α} arbitrarily
except that γ̂B ≥ λ̂B and γ̂L ≥ λ̂L. Second, choose a small
enough β to satisfy Eq. (37). Third, choose large enough
{λK, η2, η3} to satisfy Eq. (41). Finally, increase λK to satisfy
both Eqs. (38) and (44). �

5. Main Results
We are now in position to present the main results.

5.1. Semiglobal strict passivity
First, the systems (10), which is composed of a rigid-link
manipulator and a PID controller, is shown to be strictly
passive in the semiglobal sense. This is a direct consequence
of Lemma 1.

Theorem 1. The system (10) is semiglobally strictly
passive.

Proof. Lemma 1 implies that, for any given
{M, C, ξ, η2, η3}, there exists a set {K, B, L, α, β}
that guarantees P ∈ P3 and Q ∈ P3. Assume that such a set
of parameters are chosen. Then, the following inequalities
are satisfied:

V (x, q) >
λK

2
ψ(x)T Pψ(x) > 0, ∀x ∈ R

3n, ∀q ∈ R
n,

(45)

V̇ (x, q) < yT ĥ − λK

2
ψ(x)T Qψ(x), ∀x ∈ C(∞, η2, η3),

∀q̇d ∈ Bn(ξ ), ∀q ∈ R
n, (46)

where

C(z1, z2, z3)
�=

{
x ∈ R

3

∣∣∣∣ max

(‖ä‖
z1

,
‖ȧ‖
z2

,
‖a‖
z3

)
≤ 1

}
.

(47)

Here, C(∞, η2, η3) is the region in which W (x, q, q̇) ≥ 0.
Because Q ∈ P3, Eq. (46) implies the following:∗

V̇ (x, q) < yT ĥ − λKσmin(Q)

2
‖x‖2, ∀x ∈ C(∞, η2, η3),

∀q̇d ∈ Bn(ξ ), ∀q ∈ R
n. (48)

Therefore, for all {M, C, ξ, η2, η3}, there exists a set
{K, B, L, α, β} with which Eq. (48) is satisfied. Thus, one
can conclude that the system (10) is strictly passive in the
semiglobal sense. �

∗The inequality (48) includes the quantity ‖x‖, which cannot have
a consistent physical unit. In this paper, such quantities are avoided
in inequalities and equations to be numerically evaluated, but not
in analytical proofs. The inequality (54) also follows this rule.

5.2. Semiglobal asymptotic stability
Second, Lemma 2 leads to the following Theorem 2, which
states that a rigid-link manipulator under PID set-point
control (q̇d ≡ 0) under no disturbance or no gravity (ĥ ≡ 0)
can be asymptotically stable and that the region of attraction
can be arbitrarily enlarged. When there is gravity, the proof
does not apply but the upcoming Theorem 4 will show that
the tracking error can be arbitrarily reduced.

Theorem 2. The system (10a) with q̇d ≡ 0 and ĥ ≡ 0 is
semiglobally asymptotically stable.

Proof. The theorem can be proven by showing that, for all
sets {M, C, θ1, θ2, θ3}, there exists a set {K, B, L, α, β} with
which x → 0 as t → ∞ for all x(0) ∈ C(θ1, θ2, θ3). Here,
C(θ1, θ2, θ3) is the set termed as the region of attraction.

The proof of Lemma 2 implies that, for any sets
{M, C, θ1, θ2, θ3}, one can choose {K, B, L, α, β, η2, η3} so
that Eqs. (37), (38), and (41) with ξ = 0 are satisfied. Assume
that such values are chosen. Then, P ∈ P3, Q ∈ P3, and

sup
z∈R

3
+

z1≤θ1∧z2≤θ2∧z3≤θ3

zT �z < inf
z∈R

3
+

z2≥η2∨z3≥η3

zT P z (49)

are satisfied, and thus,

V (x, q) > 0, ∀x ∈ R
3n, ∀q ∈ R

n, (50)

V̇ (x, q) < 0, ∀x ∈ C(∞, η2, η3), ∀q ∈ R
n, (51)

0 ∈ C(θ1, θ2, θ3) ⊂ C(∞, η2, η3) ⊂ R
3n, (52)

sup
x∈R

3n, q∈R
n

x∈C(θ1,θ2,θ3)

V (x, q) < inf
x∈R

3n, q∈R
n

x �∈C(∞,η2,η3)

V (x, q) (53)

are also satisfied. Here, Eq. (52) is easily proven by showing
θ2 < η2 and θ3 < η3, and Eq. (53) is the direct consequence
of Eq. (49). Therefore, one can conclude that, if x(0) ∈
C(θ1, θ2, θ3), x does not deviate from C(∞, η2, η3) and does
converge to the origin as t → ∞. �

Taking the gravity out of consideration, the presented proof
can be viewed as an alternative to the previous proofs shown
by, e.g., Meza et al.13 One advantage of the new proof is
that, in the proof, the asymptotic stability requires only three
inequalities (37), (38), and (41), which are much simpler than
implicit inequality conditions in the literature.17, 19 Another
important point is that the presented proof provides a closed-
form gain-selection procedure to achieve desired dimensions
{θ1, θ2, θ3} of the region of attraction as suggested in the
proof of Lemma 2. This feature is in contrast to previous
procedures such as Kelly’s,9 Meza et al.’s,13 and Hernández-
Guzmán et al.’s.8 One limitation of the presented procedure is
that it leaves many parameters unconstrained, which implies
the need for additional optimization criteria.

5.3. Semiglobal input-to-state stability
Third, it is shown that a PID-controlled rigid-link
manipulator is semiglobally input-to-state stable, where the
input is ĥ defined in Eq. (11).
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Theorem 3. The system (10a) is semiglobally input-to-
state stable.

Proof. The theorem is proven by showing that, for
any sets {M, C, ξ, θ1, θ2, θ3, γh}, there exists a set
{K, B, L, α, β, η2, η3} with which there exist a class-KL
function �1 and a class-K function∗ �2 with which

‖x(t)‖ < max

(
�1(‖x(0)‖, t) , �2

(
sup

τ∈[0,t]
‖ĥ(τ )‖

))
(54)

is satisfied if the followings are satisfied:

x(0) ∈ C(θ1, θ2, θ3), sup
τ∈[0,t]

‖ĥ(τ )‖ ≤ γh, and q̇d ∈ Bn(ξ ).

(55)

With the given set {M, C, ξ, θ1, θ2, θ3, γh}, choose another
three positive scalars {φ1, φ2, φ3} so that they satisfy

φi ≤ θi/γh (i ∈ {1, 2, 3}). (56)

The proof of Lemma 3 implies that, for the set
{M, C, ξ, θ1, θ2, θ3, φ1, φ2, φ3}, a set {K, B, L, α, β, η2, η3}
can be chosen to guarantee the satisfaction of Eqs. (37), (38),
(41), and (44). Assume that the parameters are chosen in such
a manner and that the conditions (55) are satisfied. Then, the
following conditions are also satisfied:

V (x, q) > 0, ∀x ∈ R
3n ∀q ∈ R

n, (57)

V̇ (x, q) < (cT ψ(x))‖ĥ‖ − λK

2
ψ(x)T Qψ(x),

∀x ∈ C(∞, η2, η3), ∀q ∈ R
n, ∀q̇d ∈ Bn(ξ ), (58)

sup
x∈R

3n, q∈R
n

x∈C(θ1,θ2,θ3)

V (x, q) < inf
x∈R

3n, q∈R
n

x �∈C(∞,η2,η3)

V (x, q), (59)

0 ∈ C(�1‖ĥ‖, �2‖ĥ‖, �3‖ĥ‖) ⊂ C(θ1, θ2, θ3)

⊂ C(∞, η2, η3) ⊂ R
3n, (60)

where

c
�= [1, α, αβ]T , (61)

�i
�=

√
�qicT Q−1c

λK

, ∀i ∈ {1, 2, 3}. (62)

The condition (58) can be proven by using yT ĥ ≤ ‖y‖‖ĥ‖ ≤
cT ψ(x)‖ĥ‖. Besides, with regard to Eq. (60), it is easy to
show that C(�1‖ĥ‖, �2‖ĥ‖, �3‖ĥ‖) is a superset of the set
in which the right-hand side of Eq. (58) is positive. This
means that V̇ (x, q) < 0 is satisfied if

x ∈ ¬C(�1‖ĥ‖, �2‖ĥ‖, �3‖ĥ‖) ∩ C(∞, η2, η3). (63)

∗The definitions of class-K and class-KL functions are provided
in Definition 4.3, p. 144, of Khalil.11

The aforementioned discussion implies that, as long as
x ∈ C(∞, η2, η3), V (x) decreases until x reaches the set
C(�1‖ĥ‖, �2‖ĥ‖φ2, �3‖ĥ‖), and that x does not deviate
from C(∞, η2, η3) if x(0) ∈ C(θ1, θ2, θ3). Therefore, there
exists a class-KL function �̃1 that satisfies

V (x(t), q(t)) < max

(
�̃1(V (x(0), q(0)), t),

sup
τ∈[0,t]

(
sup

z∈C(�1‖ĥ(τ )‖,�2‖ĥ(τ )‖,�3‖ĥ(τ )‖)

V (z, q(τ ))

))
, (64)

if x(0) ∈ C(θ1, θ2, θ3). Now, let λP and γP be defined as
follows:

λP
�= inf

q∈R3
σmin(P(q)), (65)

γP
�= sup

q∈R3

σmax(P(q)). (66)

Then, because λP‖x‖2/2 < V (x, q) < γP‖x‖2/2, Eq. (64)
leads to Eq. (54) with �1 and �2 being replaced by

�1(z, t)
�=

√
�̃1(γPz2/2, t)

λP/2
, (67)

�2(z)
�= z

√
γP

(
�2

1 + �2
2 + �2

3

)
λP

, (68)

respectively. Because these definitions of �1(z, t) and
�2(z) are class-KL and class-K functions, respectively,
and because these functions can be found with any sets
{M, C, ξ, θ1, θ2, θ3, γh}, one can conclude that the system is
semiglobally input-to-state stable. �

Here, it must be noted that �i (i ∈ {1, 2, 3}) can be
arbitrarily made small by choosing sufficiently small values
for φi because �i < φi from Eq. (44). This fact is not relevant
to this theorem, but is important for the next Theorem 4.

Choi and Chung7 also presented a proof of an input-to-state
stability, but their definition of the input (which they named
an “extended disturbance”) is different from the one in the
present analysis. Specifically, their “extended disturbance”
is a function of a, ȧ, and ä, which is not the case with ĥ in
the present analysis.

5.4. Uniform ultimate boundedness with arbitrarily
reducible ultimate bound
Finally, it is shown that arbitrarily small residual tracking
error can be achieved from arbitrarily large initial error by
an appropriate choice of gains.

Theorem 4. The system (10a) with ‖q̇d‖ and ‖ĥ‖ being
bounded is semiglobally uniformly ultimately bounded and
the ultimate bound can be set arbitrarily small with an
appropriate choice of controller parameters.

Proof. Let ξ and γh be the upper bound of ‖q̇d‖ and ‖ĥ‖,
respectively. The theorem can be proven by showing that, for
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any sets {M, C, ξ, θ1, θ2, θ3, φ1, φ2, φ3, γh}, there exists a set
{K, B, L, α, β, η2, η3} with which

if x(0) ∈ C(θ1, θ2, θ3),

∃t1 > t s.t. x(t) ∈ C(φ1γh, φ2γh, φ3γh), ∀ t > t1.

(69)

Here, the set C(φ1γh, φ2γh, φ3γh) is the set termed as an
ultimate bound.

In the middle of the proof of Theorem 3, it has been shown
that, if Eq. (56) is satisfied, {K, B, L, α, β, η2, η3} can be
chosen so that V (x, q) decreases until x reaches the set
C(�1‖ĥ‖, �2‖ĥ‖, �3‖ĥ‖). By noticing that ‖ĥ‖ ≤ γh and
�i < φi , one can see that C(φ1γh, φ2γh, φ3γh) is a superset
of the set C(�1‖ĥ‖, �2‖ĥ‖, �3‖ĥ‖), and that Eq. (69) is
satisfied.

Even if Eq. (56) is not satisfied, one can use the values
of θi/γh as the substitutes of φi to choose the parameters
{K, B, L, α, β, η2, η3}. Then

�i < min(φi, θi/γh) ≤ φi, ∀i ∈ {1, 2, 3} (70)

is satisfied and thus C(φ1γh, φ2γh, φ3γh) is a superset of the
set C(�1‖ĥ‖, �2‖ĥ‖, �3‖ĥ‖). Thus, one can conclude that
Eq. (69) is satisfied. �

The proof implies that, by the procedure presented in
the proof of Lemma 3, one can choose the gain matrices
{K, B, L} to achieve desired dimensions {φ1γh, φ2γh, φ3γh}
of the ultimate bound and desired dimensions {θ1, θ2, θ3} of
the region of attraction under known upper bounds γh and ξ of
ĥ (including the gravity) and q̇, respectively. One limitation
is that, again, the procedure does not provide any guidelines
for the choice of the six parameters {γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α}.

A result similar to this theorem has been obtained by
Rocco.18 In his analysis, however, the term C(q, q̇)q̇ is
excluded from the nominal system and included in the
disturbance term ĥ. Cervantes and Alvarez-Ramirez’s result5

is also similar, but in their analysis, the desired jerk (the
time derivative of the desired acceleration) is assumed to
be bounded, and no external forces are considered except
the gravity. Besides, the control law includes two additional
terms, one being proportional to the desired acceleration and
the other being constant. It may also be worth noting that
their definition of the state vector depends on the actual and
desired accelerations.

Chaillet et al.6 showed a stronger result regarding
the standard PID control, which satisfies not only the
boundedness but also the Lyapunov stability. Their analysis
also clarifies an explicit gain-selection procedure. In their
analysis, however, the region of attraction and the ultimate
bound are defined as balls in the state space consisting of
a transformed state vector [äT , ȧT , (a + ȧ/ε1)T ]T , where
ε1 is a “small” constant. Thus, it is unclear how an
upper bound of a can be designed, although it may not
be important in practice. In addition, as is the case with
most previous methods, their analysis includes physically
inconsistent arithmetic operations among different physical

Fig. 2. 2-DOF manipulator for the simulation. (l1 = 0.26 m, lc1 =
0.0983 m, l2 = 0.26 m, lc2 = 0.0229 m, m1 = 6.5225 kg, m2 =
2.0458 kg, I1 = 0.1213 kg·m2, I2 = 0.0116 kg·m2. All of these
parameters are the same as those in p. 115 of Kelly et al.10)

quantities, such as the definition of the norm of the state
vector comprising position and velocity.

6. Illustrative Example

6.1. Problem setting and gain selection
A set of numerical examples is now presented for the
illustration of the proven properties of a PID-controlled robot.
Let us consider the model of a two-DOF manipulator shown
in Fig. 2. The parameters of the robot were chosen identical
to the example in p. 115 of Kelly et al.,10 as detailed in the
caption of Fig. 2. The disturbance force h was set equal to the
gravity force, which was determined as indicated in p. 214
of Kelly et al.10 This means that no disturbance except the
gravity was considered. The other parameters were identified
as λM = 0.011 kg·m2, γM = 0.361 kg·m2 (from p. 215 of
Kelly et al.10), and κC = 0.0487 kg·m2 (from p. 126 of Kelly
et al.10).

The desired dimensions of the region of attraction and the
ultimate bound (i.e., the desired maximum residual tracking
errors) were respectively chosen as follows:

{θ1, θ2, θ3} = {5 rad/s, 3 rad, 1 rad·s},
{φ1γh, φ2γh, φ3γh} = {3 rad/s, 0.1 rad, 0.6 rad·s}.

The expected maximum magnitudes of q̇d and ĥ were set as
ξ = 1.0 rad s−1 and γh = 14.0 Nm, respectively.

The gains were chosen based on the procedure suggested
in the proof of Lemma 3. Here, parameters that are not
constrained by the procedure were chosen based on some
trial and errors. First, the parameters {γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α}
were chosen as γ̂K = 1, γ̂B = λ̂B = 0.01 s, γ̂L = λ̂L = 0.5 s,
α = 4 s−1. Second, to satisfy Eq. (37), β was chosen
as β = 0.5 s−1. Third, to satisfy Eq. (41), {λK, η2, η3}
were chosen as λK = 640 Nm/rad, η2 = 9.5 rad, and η3 =
3.4 rad·s. Last, these parameters were confirmed to satisfy
Eqs. (38) and (44). Thus, the gain matrices were chosen as
K = diag[640, 640] Nm/rad, B = diag[6.4, 6.4] Nm·s/rad,
L = diag[640, 640] Nm/rad/s.

It was found that the procedure tends to result in
high values for λK unless the first seven parameters
{γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α, β} are carefully chosen although
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Fig. 3. Simulation results with unscaled ĥ(t).

they are restricted only by Eq. (37) in the procedure.
For example, once {γ̂K, γ̂B, λ̂B, γ̂L, λ̂L, α} are chosen as
indicated above, Eq. (37) suggests β < 1.96 s−1. If β is
chosen as, e.g., β = 1.5 s−1, then the conditions (41), (38)
suggest, e.g., {λK, η2, η3} = {1000 Nm/rad, 20 rad, 5 rad·s},
and the condition (44) further restricts λK as λK >

1200 Nm/rad. As another example, if the parameters
are chosen identical to the aforementioned example
except α = 5 s−1, then Eq. (41) suggests {λK, η2, η3} =
{1000 Nm/rad, 52 rad, 9 rad·s}, Eq. (38) suggests λK >

1800 Nm/rad, and Eq. (44) suggests λK > 2100 Nm/rad.
Because very high gains cannot be implemented in practice,
an improved procedure that can impose an upper bound on
λK should be sought in a future study.

6.2. Simulation results
Simulation was performed by using the aforementioned robot
model and controller gains. In the simulation, the initial state
vector x(0) and the desired trajectory qd (t) were respectively
chosen as follows:

x(0) =
⎡
⎣ q̇d (0)

qd (0)
0

⎤
⎦ ∈ R

6, (71)

qd (t) =
[

1.0 + 0.12 sin(2πt) rad
0.6 + 0.12 sin(2πt/1.3)rad

]
∈ R

2. (72)

Thus, x(0) ∈ C(θ1, θ2, θ3), ‖q̇d (t)‖ < ξ , and ‖ĥ(t)‖ < γh

were satisfied for all t > 0. Besides, to show the influence
of ‖ĥ(t)‖, another three sets of simulation were performed
with the gravitational acceleration and the desired position
amplitude (“0.12” in (72)) being scaled by factors of 0.1,
0.01, and 0, so as to exactly scale the extended disturbance
ĥ(t) by those factors.

Fig. 4. Simulation results with unscaled ĥ(t) (black solid), ×0.1-
scaled ĥ(t) (dark gray solid), ×0.01-scaled ĥ(t) (light gray solid),
and ĥ(t) ≡ 0 (black dashed).

Figure 3 shows the results based on the unscaled ĥ(t).
The first panel of Fig. 3 shows that q(t) converges to qd (t),
illustrating the validity of the trajectory-tracking control.
The second panel of Fig. 3 shows that V̇ < yT h is always
satisfied, illustrating the passivity. In Fig. 4, the solid black
curves show that x ∈ C(φ1γh, φ2γh, φ3γh) is achieved in
finite time (at t ≈ 0.3 s), showing the ultimate boundedness.

Figure 4 also shows that the ultimate bound monotonously
reduces as ‖ĥ(t)‖ decreases. This can be considered as a
consequence of the existence of a class-K function �2, which
is necessary for the input-to-state stability. The dotted curves
show the extreme case where ĥ(t) ≡ 0, in which x decreases
asymptotically to zero, exhibiting the asymptotic stability.

7. Conclusions
This paper has presented an alternative approach for
analyzing four stability properties (semiglobal passivity,
semiglobal asymptotic stability, semiglobal input-to-state
stability, and semiglobal uniform ultimate boundedness
with an arbitrarily reducible ultimate bound) of a
rigid-link manipulator under PID position control. The
approach employs a strict Lyapunov functions and a novel
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parameterization of the gain parameters. The stability
conditions are provided as four inequalities based on some
properties of three 3 × 3 matrices, P , Q and �. In those
inequalities, all arithmetic combinations of quantities are
consistent in terms of physical dimensions. Although the
analysis does not explicitly take the gravity into account,
one can choose gain parameters to achieve arbitrary residual
tracking errors of the velocity, position, and its integral by
regarding the gravity as a disturbance.

An important point that should be addressed in a future
study is that the presented gain-selection procedure leaves
many parameters unconstrained. Unless these parameters
are carefully chosen, the procedure tends to yield very
high gains. It would be useful if the presented procedure
is combined with some optimization algorithms, such as
those for minimizing the time needed to achieve the ultimate
bound under a given upper bound of the proportional gain.
Besides, it would also be important to compare the presented
inequality conditions to those in the literature in terms of the
simplicity and the conservativeness. Such comparisons may
lead us to a better guideline for gain selection.
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