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Abstract

This paper proposes a procedure for identifying rate-dependent friction of robotic
manipulators of which the motion is limited due to the configuration or the en-
vironment. The procedure is characterized by the following three features: (i)
the rate dependency is represented by line sections connecting sampled velocity-
force pairs, (ii) the robot is position-controlled to track desired trajectories that
are some cycles of sinusoidal motion with different frequencies, and (iii) each
velocity-force pair is sampled from one cycle of the motion with subtracting the
effects of the gravity and the inertia. The procedure was validated with a six-
axis industrial robotic manipulator YASKAWA MOTOMAN-HP3J, of which
the joints are equipped with harmonic-drive transmissions of the reduction ra-
tios of 81.5 to 224. The experimental results show that the identification is
achieved with a sufficient accuracy with the 20 degrees of motion of each joint.
In addition, the results were utilized for friction compensation, successfully re-
ducing the effect of the friction by 60 to 80 percent.

Keywords: Rate-dependent friction, Identification, Compensation, Robotic
manipulator

1. Introduction

For the control of robotic manipulators, friction in the joints is one of ma-
jor disturbances that degrade the accuracy and the precision of control. One
straightforward idea to deal with this problem is to calibrate the friction prop-
erties of the robot in advance and to compensate the friction force by producing
the actuator forces that cancel the friction forces. It is however usually difficult
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to find appropriate models of the friction phenomena and, even if an appropriate
model is available, it is also difficult to clarify how the values of the parameters
should be chosen.

Many friction models have been proposed so far, and they vary in the treat-
ment of the discontinuity around the zero velocity and the microscopic elastic
displacement in the static friction. A common point shared by various friction
models is that they employ a user-defined function of velocity that represents
the rate-dependent friction law. That is, for any kinds of friction models, the
magnitude of the friction force as a function of the velocity must be identified
experimentally.

Experimental identification of the rate dependency of the friction force is not
always an easy task. Problems such as the limited motion range and the effects
of the gravity and the inertia make the identification complicated. The motion
of an assembled robotic manipulator is generally limited by the configuration
or the environment. Appropriate procedures are needed to measure the friction
force at high velocities in a limited motion range, and the identification results
need to be insensitive to the effects of inertia and gravity.

This paper presents a systematic procedure to identify the velocity-friction
force relation of devices with limited motion range. The procedure was vali-
dated with an industrial six-joint manipulator YASKAWA MOTOMAN-HP3J.
It is shown that the identification with a sufficient accuracy was achieved with
20 degrees of motion of the joints. This paper also shows the application of
identified results to friction compensation.

The remainder of this paper is organized as follows: Section 2 overviews
previous studies on identification of rate-dependent friction. Section 3 proposes
the new procedure. Section 4 and 5 show experimental results obtained with a
six-axis manipulator. Section 6 provides concluding remarks.

2. Related Work

Many friction models have been proposed for the purpose of control. They
have realized friction property such as rate-dependency in the kinetic friction [2],
elastic displacement in the static friction [3], hysteresis in the velocity-friction
relation, stick slip motion [4], non-drifting [5][6], and smoothness of the output
force [7]. Discrete-time models have also been considered [8][9]. There have
been applications of the models to friction compensation [5][10], and harmonic
drive transmissions especially have been the target of applications of modeling
studies [11][12][13]. One common feature shared by many models including dy-
namic friction models is that they employ functions of velocity for representing
the rate-dependent friction force in the kinetic friction region. It means that
the velocity-friction relation must be calibrated in advance for using any kinds
of existing models including dynamic friction models.

Rate-dependent friction of manipulators can be identified by maintaining a
constant velocity for a certain period of time [10][14]. In such methods, constant
velocity commands are sent to the devices, and the resultant actuator torque
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Figure 1: Fitted curve ϕ(v) defined by (8)

to maintain the velocity is observed. One drawback of such methods is that
maintaining high velocity is generally difficult within a limited range of motion.

Another kind of approach is to apply sinusoidal or saw-tooth torque signals to
devices to be identified [15][16]. Such torque command, resulting reciprocating
motion, requires a certain level of carefulness in choosing the torque amplitudes
so that the trajectory of motion is bounded to a limited range.

The gravity and the inertia affect the accuracy of the identified results. A
straightforward idea to deal with these factors is to incorporate a system model
including the gravity and the inertia into the identification procedure [10][15][16][17].
Major drawbacks of this approach are that the identification of the system model
is usually a hard task, and that the identification accuracy of the friction de-
pends on the accuracy of the whole system model.

3. Procedure

3.1. Overview

This section describes a new identification procedure for rate-dependent fric-
tion laws. The procedure is to obtain a set of N velocity-force pairs

S ∆
= {[V1, F1], · · · , [VN , FN ]}, (1)

which describes the relation between the velocity and the friction force as shown
in Figure 1. The joint to be identified is controlled to follow sinusoidal trajecto-
ries with N different frequencies with a high-gain PID position controller. One
cycle of motion is performed for each frequency. The pair [Vn, Fn] is chosen so
that the effects of inertia and gravity are small. The identification on each joint
is performed on a one-by-one basis, with the other joints being locked by local
position controllers.

3



3.2. Details

The input to the procedure is the following three parameters:

• V : The maximum desired velocity

• A : The amplitude of the sinusoidal motion

• N : The number of sampled velocities

The maximum velocity V should be chosen so that it includes the range of
velocity in which the friction force should be identified. The amplitude A should
be chosen small enough to match the hardware limitation, and should be smaller
to save the time needed for the identification procedure. Its lower bound is
determined by the capacity of the actuator because, with a fixed V value, the
desired acceleration command is inversely proportional to the A value, as will be
shown later. The number N of sampled velocities should be chosen considering
the trade-off between the precision of the fitted curve and the time needed for
the identification.

The desired trajectory for the identification of the set S is generated as the
following function of the time t:

pd(t)
∆
=

A

2

(
1− cos

(
2ν(t)V

AN
(t− Tν(t))

))
(2)

where

Tn
∆
=

n−1∑
j=1

πAN

jV
(3a)

ν(t)
∆
= n s.t. t ∈ Tn

∆
= [Tn, Tn+1). (3b)

This position trajectory pd(t) is based on the following velocity trajectory:

vd(t)
∆
=

ν(t)V

N
sin

(
2ν(t)V

AN
(t− Tν(t))

)
. (4)

These trajectories pd(t) and vd(t) are illustrated in Figure 2. Here, it can be
seen that pd(t) is composed of N times of sinusoidal movements with N dif-
ferent frequencies. The amplitude of the desired position pd is fixed to A, and
the maximum velocity of the nth cycle is nV/N . It should be noted that the
amplitude of v̇d is proportional to V 2/A, and thus the choice of the A value is
lower-bounded by the capacity of the actuator.

Once the joint is position-controlled to track the aforementioned desired
trajectory, the data as shown in Figure 3 is expected to be obtained. Here, it
is advisable that the gains of the position controller should be set as high as
possible. The control accuracy however only needs to be enough to realize the
velocity above the maximum desired velocity V , which is given as a parameter of
the procedure. This is because what is important here is the relation between the
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Figure 2: Desired trajectory pd(t) and its derivative vd(t) for the proposed identification
procedure

applied force f and the actual velocity v, which describes the physical property
of the joint, and is not the relation between v and the desired velocity vd. With
a sampling interval ∆t, the measured velocity vi and the applied force fi are
obtained at the time ti where i ∈ {1, · · · , I} and

I
∆
= TN+1/(∆t). (5)

Consequently, an experiment in the presented procedure provides the following
sets of data:

Tall = {t1, t2, · · · , tI}
Vall = {v1, v2, · · · , vI} (6)

Fall = {f1, f2, · · · , fI}.

The data {Tall,Vall,Fall} can be utilized to obtain the set S through the following
function:

FunctionA(Tall,Vall,Fall) (7a)

for n := 1 to N (7b)

Vn := {vi ∈ Vall | ti ∈ Tn ∧ vi ≥ cnV/N} (7c)

F+
n := {fi ∈ Fall | ti ∈ Tn ∧ vi ≥ cnV/N} (7d)

F−
n := {fi ∈ Fall | ti ∈ Tn ∧ vi ≤ −cnV/N} (7e)

Vn := Average(Vn) (7f)

F+
sn := Average(F+

n ) (7g)

F−
sn := Average(F−

n ) (7h)

Fn := (F+
sn − F−

sn)/2 (7i)
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Figure 3: Schematic illustration of data that could be obtained from the procedure

end for (7j)

S := {[V1, F1], · · · , [VN , FN ]} (7k)

Return S. (7l)

Figure 3(b) illustrates the relations among some variables that appear in this
procedure. Here, Average(X ) is a function that returns the average value of
the elements of input set X . The ratio c ∈ [0, 1) determines the boundaries of
the range of the sampled data used for the identification, by multiplying the
maximum desired velocity nV/N in each cycle as can be seen in (7c)-(7e) and
Figure 3. The ratio is set at c = 0.8 in this paper.

Now, the set S is obtained through algorithm (7). Based on the set S, the
rate-dependent friction is defined as the following function ϕ(v):

f = ϕ(v)
∆
= sgn(v)

(
Bn(v)(|v| − Vn(v)) + Fn(v)

)
(8)

where

Bn
∆
= (Fn+1−Fn)/(Vn+1−Vn) (n ∈ {1, · · · , N−1}) (9a)

B0
∆
= B1 (9b)
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Figure 5: Experimental setup

BN
∆
= BN−1 (9c)

V0
∆
= 0 (9d)

VN+1
∆
= +∞ (9e)

F0
∆
= F1 −B0V1 (9f)

n(v)
∆
= n s.t. Vn ≤ v < Vn+1. (9g)

The function is illustrated in Figure 1. It is a combination of line sections
connecting the elements of the set S, and is symmetric with respect to v = 0.
Note that all parameters {Bn, Vn, Fn} are derived from the set S.

3.3. Analysis on the influence of inertia and gravity

The algorithm in this paper uses only the data near the velocity peaks, and
estimates the friction force by taking the semi-amplitude of the force values at
the velocity peaks. This is based on the intention to minimize the effects of the
inertia and the gravity to the estimated friction force Fn as explained by the
following.
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Figure 6: Experimental results and the identified curves in the cases of various A at Joint 1.
Experimental results are unbiased.

Let us regard the robot as a 1-link rotational manipulator because the joints
except the focused one are locked as shown in Figure 4. Then, the actuator
force f can be represented as follows:

f = ff (ṗ) + Ip̈+MLg cos(p) (10)

where ff (v) is the rate-dependent friction force, I is the moment of inertia
around the joint, M is the total mass, L is the length from the joint to the
center of mass (COM), p is the angle between the horizontal surface and the
line passing through the joint and the COM, and g is the gravity acceleration.

As has been explained in Section 3.2, the angle p can be given as a sinusoidal
function of time t as follows:

p = p0 +A cos(ωt) (11)

where A and ω are the amplitude and the angular frequency of the motion and
p0 is a constant, respectively. Then, (10) can be rewritten as follows:

f = ff (Aω sin(ωt))− IAω2 cos(ωt) +MLg cos (p0 +A cos(ωt)) (12)
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Figure 7: Identification results of each joint in various cases of A under V = 115 deg/s
(2.0 rad/s) and N = 10. The result in the case of A = 5 deg at Joint 1 was not obtained due
to the limit of the servo controller.

The force values F+
sn and F−

sn at the velocity peaks can be written by (12) with
t = π/(2ω) and 3π/(2ω) as follows:

F+
sn = ff (Aω) +MLg cos (p0) (13a)

F−
sn = ff (−Aω) +MLg cos (p0) (13b)

Substituting (13a) and (13b) for (7i) yields the following equation:

Fn = (ff (Aω)− ff (−Aω)) /2 ≃ ff (Aω) (14)

because of the assumption that the rate-dependent friction force is symmetric
with respect to v = 0, that is, ff (−Aω) ≃ −ff (Aω).

What (14) implies is that Fn does not depend on the inertia term Ip̈ or
the gravity term MLg cos(p0). This can be explained by the fact that the
acceleration is close to zero at the velocity peaks and the angle joint at the two
velocity peaks are close to each other.
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Figure 8: Difference between each curve and the curve of A = 50 deg based on (15) under
V = 115 deg/s (2.0 rad/s) and N = 10. The symbol × means that the result was not obtained
due to the limit of the servo controller.

4. Experiment: Identification

4.1. Experimental setup

The proposed identification procedure was experimentally tested with a six-
axis robotic manipulator YASKAWA MOTOMAN-HP3J shown in Figure 5. A
harmonic drive transmission is embedded to each joint. Table 1 shows the spec-
ification of each joint. A force sensor NITTA IFS-50M31A25-I25 is attached at
the end-effector to measure the external force in experiments of friction com-
pensation to which the identified results are applied.

This paper does not include the experimental comparison with methods in
the literature. The proposed method is based on the position control, which
is intrinsically capable of limiting the joint motion within the mechanical lim-
itations. In contrast, other methods are based on torque command [15][16] or
velocity command [10][14][17], and thus there is the possibility that the mo-
tion of the joint arrives in the mechanical limitation. Therefore, experiments
under the same condition cannot be performed. Previous methods focused on,
for example, identification in low velocity range [10], position-dependent fric-
tion [14], dynamic friction models [15], nonlinear optimization problem [16], or
identification using transfer functions [17].
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4.2. Sensitivity to the choice of A

It is desirable to set A as small as possible for reducing the time needed for
the identification. Figure 6 shows experimental results and identified curves with
various values of A, under V = 115 deg/s (2.0 rad/s) and N = 10. Figure 6 is
the result of Joint 1, where the effect of the gravity and the inertia is the largest
among all joints. The bias of each experimental result is removed to make it
comparable to the fitted curve ϕ(v) obtained by the proposed procedure. It
can be seen that smaller A, resulting larger effect of inertia, broadens the width
of the curves and also perturbs the fitted curve ϕ(v). Therefore, it can be
concluded that too small A deteriorates the accuracy of the identification. The
following shows how small A can be at each joint.

Table 1: Specification of the experimental setup

Joint number [-] 0 1 2 3 4 5
Reduction ratio [-] 100 224 120 120 100 81.5
Maximum velocity [deg/s] 200 135 190 250 300 360
Maximum torque [Nm] 95.1 213.1 114.1 34.2 28.5 23.3
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Figure 7 is the identified results with various A at each joint. In this figure,
one can see that the curves of A larger than 10 deg are almost overlapping. Thus,
it can be said that the amplitude of trajectory A = 20 deg is enough to identify
the friction curve appropriately. Moreover, it is clear that the slope of the
identified curves in the high velocity range is different from that in low velocity
range. This indicates that the high velocity range should also be identified
experimentally, not only by extrapolation.

In order to validate the results quantitatively, we use the following distance
metric:

E(A1, A2) =

√
1

V

∫ V

0

(ϕA1(v)− ϕA2(v))
2dv. (15)

This metric represents the difference between the curves ϕA1(v) and ϕA2(v) that
are obtained with A = A1 and A2 respectively. Figure 8 shows the quantitative
difference between each curve and the curve of A = 50 deg at each joint. It is
shown that the differences are large when A = 5 or 10 deg. These results cor-
respond to Figure 7, quantitatively indicating that the trajectory amplitude of
A = 10 or 20 deg is the minimum necessary value for appropriate identification,
under the condition of the range of velocity V = 115 deg/s (2.0 rad/s) in the
device MOTOMAN-HP3J.
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4.3. Sensitivity to the posture

Another set of experiments were carried out to show the effects of inertia
and gravity on the identification results. The identification was performed on
Joint 1 with five different postures shown in Figure 9(a) under the condition of
A = 20 deg, V = 115 deg/s (2.0 rad/s) and N = 10. The different postures
yield the different inertia and gravity force with respect to the joint. Figure 9(b)
is the identification results, which show that the curves are almost overlapping.
Therefore, It can be said that the dependency of identification results on the
posture is small. This indicates that using only the data near the velocity
peaks (lines (7c)-(7e)), and taking the semi-amplitude of the force (line (7i))
are effective enough to remove the effects of the inertia and the gravity.

5. Experiment: Friction Compensation

The identified results were validated through experiments of friction com-
pensation. Here, the identified curve is combined with a dynamic friction model
of Hayward and Armstrong [8] and employed for friction compensation in the
similar manner as the method presented by Marvash and Okamura [18]. In the
technique presented in [18], the friction force is modeled as a serial connection
of a spring and a Coulomb friction element, as illustrated in Figure 10(a). In
the same light, we used a model illustrated in Figure 10(b), in which a nonlinear
viscosity is connected in parallel with a Coulomb friction-spring element. The
model in Fig. 10(b) can be described as follows:

Ke ∈ F0sgn(v − ė) (16a)

fo = Ke+ ϕ0(v) (16b)

where

ϕ0(v)
∆
= ϕ(v)− F0sgn(v). (17)

Here, e is the displacement of the spring, and (16a) represents the fact that the
Coulomb friction force F0sgn(v − ė) balances the spring force Ke. By noting
the relation between ϕ(v) and F0 illustrated in Figure 1, we can easily see
that ϕ0(v) is a continuous function. The K value was chosen as 175 Nm/deg
(10000 Nm/rad) through preliminary experiments. Higher K values resulted in
oscillation and lower K values resulted in insufficient compensation.

By using the backward Euler method, (16a) is discretized as follows:

Kek ∈ F0sgn

(
vk − ek − ek−1

∆t

)
(18)

where k denotes the discrete-time index, ∆t is the sampling interval, and sgn(x)
is the set-valued function defined as follows:

sgn(x)
∆
=

{
x/|x| if |x| ̸= 0
[−1, 1] if |x| = 0.

(19)
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Through careful derivation, one can see that (18) can be solved with respect to
ek, and the solution is

ek =
F0

K
sat

(
K

F0
(∆tvk + ek−1)

)
(20)

where

sat(x)
∆
=

{
x/|x| if |x| > 1
x if |x| ≤ 1.

(21)

This derivation can be done by using the relation

y ∈ sgn(x− y) ⇐⇒ y = sat(x), ∀x, y ∈ R, (22)

of which the proof is provided in [19]. Another important point is that, in order
to ensure the stability, the actuator force fc used for the friction compensation
should be slightly smaller than the actual friction force. Thus, the actuator
force fc should be determined as follows:

fc = Rfo (23)

where R is an appropriate positive constant that is slightly smaller than 1. We
used R = 0.9 in the experiments reported in this paper.

In conclusion, a discrete-time algorithm to obtain the actuator force fc,k for
friction compensation is obtained as follows:

ek :=
F0

K
sat

(
K

F0
(∆tvk + ek−1)

)
(24a)

fo,k := Kek + ϕ0(vk) (24b)

fc,k := Rfo,k. (24c)

The algorithm (24) exemplifies the combined application of the identified curve
ϕ0(vk) and dynamic friction models.

5.1. Manual moving

In this experiment, the experimenter grasped the end-effector of the manip-
ulator and moved it cyclically in both cases without friction compensation and
with compensation. The external torque fs to move the manipulator was de-
rived from the output values of the force sensor attached at the end-effector and
the length of the moment arm. All joints except the focused joint were locked
by local position controller with as high gain as possible. Gravity compensation,
of which the parameters were calibrated in advance, was applied to each joint.
The experimenter intended to move the end-effector by hand at the frequency
of 0.5 Hz, being paced by a metronome.

Figure 11 shows the experimental results of friction compensation. Data of
the Joint 3 and 5 were not obtained due to the limitation of the force sensor, of
which the rated torque is smaller than the necessary torque to move these joints.
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Figure 11 shows that, while the velocity v does not exhibit significant difference
between the two cases, the measured torque f does exhibit distinct difference,
which are the lowered magnitudes and the forward-shifted phase in the case
with the compensation. Such features cannot be created by the experimenter’s
intention and can be solely attributed to the reduction of the friction force
due to the friction compensation. One can infer that the phase shift is also a
consequence of the reduction of the friction force, which results in the inertia
being dominant.

The measured velocity and the measured external torque were evaluated
quantitatively by using the following criteria:

Vs =

√
1

Te

∫ Te

0

v2s dt, Fs =

√
1

Te

∫ Te

0

f2
s dt (25)

where Te is the time period of an experiment. The results are shown in Fig 12.
This figure shows that, although the magnitude of the measured velocity is
almost equal between the two cases, the magnitude of the measured torque is
smaller by 60 to 80 percent in the case with the friction compensation. It means
that the friction compensation decreases the magnitude of torque required to
realize given velocities. These results indicate that the function identified by
the proposed procedure is effective in the friction compensation.

5.2. Feedback position tracking

In this experiment, a low-gain PD position controller for a saw-teeth desired
trajectory was applied to each joint one-by-one in the four cases as follows: no
compensation (NC), compensation by the model of Mahvash and Okamura [18]
(MO), MO and linear viscosity compensation (MOL), MO and compensation
using functions identified by the proposed procedure (MOP). As is the case with
Section 5.1, all joints except the focused one were locked and the gravity com-
pensation was applied to each joint. In the case of MO, the following equation
was used in stead of (24b):

fo,k := Kek (26)

and in the case of MOL, the following equation was used:

fo,k := Kek +Bcvk (27)

where Bc is a constant coefficient for the linear viscosity compensation.
Figure 13 shows the results, which show that the tracking accuracy is overall

highest with MOP. Figure 14 shows a quantitative comparison of the tracking
errors with the following criterion:

Es =

√
1

Te

∫ Te

0

(pd − ps)2 dt. (28)
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Figure 14 also shows that MOP provides smaller tracking error than MOL, MO,
and NC. These results indicates that the friction compensation significantly
reduces the tracking error of position control, and also indicates that using
the rate-dependent friction law, which is obtained by the proposed method, is
more effective than simple Coulomb friction law or Coulomb plus linear viscous
friction law. The results also supports the validity of the method combining the
identified curve and dynamic friction models.

6. Conclusion

This paper has presented an identification procedure for rate-dependent fric-
tion of manipulators of which the motion is limited. The procedure has the fol-
lowing characteristic features: (i) the function representing the rate dependency
is defined by line sections connecting sampled velocity-force pairs, (ii) each joint
is controlled as it tracks desired position trajectories consisting of some cycles of
sinusoidal motion with different frequencies, and (iii) each velocity-force pair is
sampled from each cycle of the motion with subtracting the effects of the gravity
and the inertia. The procedure was applied to a YASKAWAMOTOMAN-HP3J,
which is a six-joint robotic manipulator with harmonic-drive transmissions. It
has been shown that the identification up to the velocity of 115 deg/s (2.0 rad/s)
was achieved with a 20-deg sinusoidal motion. Experimental results have also
shown that the friction of the manipulator was reduced by 60 to 80 percent by
the compensation using the identified function.
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Figure 11: Experimental result of friction compensation. Data were not obtained from Joint
3 and 5 due to the limitation of the force sensor.
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Figure 12: Average magnitudes (25) of measured velocity and external torque. Data were not
obtained from Joint 3 and 5 due to the limitation of the force sensor.
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Figure 13: Experimental result of friction compensation in the four cases as follows: no
compensation (NC), compensation by the model of Mahvash and Okamura [18] (MO), MO
and linear viscosity compensation (MOL), MO and compensation using functions identified
by the proposed procedure (MOP).
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Figure 14: Average magnitudes (28) of measured position tracking error.
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