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Abstract This paper proposes a new representation of multibody mechanical sys-
tems involving three-dimensional frictional unilateral constraints. The new repre-
sentation is of the form of a differential algebraic inclusion (DAI) employing a
normal cone with a non-Euclidean, singular norm metric. It can be seen as a gen-
eralization of a differential algebraic equation (DAE) using Lagrange multipliers,
which has been used to represent mechanical systems with equality constraints.
The paper also presents an approach to approximate the aforementioned DAI by
another form of DAI, which can be equivalently converted into an ordinary dif-
ferential equation (ODE). The approach can be seen as a generalization of the
Baumgarte stabilization, which is originally for DAEs. The new DAI representa-
tion and its ODE approximation are illustrated with some simple examples.

Keywords Baumgarte stabilization · frictional unilateral constraints · differential
algebraic inclusions

1 Introduction

For many mechanical systems composed of very stiff objects, the rigid-body formal-
ism is a reasonable approximation suited for the purposes of simulation, analysis
and control. It however requires a special care in the mathematical treatment be-
cause of its discontinuous and nonsmooth nature. If the system involves unilateral
constraints with Coulomb friction, the system’s dynamics is usually described by
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a set of inequalities and equations involving force and kinematic variables, such as
position, velocity and acceleration.

One important feature of such a system is that the structure drastically changes
at the transitions between the sticking, slipping, and non-contact phases of each
contact point. For example, in a system with a unilateral constraint, the velocity
must satisfy an inequality condition only if the position satisfies an equality con-
dition. More specifically, a velocity-level condition, the so-called velocity Signorini
condition [27, eq.(5)], is active only when the system is in the contact phase. Thus,
the representation usually includes “if” conditionals, which complicate the problem
to find a unified, concise representation that describes all conditions of a system
with multiple frictional unilateral constraints especially in the continuous-time do-
main. This feature is in contrast to a system with only an equality condition, which
has a standard form of a differential algebraic equation (DAE) with a Lagrange
multiplier.

Many of previous analytical studies investigated the system behavior under
each particular equality condition separately. For example, Génot and Brogliato
[24] and Song et al. [49] analyzed systems with a single frictional unilateral con-
straint in the slipping phase, at which the contact force stays on the boundary
of the friction cone. In such approaches, a transition from slipping to sticking
causes non-existence of the solution. Event driven schemes [3, Chap. 8] [26] also
depend on representations at different kinematic levels, i.e., of position, veloc-
ity, and acceleration levels. In the studies on the development of time-stepping
schemes [1,2,8,50], derivations are performed mostly in the discrete-time domain.
A continuous-time representation of the system behavior in all conditions should
provide better insights to the development of computational techniques.

This paper presents two main contributions. One is a unified representation
of mechanical systems subject to multiple frictional unilateral constraints. The
new representation is of the form of a differential algebraic inclusion (DAI), and
is expressed as a straightforward generalization of conventional representations
involving Lagrange multipliers for equality constraints, which are represented as
DAEs. In the proposed DAI representation, the set of the constraints is represented
as an inclusion in a normal cone of the set of admissible values of the Lagrange
multiplier. The normal cone used here is defined with a singular norm metric,
defined as a limit of a family of normal cones with parameterized non-Euclidean
norm metric.

Another contribution of this paper is a scheme with which the aforementioned
DAI is relaxed into another DAI that can be equivalently converted into an or-
dinary differential equation (ODE). This relaxation scheme can be seen as a gen-
eralization of the Baumgarte stabilization [13], which is originally for stabilizing
numerical solutions of DAEs. Numerical integration of the obtained ODE pro-
vides approximate solutions of the original DAI preserving its nonsmooth nature,
such as static friction. Besides that, although the relaxed representation resides
in the continuous-time domain, it has a certain analogy to implicitly-discretized
forms of the original DAI and includes representations at all kinematic levels as
its asymptotic limits. Due to these features, the presented framework allows for
understanding previous studies on time-stepping schemes [1, 2, 8, 50] and event-
driven schemes [3, Chap. 7] [26] from the continuous-time point of view. As an
example, Section 5.3 of this paper shows a geometric interpretation of the solution
non-uniqueness of Painlevé paradox [24] in the continuous-time domain.
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This paper is organized as follows. Section 2 provides mathematical preliminar-
ies. Section 3 overviews the treatment of DAEs with the Baumgarte method, and
also discusses its relation to implicit Euler integration. Section 4 presents a new
representation of mechanical systems with frictional unilateral constraints and its
Baumgarte-like relaxation. Section 5 shows illustrative example applications of the
presented method. Section 6 provides concluding remarks.

2 Mathematical Preliminaries

Throughout this paper, 0 is the zero vector or zero matrix of appropriate di-
mensions, In denotes the n-dimensional identity matrix, R+ denotes the set of
non-negative real values, and ∂X and IntX denote the boundary and the interior,
respectively, of a set X .

2.1 Cones and Projections

Let us recall the definitions of cones, normal cones, and projections.

Definition 1 (Cone) A set C ⊂ Rn is said to be a cone if and only if x ∈ C ⇒
x/ε ∈ C for all ε > 0.

Definition 2 (Normal Cone) Let a closed non-empty convex set X ∈ Rn and a
symmetric and positive-definite matrix U ∈ Rn×n be given. The normal cone to X
at the point x ∈ Rn with the metric U is defined as follows:

NU
X (x)

∆
=

ȷ

{ξ ∈ Rn | ξT U(x∗ − x) ≤ 0 ∀x∗ ∈ X} if x ∈ X
∅ if x ̸∈ X .

(1)

Definition 3 (Projection) Let a closed non-empty convex set X ∈ Rn and a
symmetric and positive-definite matrix U ∈ Rn×n be given. The projection of
x ∈ Rn on the set X with the metric U is defined as follows:

projUX (x)
∆
= argmin

ξ∈X
(x − ξ)T U(x − ξ). (2)

For notational brevity, we write N In

X (x) = NX (x) and projIn

X (x) = projX (x). It

should be noted that, if x ∈ IntX , NU
X (x) = {0} and projUX (x) = x are satisfied.

The following relations are useful for the derivation in this paper:

NU
X (u) = U−1NX (u) (3)

x − u ∈ −NU
X (x) ⇐⇒ x = projUX (u). (4)

The relation (3) can be obtained through a straightforward derivation from the
definition (1) of NU

X (u). The relation (4) is explained in Section A.3 of [3].
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Fig. 1 Normal cones (a) with the Euclidean metric and (b) with the singular metric defined
by (9).

2.2 Limit of a Family of Sets

Let us recall that a limit of a function is formally defined as follows:

lim
ε→+0

f(ε)
∆
= f0 s.t.

`

∀ϵ1 > 0, ∃δ1 > 0 s.t. 0 < ε < δ1 ⇒ |f(ε) − f0| < ϵ1
´

, (5)

which is usually referred to as the ε-δ definition. In the same way, a limit of a
family of sets Xε ∈ Rn parameterized by a positive scalar ϵ can be defined as
follows:

lim
ε→+0

Xε
∆
=
˘

ξ ∈ Rn ˛
˛ ∀ϵ1 > 0, ∃δ1 > 0 s.t. 0 < ε < δ1 ⇒

`

∃ξ1 ∈ Xε s.t. |ξ − ξ1| < ϵ1
´¯

.

(6)

The following example illustrates this definition:

lim
ε→+0

ȷ»

y/ε

y

–

∈ R2

˛

˛

˛

˛

y ≥ 0

ff

=

ȷ»

x

0

–

∈ R2

˛

˛

˛

˛

x ≥ 0

ff

. (7)

Here, note that the y component (the second entry) of the vector in the left-hand
side never reaches zero with ε → 0, but the limit of the left-hand side is the set
with y = 0. In this sense, this example appears paradoxical but it matches the
definition (6).

2.3 Normal Cones with a Singular Metric

This paper uses limits of families of normal cones in parameterized metrics of the
form

lim
ε→+0

NUε

X (r) (8)

where X ⊂ Rn, r ∈ Rn and Uε ∈ Rn×n is a symmetric and positive-definite matrix
for all ε > 0. When Uε includes the division by ε, it can be referred to as a singular

metric.
As an illustrative example, let us consider a 2-dimensional case with

Uε
∆
= diag[1, 1/ε]. (9)
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In this definition of the metric Uε, the normal cones of the form (8) can be said
to be singular-metric normal cones. Fig. 1 illustrates some instances of Euclidean-
metric and singular-metric normal cones. Now, let us focus on NX (ra) in Fig. 1(a).
It can be written as follows:

NX (ra) =

ȷ»

x

αx

–

∈ R2

˛

˛

˛

˛

α ∈ [α0, α1], x ≤ 0

ff

(10)

where α0 and α1 are scalars satisfying α0 < α1 < 0. By using the rule (3), one can
easily obtain

lim
ε→+0

NUε

X (ra) = lim
ε→+0

ȷ»

x

εαx

–

∈ R2

˛

˛

˛

˛

α ∈ [α0, α1], x ≤ 0

ff

=

ȷ»

x

0

–

∈ R2

˛

˛

˛

˛

x ≤ 0

ff

, (11)

which is illustrated in Fig. 1(b). The cones at the point rb can also be obtained
by modifying (10)(11) by x ≥ 0 and setting α0 = α1 > 0.

As another example, let us consider NX (rc) in Fig. 1(a), which can be written
as

NX (rc) =

ȷ»

αy

y

–

∈ R2

˛

˛

˛

˛

α ∈ [α0, α1], y ≤ 0

ff

(12)

where α0 < 0 < α1. This leads to the following:

lim
ε→+0

NUε

X (rc) = lim
ε→+0

ȷ»

αỹ

εỹ

–

∈ R2

˛

˛

˛

˛

α ∈ [α0, α1], ỹ ≤ 0

ff

=

ȷ»

x

y

–

∈ R2

˛

˛

˛

˛

x ∈ R, y ≤ 0

ff

. (13)

The derivation in (13) can be explained by the fact that, for any x ∈ R, y ≤ 0,
α0 < 0 and α1 > 0, one can choose an arbitrarily small ε > 0 that satisfies
εx/y ∈ [α0, α1], and thus can also choose ỹ = y/ε and α = εx/y, which make
[αỹ, εỹ]T belong to NUε

X (rc).
In conclusions, one can see that the singular-metric normal cones in Fig 1(b)

can be obtained by infinitely elongating the Euclidean-metric normal cones in
Fig 1(a) in the x direction. This paper uses this type of singular-metric normal
cones to describe the relation between the force and kinematic variables such as
velocity.

3 Overview on Equality Constraints

This section overviews DAEs that represent mechanical systems involving position-
level and velocity-level constraints. Such a DAE is represented as a pair of a
constraint equation and a differential equation with a Lagrange multiplier, which
represents the constraint force. The Baumgarte stabilization is also overviewed as
a method to convert DAEs to ODEs. Its similarity to implicit discretization and
its difference from the penalty-based relaxation are also discussed here.
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3.1 Equality Constraints and Lagrange Multiplier

Let us consider the class of n-dimensional constrained mechanical systems de-
scribed as follows:

M(q)q̈ + Φ(q, q̇, t) = J(q)T λ (14)
»

Jv(q)q̇
Ψp(q)

–

= 0 (15)

where

J(q)
∆
=

»

Jv(q)
Jp(q)

–

∈ Rm×n (16)

Jp(q)
∆
= ∂Ψp(q)/∂q ∈ Rmp×n (17)

and mp ≤ m ≤ n. Here, M(q) ∈ Rn×n is a symmetric and positive-definite matrix
that represents the inertia of the system, q ∈ Rn is the generalized coordinate of
the system, and Φ : Rn × Rn × R → Rn represents the sum of nonlinear inertial
forces and external forces. Equation (15) represents a constraint imposed on q and
q̇, and λ ∈ Rm is the Lagrange multiplier, which represents the force caused by
the constraint. The constraint Ψp(q) = 0 can be said to be a position-level (or
holonomic) constraint. The constraint Jv(q)q̇ = 0 is a non-holonomic constraint
that can be said to be a velocity-level constraint, which appears in, for example,
slipless wheeled systems [32] and other classes of vehicles [35].

One way to numerically solve the problem (14)(15) is to take the derivatives of
(15) to isolate q̈ to construct a set of simultaneous equations with (14). Specifically,
by taking the first- and second-derivatives of the first and the second lines of (15),
respectively, one obtains the following constraint:

2

6

4

d

dt
(Jv(q)q̇)

d2Ψp(q)

dt2

3

7

5

= 0, (18)

or equivalently,

J(q)q̈ + H(q, q̇)q̇ = 0 (19)

where

H(q, q̇)
∆
=

»

Hv(q, q̇)
Hp(q, q̇)

–

∆
= J̇(q). (20)

Eliminating q̈ from (14) and (19) provides the following:

J(q)M(q)−1(J(q)T λ − Φ(q, q̇, t)) + H(q, q̇)q̇ = 0, (21)

and when the Delassus operator

A(q)
∆
= J(q)M(q)−1J(q)T (22)

is invertible, it can be solved with respect to λ as follows:

λ = A(q)−1
“

J(q)M(q)−1Φ(q, q̇, t) − H(q, q̇)q̇
”

. (23)

By substituting (23) in (14) to eliminate λ, one can view the DAE (14)(15) as
an ODE, which can be integrated easily, with the invariant set {(q, q̇) | Jv(q)q̇ =
0, Ψp(q) = 0}.
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3.2 Baumgarte Stabilization

One problem caused by the use of the differentiated constraint (19) is that it causes
numerical drift from the original constraint (15). The Baumgarte stabilization
method [13] is developed as a computational technique for avoiding this artifact. It
is fully developed in the continuous-time domain, being in contrast to discrete-time
integration schemes [10,38] elaborated to avoid drifting. Although some practical
weaknesses have been pointed out [11, 22], it has been recognized as a useful tool
for some applications [28,39]. In addition, its continuous-time representation may
give some insights for the analytical purposes, being independent of discretization
schemes.

In this method, the constraint (15) is replaced by
2

6

4

d

dt
(Jv(q)q̇)

d2Ψp(q)

dt2

3

7

5

+
2ζ

δ

2

4

Jv(q)q̇
dΨp(q)

dt

3

5+
1

δ2

»

0
Ψp(q)

–

= 0, (24)

or equivalently,

J(q)q̈ + H(q, q̇)q̇ +
2ζ

δ
J(q)q̇ +

1

δ2

»

0
Ψp(q)

–

= 0 (25)

where ζ and δ are appropriately chosen positive scalars. The initial condition must
be Ψp(q) = 0 and J(q)q̇ = 0 at t = 0. One can say that the modified constraint
(25) is analytically equivalent to the original constraint (15) or the differentiated
constraint (19) since, for any functions x of time, x(t) = 0 ∀t ≥ 0 is analytically
equivalent to ẋ(t) = 0 ∀t ≥ 0 with the initial condition x(t) = 0 at t = 0. Therefore,
one can say that the modification from (15) or (19) to (25) is not an approximation
in the analytical sense. In numerical computation, however, the last two terms of
the left-hand side of (25) may deviate from zero, and thus this modification can
be said to be an approximation.

Based on the constraint (25), λ is obtained as follows:

λ = A(q)−1b(δ, q, q̇, t) (26)

where

b(δ, q, q̇, t)
∆
= J(q)M(q)−1Φ(q, q̇, t) − H(q, q̇)q̇ − 2ζ

δ
J(q)q̇ − 1

δ2

»

0
Ψp(q)

–

. (27)

By substituting (26) into (14) and using the initial values of Ψp(q) = 0 and
J(q)q̇ = 0, one can integrate the system (14)(25) as an ODE, of which the nu-
merical solution with respect to q satisfies (14)(15) approximately.

It may need to be pointed out that there is no physical (more precisely, rhe-
ological) interpretation for (25). The position-level constraint in (15) is replaced
by a second-order differential equation that may be seen analogous to a mass-
spring-dashpot system. The system is however an autonomous system, which is
not influenced by any other factors, although the evolution of q is influenced by the
force term Φ(q, q̇). Considering this, it is not obvious to construct a consistent in-
terpretation in which the mass M(q) is connected to an imaginary spring-dashpot
system. This fact differentiates the Baumgarte stabilization from the penalty-based
method, which will be discussed in section 3.4.



8 Ryo Kikuuwe, Bernard Brogliato

3.3 Relations to Implicit Integration

Another approach for the time integration of the system (14)(15) is to use implicit
integration schemes. We here show an analogic relation between the implicit Euler
integration and the Baumgarte stabilization. In a fully-implicit Euler integration
of (14)(15), one should solve the following nonlinear equations with respect to
qk+1, uk+1 and λk+1 at every timestep:

M(qk+1)
uk+1 − uk

h
+ Φ(qk+1, uk+1, (k + 1)h) = J(qk+1)

T λk+1 (28)
»

Jv(qk+1)uk+1

Ψp(qk+1)

–

= 0 (29)

qk+1 = qk + huk+1. (30)

Here, u
∆
= q̇, the subscripts are the discrete-time indices, and h > 0 is the timestep

size. Assuming that h is small enough, we can consider the following approxima-
tions:

M(qk+1) ≈ M(qk) (31)

J(qk+1)
T λk+1 ≈ J(qk)T λk+1 (32)

Φ(qk+1, uk+1, (k + 1)h) ≈ Φ(qk, uk, kh) (33)

Jv(qk+1)uk+1 ≈ Jv(qk)uk+1 + hHv(qk, uk)uk (34)

Ψp(qk+1) ≈ Ψp(qk) + hJp(qk)uk+1 + h2Hp(qk, uk)uk. (35)

By using these approximations, the nonlinear problem (28)(29)(30) can be linearly
approximated and λk+1 can be analytically obtained as follows:

λk+1 = A(qk)−1

„

J(qk)M(qk)−1Φ(qk, uk, kh)

−H(qk, uk)uk − 1

h
J(qk)uk − 1

h2

»

0
Ψp(qk)

–«

. (36)

This is equivalent to λk+1 = A(qk)−1b(h, qk, uk, kh) with ζ = 1/2 according to the
definition (27) of b : R×Rn ×Rn ×R → Rm. Notice the similarity between (26)(27)
and (36).

There could be some variations in the discretization scheme. For example, the
terms involving H(qk, uk) may be omitted from (34) and (35) if the temporal
change in J(q) is slow enough. Moreover, if the temporal change in Φ(q, q̇, t) is not
slow enough, the Jacobians of Φ(q, q̇, t) may need to be included in (33). Although
λk+1 may not be exactly the same form as that of (27), one can see that λk+1

with h → +0 can be close to that of (27) with δ → +0. This fact may imply the
existence of some underlying relations between the Baumgarte stabilization and
the implicit Euler discretization, which may need further theoretical investigation.
More practically, it suggests that some numerical methods in the previous studies
based on implicit discretization can be applied to the numerical integration of
Baumgarte-stabilized systems (14)(25).
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3.4 Relation to Penalty-based Relaxation

It should be noted that the Baumgarte stabilization is intrinsically different from
the penalty-based relaxation. When the penalty-based method is applied to deal
with the constraint (15), a force λ is usually determined as a spring-dashpot force
penalizing the deviation from the constraint (15). Although there are several vari-
ations [12] to realize this, the following scheme can be thought of as an example:

λ = K

„»

ev

ep

–

+ β

»

ėv

ėp

–«

(37)

»

Jv(q)q̇ + ėv

Ψp(q) + ep

–

= 0. (38)

Here, K is a symmetric and positive-definite (and often diagonal) matrix repre-
senting the stiffness of the spring, and Kβ can be seen as a damping coefficient
matrix. The vector [eT

v , eT
p ]T represents the deviation from the constraint (15).

An important difference between (37)(38) and (25) is that (37)(38) is dif-
ferent from the original constraint (15) even in the continuous-time domain. In
the Baumgarte stabilization (25), the ideal constraint (15) can be satisfied with
t → ∞, but in the penalty-based relaxation (37)(38), it can never be satisfied
unless Φ(q, q̇, t) ≡ 0. The deviation from the constraint may be reduced by set-
ting higher values to the entries of K, but it results in the high stiffness of the
equations, threatening the numerical stability especially with explicit integration
schemes. An advantage of the penalty-based relaxation (37)(38) is that the force
λ is independent of the inertia matrix M(q), and thus it is easier in computation.
Thus, one can say that the penalty-based relaxation is a more relaxed method
than the Baumgarte stabilization to realize easier computation by sacrificing the
accuracy.

4 New Approach for Inequality Constraints

This section considers the system (14) with the force λ being restricted to a closed
set C ⊂ Rm. In such a case, (15) is satisfied when λ ∈ IntC, but can be violated when
λ ∈ ∂C. Mechanical systems with unilateral constraints and/or three-dimensional
Coulomb friction are included in this class of systems. This section provides a new
DAI representation of this class of systems with the use of a singular-metric normal
cone. Moreover, its ODE approximation inspired by the Baumgarte stabilization
is also presented.

4.1 New Representation of Inequality Constraints

This paper presents the following form as a general representation of rigid-body
systems with friction and unilateral constraints:

M(q)q̈ + Φ(q, q̇, t) = J(q)T λ (39)
»

Jv(q)q̇
Ψp(q)

–

∈ − lim
ε→+0

NUε

C (λ). (40)
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The matrix Uε is a symmetric and positive-definite matrix for all ε > 0, which
defines the system behavior under the condition λ ∈ ∂C. It should be noted that
the problem (39)(40) includes the problem (14)(15) as a special case of C = Rm.

Here we show some examples of systems represented by the form (39)(40).
First, let us consider m frictionless unilateral constraints:

Ψp(q) ≥ 0 (41)

where the inequality is component-wise. In such a system, the contact force λ

satisfies 0 ≤ λ ⊥ Ψp(q) ≥ 0, and thus the system can be written as follows:

M(q)q̈ + Φ(q, q̇, t) = (∂Ψp(q)/∂q)T λ (42)

Ψp(q) ∈ −NRm
+

(λ). (43)

It should be noted that (43) could be equivalently rewritten as λ ∈ −NRm
+

(Ψp(q)).

Nevertheless, the representation (42)(43) is convenient to show that it is a special
case of (39)(40) with m = mp, Uε = Im, J(q) = Jp(q) = ∂Ψp(q)/∂q, and C = Rm

+ .
As another example, let us consider a point mass M > 0 subject to an external

force fe ∈ R2 and a Coulomb friction force λ ∈ R2. The system can be represented
as follows:

Mq̈ = fe + λ (44)

λ ∈ −F sgn(q̇) (45)

where sgn(x) is a two-dimensional set-valued signum function

sgn(x)
∆
=

ȷ

x/∥x∥ if x ̸= 0
B2 otherwise,

(46)

B2 denotes the 2-dimensional unit ball and F > 0. (Here we do not consider the
effect of normal force or the maximum static friction force being larger than the
kinetic friction force.) This system can be rewritten as follows:

Mq̈ − fe = λ (47)

q̇ ∈ −NFB2(λ), (48)

which is a special case of (39)(40) with m = 2, mp = 0, J(q) = Jv(q) = Uε = I2,
and C = FB2.

The main advantage of the new representation (40) appears in cases with
three-dimensional frictional unilateral constraints. Let us denote the position of
the contact point by [pT

t , pn]T = Ψ(q) ∈ R3 where Ψ is a map from Rn to R3.
Let us assume that the unilateral constraint pn ≥ 0 (pn ∈ R) is imposed by a
contact surface, and that ṗt ∈ R2 is the tangential velocity. Then, the contact
force λ = [λT

t , λn]T ∈ R3 can be related to pn and ṗt as follows:

λt ∈ −µλnsgn(ṗt) (49)

λn ∈
ȷ

0 if pn > 0
R+ if pn = 0,

(50)

or equivalently,

ṗt ∈ −NµλnB2(λt) (51)

pn ∈ −NR+(λn). (52)
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Carefully observing the relation between the vector λ and the vector [ṗt, pn]T , one
can see that the relation (51)(52) can be rewritten as follows:

»

ṗt

pn

–

∈ − lim
ε→+0

NUε

C (λ) (53)

where

C ∆
=
n

[λT
t , λn]T ∈ R3

˛

˛

˛

∥λt∥ ≤ µλn

o

(54)

Uε
∆
= diag[1, 1, 1/ε]. (55)

The singular-metric normal cone in the right-hand side of (53) is illustrated in
Fig. 2. Note that (53) is a special case of (40) with m = 3, mp = 1, (54), (55) and

Jv(q) =

»

1 0 0
0 1 0

–

∂Ψ(q)

∂q
(56)

Ψp(q) =
ˆ

0 0 1
˜

Ψ(q). (57)

The same idea can be applied to more complicated systems with many fric-
tional contacts. Let us consider an n-dimensional system with mp potential three-
dimensional frictional unilateral constraints. Let us denote the mp unilateral con-
straints by Ψp(q) ≥ 0 with Ψp : Rn → Rmp and the tangential velocities at the
contact points by Jv(q)q̇ ∈ R2mp with Jv : Rn → R2mp . Let us also denote the
contact forces by λ ∈ R3mp , of which λ{2mp+i} and (λ{2i−1}, λ{2i}) are the normal
and tangential components, respectively, of the i-th contact force, where the sub-
script {i} denotes the i-th component of the vector. Then, such a system can be
represented by (40) specialized by

C ∆
=
n

λ ∈ R3mp

˛

˛

˛

q

(λ{2i−1})2 + (λ{2i})2 ≤ µiλ{2mp+i}, ∀i ∈ {1, · · · , mp}
o

(58)

Uε
∆
=

»

I2mp 0
0 Imp/ε

–

(59)

where µi is the friction coefficient of the i-th potential contact.
The use of normal cones has been known to be useful for representing nons-

mooth dynamical systems [9, 29, 41, 52], but the form (40), involving a singular-
metric normal cone for the representation of frictional unilateral constraints, is not
found in the previous studies. One important point here is to use the normal cone
defined in the constraint force space Rm (the space of the Lagrange multipliers λ)
to preserve the structure of the left-hand side of the conventional form (15) for the
equality constraint. By using the representation (40), inequality constraints caused
by frictional unilateral constraints can be seen as a straightforward generalization
of equality constraints of the form (15).

4.2 Baumgarte-Like Relaxation

In order to solve the DAI (39)(40), one needs to isolate q̈ from (40), as can be done
with the DAE (14)(15). Recall that the equality constraint (15) can be replaced
by its differentiated constraint (19). This approach, however, cannot be applied to
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Fig. 2 The friction cone C and its singular-metric normal cones with Uε defined by (55). Note
that the normal cone at λ = 0 is the half-space z ≤ 0.

the inclusion constraint (40) because, with a function x of time and a set X , x ∈ X
has in general nothing to do with ẋ ∈ X , while x ≡ 0 implies ẋ = 0.

A key observation here is that, with a cone C and a twice-differentiable function
x of time t, if x satisfies x ∈ C for all t > 0,

lim
δ→+0

„

ẍ +
2ζẋ

δ
+

x

δ2

«

∈ C (60)

is satisfied for any ζ > 0. Note that here we exploit the property of cones indi-
cated by Definition 1. This can be viewed as a generalization of the lexicographic
nonnegativity [53] [16, p.214], which is written as

(x, ẋ, ẍ) ≽ 0 (61)

and can also be written as

lim
δ→+0

„

ẍ +
2ζẋ

δ
+

x

δ2

«

≥ 0. (62)

These expressions mean that all of {x, ẋ, ẍ} are zero or the first nonzero entry of
{x, ẋ, ẍ} is positive. The expression (62) is a special case of (60) with C = R+.

In the same light as (60), the following representation can be seen as an ap-
proximation of (40):

2

6

4

d

dt
(Jv(q)q̇)

d2Ψp(q)

dt2

3

7

5

+
2ζ

δ

2

4

Jv(q)q̇
dΨp(q)

dt

3

5+
1

δ2

»

0
Ψp(q)

–

∈ − lim
ε→+0

NUε

C (λ), (63)

or equivalently,

J(q)q̈ + J̇(q)q̇ +
2ζ

δ
J(q)q̇ +

1

δ2

»

0
Ψp(q)

–

∈ − lim
ε→+0

NUε

C (λ). (64)
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This representation can be seen as a relaxation of the original constraint (40), and
the left-hand side has exactly the same form as the Baumgarte stabilization (25).
Thus, we hereafter refer to it as a Baumgarte-like relaxation.

By eliminating q̈ from (39) and (64), one can obtain the following expression:

A(q)λ − b(δ, q, q̇, t) ∈ − lim
ε→+0

NUε

C (λ) (65)

where A(q) and b(δ, q, q̇, t) are defined in (22) and (27), respectively. This expres-
sion includes (26) as a special case of C = Rm. By substituting the solution λ of
(65) into (39) and using the initial values of Ψp(q) = 0 and J(q)q̇ = 0, one can inte-
grate the relaxed DAI (39)(64) to obtain q that satisfies the original DAI (39)(40)
approximately. In other words, under the assumptions that the inclusion (65) is
uniquely solvable with respect to λ and that the solution λ is a Lipschitz function
of q and q̇, the relaxed DAI (39)(64) can be considered equivalent to an ODE.

The solution of (65), however, is not always obvious to obtain. From (3) and
(4), if A(q)Uε is a symmetric and positive-definite matrix (e.g., if either or both of
Uε and A(q) are scalar multiples of the identity matrix), the closed-form solution
of (65) can be obtained as follows:

λ = lim
ε→+0

proj
A(q)Uε

C (A(q)−1b(δ, q, q̇, t)). (66)

Otherwise, the operator “proj” cannot be used and the existence and the unique-
ness of the solution of the algebraic inclusion (65) are not guaranteed. As will be
shown in section 5.3, the problems known as Painlevé paradoxes [24] are raised
when (65) has non-unique solutions. Some previous studies [5,6,14,15,19] provide
numerical methods to solve problems equivalent to (65) as will be discussed in
section 4.5.

One should note that the relaxed constraint (64) is analytically different from
the original constraint (40). This fact is in contrast to the fact that the original
Baumgarte stabilization for equality constraints does not alter the constraint an-
alytically. It should also be noted that, as will be shown in section 5.2, the free
parameter ζ influences the behavior of the solution both numerically and analyti-
cally.

4.3 Relations to Previous Representations

To represent the system with inequality constraints, some previous studies employ
different representations at different kinematic levels, i.e., acceleration, velocity,
and position levels [3, Sec.8.3]. For example, let us assume that q ∈ R is an abso-
lutely continuous function of time t and that there exists a position-level inequality
constraint q ≥ 0. Then, one should consider a velocity-level representation q̇ ≥ 0
of the constraint, which is valid only when q = 0. In the same light, there is also
an acceleration-level representation q̈ ≥ 0, which is valid only if q = 0 and q̇ = 0.

The expression (64) includes all conditions in a unified form, and can be re-
duced into each kinematic level by exploiting the property of cones indicated by
Definition 1 and setting δ → +0. For example, when Ψp(q) > 0, setting δ → +0 in
(64) results in

»

0
Ψp(q)

–

∈ − lim
ε→+0

NUε

C (λ) (67)
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because the left-hand side can be multiplied by δ2 due to Definition 1 of cones. This
representation (67) can be seen as a position-level representation. In the same way,
when Ψp(q) = 0 and when Ψp(q) = 0 and J(q)q̇ = 0, respectively, setting δ → +0
with (64) yields the following:

J(q)q̇ ∈ − lim
ε→+0

NUε

C (λ) (68)

J(q)q̈ + J̇(q)q̇ ∈ − lim
ε→+0

NUε

C (λ). (69)

These representations can be named velocity-level and acceleration-level represen-
tations, respectively. The acceleration-level representation is especially important
for event-driven schemes [3, Chap. 8] [26] to detect discontinuous events, as have
been exemplified in [25,37,45,52].

It should be noted that the presented representation does not explicitly involve
impulse because, due to the relaxation using the non-zero value δ, the accelera-
tion is always bounded and discontinuous velocity jumps do not happen. It poses
a difficulty to relate the presented representation to measure-differential inclu-
sions [4, 46]. It is also a non-trivial issue to find what kind of impact laws can
be obtained as the result of this scheme of relaxation. Its relation to the simplest
one-dimensional impact law will be discussed in section 5.2.

4.4 Relations to Implicit Integration

In the same way as the discussion in section 3.3, we can see that the presented
scheme has analogical relation to the implicit integration scheme. By using the
approximations (31) to (34) and setting ζ = 1/2, if the timestep size h is small
enough, the original DAI (39)(40) can be approximated by the following discrete-
time representation:

A(qk)λk+1 − b(h, qk, uk, kh) ∈ − lim
ε→+0

NUε

C (λk+1). (70)

As mentioned in the last paragraph of section 3.3, there may be some variations
in b(h, qk, uk, kh) according to possible choice of approximations, but the form of
the algebraic problem (70), which is exactly of the same as (65), is preserved.

4.5 Numerical Methods to Solve (65)

The problem (65) is generally not easy to solve, but many previous studies have
been devoted to algebraic problems of this form in different notations. One of
major approaches is to facetize the friction cones that comprise the cone C, that
is, to approximate the friction cones by polygonal cones. The purpose of this
approximation is to reformulate the problem as a Linear Complementarity Problem
(LCP) for the ease of application of established numerical solvers. This approach
has been introduced for quasi-static problems with elastic continua [33, 34], and
have been employed in Stewart and Trinkle’s method [50] and Anitescu and Potra’s
method [8] for simulating dynamical systems.
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−Es(η)

Fig. 3 Relation (73) of the case of mp = 1.

Another class of approaches is to reformulate (65) into a cone complementarity
problem [9], which is of the form

C∗g ∋ Agxg − bg ⊥ xg ∈ Cg, (71)

or equivalently,

Agxg − bg ∈ −NCg
(xg) (72)

where xg is an unknown vector, Ag is a given symmetric and positive-definite
matrix, bg is a given vector, Cg is a given cone, and C∗g is the dual cone of Cg. The
problem (65) does not fit to this form in general. In some previous studies [5,19–21],
however, the left-hand side of (65) is appropriately modified so that it fits to the
form (71) or (72). Such an approach was initially introduced by De Saxcé as
detailed in [3, Sec.3.9.2].

Here we discuss the relation between the proposed approach and De Saxcé’s
approach. Let us again consider a system including mp potential three-dimensional
frictional unilateral constraints, which is described by (39)(40) specialized by
(58)(59). Based on the proposed relaxation scheme, one arrives in the problem
(65) to obtain λ. De Saxcé’s approach is to rewrite (65) of this special case into
the following form:

A(q)λ − b(δ, q, q̇, t) + Es(η(δ, q, q̇, λ, t)) ∈ −NC(λ), (73)

or equivalently,

C∗ ∋ A(q)λ − b(δ, q, q̇, t) + Es(η(δ, q, q̇, λ, t)) ⊥ λ ∈ C (74)
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where

η(δ, q, q̇, λ, t)
∆
= A(q)λ − b(δ, q, q̇, t) ∈ R3mp (75)

s(η)
∆
=

2

6

6

6

4

q

(η{1})2 + (η{2})2

...
q

(η{2mp−1})2 + (η{2mp})
2

3

7

7

7

5

∈ Rmp (76)

E
∆
=

»

02mp×mp

diag[µ1, · · · , µmp ]

–

∈ R3mp×mp . (77)

Fig. 3 illustrates (73) of the case of mp = 1. Here, the left-hand side of (73) is
orthogonal to the reaction force λ. Some methods have been presented [5, 19] to
solve the simultaneous equations of the form (73)(75)(76) with respect to η, s, and
λ. Kanno et al. [29] also treated a problem equivalent to (65) by reformulating it
into another form of cone complementarity problem by introducing an auxiliary
variable.

Anitescu and Tasora [9] proposed a method in which the term +Es in (73) is
simply neglected1 to fit the problem in the standard form of a cone complemen-
tarity problem. This modification corresponds to neglecting Uε in (65), resulting
in the solution of the following form:

λ = proj
A(q)
C (A(q)−1b(δ, q, q̇, t)), (78)

or equivalently,

A(q)λ − b(δ, q, q̇, t) ∈ −NC(λ). (79)

Their method has been employed in an open-source software package [40]. As
has been recognized, and as is obvious from its physical interpretation presented
in [7, Fig. 1], their method causes small motion in the normal direction even during
pure tangential slipping. In contrast to this is Nakaoka et al.’s [42] approach, in
which A(q) as a factor of norm metric in (65) is neglected. That is, their method
can be described as follows:

λ = lim
ε→+0

projUε

C (A(q)−1b(δ, q, q̇, t)), (80)

or equivalently,

λ − A(q)−1b(δ, q, q̇, t) ∈ − lim
ε→+0

NUε

C (λ). (81)

They applied a version of projected Gauss-Seidel method to obtain λ of (80). The
method presented by Silcowitz et al. [48] is similar to (80), but they decouple each
contact into two one-dimensional friction problems. This modification is equivalent
to approximating the friction cones, which comprise C, by square pyramids.

The problem (65) can also be rewritten as an equality of the form

ΓAC (A(q)λ − b(δ, q, q̇, t), λ) = 0 (82)

1 Removing +Es from (73) results in [9, equ.(16)].
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by using an appropriate nonlinear function ΓAC : Rm × Rm → Rm, as proposed
by Alart and Curnier [6] and detailed in [14]. For the case with a single frictional
unilateral constraint (i.e., m = 3 and mp = 1), it has been shown that the problem
(65), or equivalently (73), is solvable based on particular quartic polynomials [15]
[19, Appendix B].

4.6 Relations to Penalty-based Relaxation

Here we show the difference between the presented relaxation scheme and the
penalty-based relaxation scheme. Let us again consider the original constraint (40)
imposed on the dynamical system (39). Considering an imaginary spring-dashpot
system of which the force is λ and the displacement is [eT

v , eT
p ]T , and considering

that [eT
v , eT

p ]T can be determined by the deviation from the constraint (40), one
can obtain the following relation:

λ = K

„»

ev

ep

–

+ β

»

ėv

ėp

–«

(83)

»

Jv(q)q̇ + ėv

Ψp(q) + ep

–

∈ − lim
ε→+0

NUε

C (λ). (84)

Here, as have been defined in section 3.4, K is the stiffness matrix and Kβ is a
damping coefficient matrix. It should be noted that the constraint (40) is approx-
imated by this DAI (83)(84), by introducing additional state vector [eT

v , eT
p ]T , of

which the rate of change is determined by the DAI (83)(84).

An approach for penalty-based relaxation of frictional unilateral constraint
has been proposed by Xiong et al. [54]. Special cases of (83)(84) appear in Xiong
et al. [54], which are [54, eq.(21)] for unilateral constraint and [54, eq.(17)] for
Coulomb friction. They also have pointed out that, in the case of unilateral con-
straint, the DAI cannot be solved in the continuous time because ėp is not included
in the second row of the left-hand side of (84). To circumvent this problem, Xiong
et al. [54] have introduced an artificial, non-physical term +ηėp where η > 0,
which allows for the conversion from a DAI [54, eqs.(22)(23)] into an ODE [54,
eqs.(24)(25)]. In contrast, the approach presented by Kikuuwe and Fujimoto [30]
is based on the implicit Euler discretization of (83)(84), of which the analytical
solution can be obtained by using the relation (4).

A major difference between the penalty-based relaxation (83)(84) and the pro-
posed relaxation scheme (64) is that, in (83)(84), λ is independent of M(q) and
A(q). Thus, the solution is always unique in the penalty-based method. A down-
side of the penalty-based scheme is, as discussed in Section 3.4, its low accuracy;
the original constraint (40) is never satisfied unless Φ(q, q̇, t) ≡ 0.

5 Case Studies

This section shows some examples of the system described in the form (39)(40)
and their relaxed representations of the form (39)(64).
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5.1 Planar Friction

Now we analyze the influence of the proposed relaxation scheme on the behavior of
a simple system with Coulomb friction. Let us consider again the system (47)(48),
which represents a point mass M > 0 subject to an external force fe ∈ R2 and
a Coulomb friction force λ ∈ R2. Based on the approach presented in Section 4,
(47)(48) can be relaxed as follows:

Mq̈ − fe = λ (85)

q̈ +
q̇

δ
∈ −NFB2(λ) (86)

where δ > 0 is a small positive value. Note that (86) is equivalent to the following:

λ ∈ −F sgn(q̈ + q̇/δ). (87)

When q̇ = 0, (87) reduces to the acceleration-level spatial friction constraint, which
was discussed in [52, Sec. 3.2]. By eliminating q̈ from (85) and (86), one obtains
the following:

λ

M
+

fe

M
+

q̇

δ
∈ −NFB2(λ), (88)

which is, by the relation (4), equivalent to

λ = −projFB2
(fe + Mq̇/δ). (89)

This means that the velocity q̇ evolves along the following ordinary differential
equation:

Mq̈ = fe − projFB2
(fe + Mq̇/δ). (90)

One important feature of the original system (47)(48) is that q̇ converges to 0 in
finite time as long as the external force fe satisfies ∥fe∥ < F . Now, it is shown that,
in the relaxed form (85)(86), or equivalently, (90), q̇ → 0 holds asymptotically as
long as ∥fe∥ < F . It can be seen by the observation of the time derivative ∥q̇∥2/2,
which is obtained as follows:

d

dt

„

∥q̇∥2

2

«

=
q̇T

M

„

fe − projFB2

„

fe +
Mq̇

δ

««

=

8

<

:

−∥q̇∥2/δ if ∥fe + Mq̇/δ∥ ≤ F

F q̇T

M

„

fe

F
− fe + Mq̇/δ

∥fe + Mq̇/δ∥

«

otherwise.
(91)

It is easy to prove that, when ∥fe∥ < F , d(∥q̇∥2/2)/dt < 0 is always satisfied for
all q̇ ̸= 0. Thus, q̇ → 0 is achieved as t → ∞ as long as ∥fe∥ ≤ F , even under
the non-zero external force fe. This implies that the relaxation from (48) to (86)
preserves the characteristics of having the static friction state.

It should be noted that (90) is exactly of the same form as the “model A”
of Kikuuwe et al. [31], which is obtained by the implicit discretization of (44).
Replacing δ by the timestep size h exactly provides [31, eq.(26)]. This corresponds
to the relation between the Baumgarte-like relaxation and implicit discretization,
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Fig. 4 Relation (104) between the coefficient of restitution Va/V and ζ.

discussed in Section 4.4. In contrast to this is the penalty-based relaxation of (48),
which can be described as follows:

λ = K(et + βėt) (92)

q̇ + ėt ∈ −NFB2(λ). (93)

This representation exactly corresponds to [54, eq.(17)] and the “model C” of [31,
eqs.(39)(40)]. It should be noted that, unlike in the proposed relaxation (89), λ

does not depend on fe or M in (92)(93).

5.2 Relations to Impact Laws

Let us provide a relation between the parameter ζ and the coefficient of restitution
of Newton’s impact law. Let us consider a one-dimensional system, in which a
point mass M whose position is q ∈ R in contact with a rigid surface at q = 0. The
equation of motion of this system can be described as follows:

Mq̈ = λ + fe (94)

q ∈ −NR+(λ). (95)

This is the special case of (39)(40) with n = m = mp = 1, Uε = 1, Ψp(q) = q and
C = R+. Based on the proposed approach, the constraint (95) can be relaxed into
the following form:

q̈ +
2ζq̇

δ
+

q

δ2
∈ −NR+(λ). (96)

Let us analyze the behavior of the system (94)(96) that is initialized by q = 0 and
q̇ = −V at t = 0 where V > 0. This initial condition can be seen as the beginning
of a collision, the end of the collision is the time at which λ = 0. The velocity Va

at the end of collision is needed to obtain the coefficient of restitution.
Under the condition λ > 0, the right-hand side of (96) is {0}, and thus the

solution of (96) can be obtained as follows:

qδ(t) = −δV Γζ(t/δ) (97)
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where

Γζ(τ)
∆
= exp(−ζτ)

sin(τ
p

1 − ζ2)
p

1 − ζ2
. (98)

Here, it should be noted that the function Γζ(τ) does not depend of δ, and is a
continuous real function of τ ≥ 0 and ζ ≥ 0, which is real even if ζ > 1 and is
continuous even at ζ = 1 by the limit of ζ → 1. By using the first and second
derivatives of Γζ(τ), one can write the velocity and the acceleration as follows:

q̇δ(t) = −V Γ ′
ζ(t/δ) (99)

q̈δ(t) = −V Γ ′′
ζ (t/δ)/δ. (100)

By using them and considering the relation (94) between λ and q̈, one can see that
the collision terminates at the time:

t = tδ
∆
= {t s.t. Mq̈δ(t) − fe = 0} = δ(Γ ′′

ζ )−1

„

−δfe

MV

«

(101)

where (Γ ′′
ζ )−1 is the inverse mapping of Γ ′′

ζ . Therefore, the velocity Va at the time
tδ is

Va = −V Γ ′
ζ

„

(Γ ′′
ζ )−1

„

−δfe

MV

««

. (102)

Although the analytical form of the inverse map (Γ ′′
ζ )−1 is difficult to obtain, its

value at zero can be obtained as follows:

(Γ ′′
ζ )−1(0) =

cos−1(2ζ2 − 1)
p

1 − ζ2
. (103)

By using this, when δfe is sufficiently small, one can relate ζ and the coefficient of
restitution Va/V as follows:

Va

V
= exp

 

−ζ cos−1(2ζ2 − 1)
p

1 − ζ2

!

, (104)

which is shown in Fig. 4. This relation has already been obtained in previous stud-
ies [18, p.89] [47] where the contact point is assumed to have linear viscoelasticity.
In contrast, the present analysis is derived from the non-physical, numerical relax-
ation, but it provides similar results due to the similarity in the form of equations.

Impact laws of two or more dimensional collisions, such as those investigated
in [44, 51], are more complicated, involving another one or more parameters that
define the behaviors in the tangential direction. The relation between two- or three-
dimensional impact laws, which may involve tangential impact, and the presented
relaxation scheme is left as a subject for future study.
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Fig. 5 Painlevé’s example.

5.3 Painlevé’s Paradox

Here we show the application of the proposed relaxation scheme to the Painlevé’s
Paradox [24], in which a rigid rod is in frictional contact with a rigid horizontal
surface, as illustrated in Fig. 5. The main point of this problem is that, in the
rigid-body formalism, the system sometimes does not provide solutions unless
discontinuous jumps in the velocity are permitted, and even when a solution exists,
it may not be unique. Here we show how the presented relaxation scheme deals
with this point.

As illustrated in Fig. 5, let us denote the coordinate of the gravity center of
the rod by q = [qt, qn, θ]T . The position p of the contact point is written as

p
∆
=

»

pt

pn

–

∆
=

»

qt − ℓ cos θ

qn − ℓ sin θ

–

(105)

where ℓ is the half of the length of the rod. Without loss of generality, we assume
θ ∈ [0, π/2]. We also assume that pn = 0, ṗn = 0, ṗt < 0, with which the uniqueness
and existence of the solution are questioned [24].

The equation of motion of the system is described as follows:

Mq̈ = J(q)T λ + f (106)
»

ṗt

pn

–

∈ − lim
ε→+0

NUε

F (λ) (107)

where

M
∆
= diag[m, m, mℓ2/3] (108)

J(q)
∆
=

»

1 0 ℓ sin θ

0 1 −ℓ cos θ

–

(109)

f
∆
= [0,−mg, 0]T (110)

Uε
∆
= diag[1, 1/ε] (111)

F ∆
=
n

[λt, λn]T ∈ R2
˛

˛

˛

|λt| ≤ µλn

o

. (112)
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Here, note that (107) is the same as (53), which was derived from (51)(52). By
using the presented relaxation method, (107) is relaxed as follows:

p̈ +
2ζ

δ
ṗ +

1

δ2

»

0
pn

–

∈ − lim
ε→+0

NUε

F (λ) (113)

Thus, we obtain the form (65), or equivalently,

r(δ, q, q̇) ∈ C(λ, q) (114)

where

C(λ, q)
∆
= λ + A(q)−1

„

lim
ε→+0

NUε

F (λ)

«

(115)

r(δ, q, q̇)
∆
= ra(q, q̇) − 2ζṗt

δ
rb(q) −

„

2ζṗn

δ
+

pn

δ2

«

A(q)−1

»

0
1

–

(116)

A(q)
∆
= J(q)T M−1J(q) (117)

ra(q, q̇)
∆
=

mg

4

»

3 sin θ cos θ

4 − 3 cos2 θ

–

− mℓθ̇2

»

cos θ

sin θ

–

(118)

rb(q)
∆
= A(q)−1

»

1
0

–

. (119)

Let us now discuss the problem (114) through a geometric consideration on
C(λ, q). From (115), it is easy to see that C(λ, q) = {λ} if λ ∈ IntF . If λ ∈ ∂F\{0},
C(λ, q) is a half line that projects from λ and parallels rb(q), as illustrated in
Fig. 6. If λ = 0, C(λ, q) is the half-space S(q) in Fig. 6, of which the boundary
parallels rb(q). In addition, because we are assuming δ → +0, ṗt < 0, ṗn = 0 and
pn = 0, r(δ, q, q̇) is a infinitely far point on the half-line extending from ra(q) in the
direction of rb(q). This observation implies that the problem (114) has a unique
solution if S(q) does not overlap F . The necessary and sufficient condition for this
is

GB(q)
∆
= [1,−µ]rb(q) > 0. (120)

Moreover, ra(q, q̇) ∈ S(q) is satisfied if and only if

GA(q, q̇)
∆
= [0, 1]A(q)ra(q, q̇) < 0 (121)

is satisfied. That is, under the condition of GB(q) > 0, the solution of (114) is λ = 0
if GA(q, q̇) < 0, and is a particular value on ∂F if GA(q, q̇) > 0. Note that GA(q, q̇)
and GB(q) defined here correspond to A and B defined in [24], respectively.

The problem is complicated when GB(q) < 0, i.e., S(q) and F overlap each
other, as illustrated in Fig. 7. In such a case, r(δ, q, q̇) is in IntF as δ → +0, and
thus λ = r(δ, q, q̇) ∈ IntF is a solution. This contradicts the assumption that the
rod is slipping with ṗt < 0. This contradiction can be resolved by supposing that
the rod instantaneously sticks due to the infinitely large λ, which constitutes a
tangential impact [16, Sec.5.5]. This instantaneous state transition is sometimes
referred to as a dynamic jamming [43]. Another important observation is that,
when ra(q, q̇) ∈ S, i.e., GA(q, q̇) < 0, the problem has three solutions of λ, which
are λ1 = r(δ, q, q̇), a λ2 on ∂F , and λ3 = 0, as illustrated in Fig. 7. These solutions



Frictional Unilateral Constraints and Baumgarte-Like Relaxation 23

ra(q,q)

F

S(q)

C(λ,q)

rb(q)

λ
r(δ,q,q)

Fig. 6 Geometric interpretation of (114) of the case of GA(q, q̇) > 0 and GB(q) > 0, where
the unique solution λ exists.

F

S(q)

λ
3
=0

r(δ,q,q)
 =λ

1

ra(q,q)

rb(q)

F ∩ S(q)

λ
2

C(λ
2
,q)

C(λ
3
,q)

Fig. 7 Geometric interpretation of (114) of the case of GA(q, q̇) < 0 and GB(q) < 0, where
(114) has three solutions: λ1, λ2 and λ3.

correspond to sticking, slipping, and detachment, respectively. These observations
are consistent with those of [24].

One important feature of the analysis in this section, based on the presented
relaxation scheme, is that it includes both slipping and sticking by dealing with
the effect of ṗt as a directional infinity. This allows geometric consideration on the
problem as illustrated in Fig. 6 and Fig. 7, and both the interior and the boundary
of the friction cone F can be taken into account. This point is in contrast to the
analysis of [24,49], which focuses the slipping state, in which the force λ is assumed
to stay on the boundary of the friction cone F .

6 Conclusions

This article has proposed a new representation of mechanical systems involving
frictional unilateral constraints. The representation is of the form of a differential
algebraic inclusion (DAI), and it includes the conventional DAE representation
employing Lagrange multipliers as its special case. The new representation is based
on a normal cone with a singular norm metric, which is a limit of a family of normal
cones with parameterized non-Euclidean norm metrics.
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The paper has also presented a relaxed version of the aforementioned DAI rep-
resentation. The relaxed approximation is also a DAI, but it can be algebraically
equivalent to an ODE if a particular algebraic problem has a unique solution. It
can be viewed as a generalization of the Baumgarte stabilization method, which
is originally for equality constraints. A main benefit of the presented representa-
tion is that it can be subject to various analysis in the continuous-time domain.
From the presented representation, one can derive some mathematical expressions
that are similar to those in previous studies on time-stepping and event-driven
schemes. That is, previous mathematical expressions in the discrete time or at dif-
ferent kinematic levels can now be interpreted in the continuous time in a unified
framework.

The whole discussion of the paper has been based on the assumption that
the Delassus operator A(q) and the mass matrix M(q) are non-singular. It has
been known that singular Delassus operators [23] can be caused by redundant
constraints and that singular mass matrices [17,23] can be resulted from redundant
coordinates. Further analysis will be needed to extend the scheme to be able to deal
with such systems. Another open problem is to relate the presented representations
to impact laws. In addition, extensions to more sophisticated models, such as those
including rotational frictional contacts and area contacts with pressure distribution
[36], may need to be considered in future studies.
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anism sliding motion. Nonlinear Dynamics 67(2), 1647–1668 (2012)

44. Payr, M., Glocker, C.: Oblique frictional impact of a bar: Analysis and comparison of
different impact laws. Nonlinear Dynamics 41(4), 361–383 (2005)

45. Pfeiffer, F.: Unilateral problems of dynamics. Archives of Applied Mechanics 69(8), 503–
527 (1999)

46. Schindler, T., Acary, V.: Timestepping schemes for nonsmooth dynamics based on dis-
continuous Galerkin methods: Definition and outlook. Mathematics and Computers in
Simulation 95, 180–199 (2013)
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