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Abstract This paper presents a time integration method
for realtime simulation of extremely deformable objects
subject to geometrically nonlinear hyperelasticity. In
the presented method, the equation of motion of the
system is discretized by the backward Euler method,
and linearly approximated through the first-order Tay-
lor expansion. The approximate linear equation is solved
with Quasi-Minimal Residual method (QMR), which is
an iterative linear equation solver for non-symmetric
or indefinite matrices. The solution is then corrected
considering the nonlinear term that is omitted at the
Taylor expansion. The method does not demand the
constitutive law to guarantee the positive definiteness
of the stiffness matrix. Experimental results show that
the presented method realizes stable behavior of the
simulated model under such deformation that the tetra-
hedral elements are almost flattened. It is also shown
that QMR outperforms Biconjugate Gradient Stabi-
lized method (BiCGStab) in this application.

Keywords QMR · finite elements · interactive
simulation · hyperelasticity

1 Introduction

Realtime simulation of deformable soft objects is an im-
portant issue for interactive applications such as com-
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puter games, virtual reality-based surgery training, and
interactive 3D model editing. In realtime simulation,
the input from the user is obtained from input devices
(e.g., mouse devices, keyboards, or haptic devices), the
behavior of objects are simulated every timestep of a
predetermined length (typically about 0.001 to 0.03 s),
and the result is displayed through output devices (e.g.,
an LCD monitor and haptic devices), as exemplified in
Fig. 1. Computational techniques for realtime simula-
tion should assure the visual plausibility rather than
quantitative accuracy or physical faithfulness. Such re-
quirements are different from those for conventional ap-
plications of simulation software such as those for offline
numerical analysis.

For the simulation of a continuum body represented
by many vertices, the algorithm should typically consist
of two stages per timestep. The first stage is for com-
puting a constitutive law to provide the vertex forces
according to the vertex positions. The second stage is
the time integration, with which the vertex positions
are updated according to the computed forces. Implicit
integration schemes are often preferred because it re-
alizes rather stable behavior of the simulated system.
In such a scheme, a huge system of simultaneous equa-
tions must be solved at every timestep and, if the solver
is of the iterative type, the computation must converge
within the predetermined timestep size. In many studies
in the field of computer graphics and interactive simula-
tion, the equation is approximated by a linear equation
of the form Ax = b, where A is a square matrix and x
and b are vectors. The equation is usually numerically
solved by the Conjugate Gradient Method (CGM) [1,
23,28] because the method is known to be fast.

One concern in the use of CGM is that, if the ma-
trix A is not a symmetric and positive definite matrix,
it may result in the breakdown of the computation. The
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positive definiteness of the matrix A can be violated es-
pecially when elements excessively deform. Moreover,
in such cases, the validity of the linear approximation
becomes questionable. In fact, in such an extreme defor-
mation, the simulated object can be easily destabilized
and the computation may diverge even with implicit in-
tegration schemes. Thus, possible options should be (i)
to choose a computationally expensive constitutive law
that maintains the positive definiteness of the matrix
A and (ii) to choose a computationally expensive time
integrator that allows the indefiniteness (non-positive-
definiteness) of A and the nonlinearity of the simulta-
neous equation. Most of previous studies dealing with
extreme deformation [17,22,39,42] explore the former
approach with elaborately designed constitutive laws.
As far as the author is aware, there have been no stud-
ies exploring the latter one.

The contribution of this paper is to provide an ex-
ample of the latter approach to deal with extreme de-
formations. The presented technique employs the Saint
Venant-Kirchhoff (StVK) constitutive law combined with
a volumetric penalty [10,19,33], the Quasi-Minimum
Residual method (QMR) [13,14] and a simple opera-
tion that corrects the error caused by the linear ap-
proximation. The StVK constitutive law is perhaps the
simplest hyperelastic material law and its efficient com-
putational method has already been presented [19]. The
QMR is one of existing iterative solvers for linear equa-
tions with non-symmetric or indefinite matrices, which
demands roughly twice the computational load of CGM.
The presented technique realizes stable behavior of the
simulated model under extreme deformation whereby
the tetrahedral elements are flattened and stretched, as
shown in Fig. 2.

The rest of this paper is organized as follows. Sec-
tion 2 discusses a basic framework of the realtime sim-
ulation and related work. Section 3 describes the pro-
posed method for time integration. Section 4 shows the
results of implementation experiments. Section 5 pro-
vides the concluding remarks.

2 Preliminaries

2.1 Framework

Let us consider an elastic object represented by n ver-
tices. Let p ∈ R3n and v ∈ R3n denote the vectors
representing the positions and velocities, respectively,
of the n vertices in the three dimensional space. Then,
the equation of motion of the object can be described
as follows:

Mv̇ + Bv + F(p) = H(p, v) (1)

Fig. 1 Interactive simulation of an elastic object with haptic
devices.

t = 0.33 s t = 1.23 s

t = 2.13 s t = 2.83 s

Fig. 2 Results provided by the proposed method. The sim-
ulated elastic object is elastically connected to the anchor
points indicated by the green spheres. It is crushed with a
cylindrical object from t = 1.23 s to t = 1.9 s. After the
cylindrical object is removed, the elastic object resumes its
original shape.

ṗ = v. (2)

Here, F : R3n → R3n is the constitutive law and H :
R3n × R3n → R3n is the external force as a function of
p and v. The matrices M ∈ R3n×3n and B ∈ R3n×3n

are inertia and viscous matrices, respectively, which are
symmetric and positive definite. Here, the mass matrix
M can often be a diagonal matrix based on the so-
called mass lumping technique.

For the convenience of further derivations, let us
define the following functions:

K(p) ∆=
∂F(p)

∂p
∈ R3n×3n (3)

KH(p, v) ∆=
∂H(p, v)

∂p
∈ R3n×3n (4)
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BH(p, v) ∆=
∂H(p, v)

∂v
∈ R3n×3n. (5)

Based on the classical Rayleigh damping hypothesis, it
is here assumed that the viscosity matrix B satisfies
the following relation:

B = αM + βK(p) (6)

where α and β are positive constants.
By using the backward Euler discretization, discrete-

time approximations of (1) and (2) can be obtained as
follows:

M
vk+1 − vk

T
+ (αM + βK(pk+1))vk+1 + F(pk+1)

= H(pk+1, vk+1) (7)

pk+1 = pk + Tvk+1 (8)

where T is the timestep size. This is the set of simulta-
neous equations with respect to pk+1 and vk+1, and by
eliminating pk+1 from (7) and (8), one can easily obtain
an equation with an unknown vector vk+1. In order to
deal with vk+1 in the arguments of the functions F , K,
and H, let us consider the Taylor expansions of those
functions as follows:

F(pk + Tvk+1) ≈ fk + TKkvk+1 (9)

K(pk + Tvk+1)vk+1 ≈ Kkvk+1 (10)

H(pk + Tvk+1, vk+1) ≈
hk + TKH,kvk+1 + BH,k(vk+1 − ϕk) (11)

where

fk
∆= F(pk) ∈ R3n (12)

Kk
∆= K(pk) ∈ R3n×3n (13)

hk
∆= H(pk, ϕk) ∈ R3n (14)

KH,k
∆= KH(pk, ϕk) ∈ R3n×3n (15)

BH,k
∆= BH(pk, ϕk) ∈ R3n×3n. (16)

Here, ϕk ∈ R3n is an appropriate velocity vector that
is used as the center of the Taylor expansion. In most
cases, ϕk can be the zero vector, though the optimal
choice of the vector ϕk is an open problem.

With the quantities defined in (12) to (16), (7) can
be rewritten in the following form:

Akvk+1 = bk (17)

where

Ak
∆= Kk +

(1/T + α)M − TKH,k − BH,k

T + β

∈ R3n×3n (18)

bk
∆=

hk − BH,kϕk − fk + (M/T )vk

T + β
∈ R3n (19)

The vector vk+1 can be obtained by solving the lin-
ear equation (17). After that, the position pk+1 can be

simply obtained by using (8). That is, the algorithm to
update p and v can be obtained as follows:

Algorithm algU(pk,vk)

fk ← F(pk)

Kk ← K(pk)

hk ← H(pk, ϕk)

KH,k ← KH(pk,ϕk)

BH,k ← BH(pk, ϕk)

Ak ← Kk +
(1/T + α)M − TKH,k − BH,k

T + β

bk ← hk − BH,kϕk − fk + (M/T )vk

T + β

vk+1 ← slv(Ak, bk,vk)

pk+1 ← pk + Tvk+1

Return {pk+1, vk+1}.
Here, slv(Ak, bk, vk) stands for the action of solving
the equation Akv = bk with respect to v by using an
iterative solver with the initial value of v being vk.

2.2 Related Work

There are many works that do not fall within the frame-
work of the algorithm algU. Some works employ mas-
sive precomputation of the inverse of the stiffness ma-
trix [15,25], the inverse of the matrix correspondent
to Ak [36], and the deformation modes of the sim-
ulated object [3]. This paper will not consider such
methods any further because they are not intended
for realizing extreme deformation. Explicit integration
methods have also been used [33], but this paper will
not consider them either because they require a short
timestep size for ensuring the stability. The projective
dynamics approach [6,20,44], which is a recently devel-
oped approach, does not explicitly compute F or K but
solves the problem (7)(8) (usually without the damping
terms) by converting it into an optimization problem.
This approach employs an auxiliary position vector that
represents the perfect constraint, and thus, the consti-
tutive law (more specifically, the elastic potential en-
ergy function) must be carefully designed. The present
paper leaves this approach outside its scope by focusing
on the use of conventional constitutive laws.

Some researchers employ algorithms similar to the
algorithm algU, of which variations exist mainly in the
constitutive law F and its Jacobian K. The spring net-
work (or mass-spring) models [1,11,20,26] and geomet-
rically nonlinear finite element (FE) models [10,19] are
two of the major classes of the constitutive laws. The
spring-network models are usually faster and simpler in
computation while FE models have better consistency
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with the continuum mechanics. It has been recognized
that, under large deformation, the stiffness matrix Kk,
and its resultant Ak, can become nearly ill-conditioned
or indefinite. Such a situation is not desirable because
it prevents the use of CGM, which is fast but requires
the positive definiteness, for solving the linear equation,
i.e., the action of slv in algU. One simple remedy to
this problem is to increase the inertia and the mass-
proportional damping coefficient α. The efficacy, how-
ever, is limited especially under extreme deformation,
and it can result in slow and damped response of the
simulated object.

To deal with the possibility of the indefinite Ak, it
is reasonable to carefully design the constitutive law to
maintain the positive definiteness of the stiffness matrix
Kk. A major approach to realize this is the corotational
schemes, in which every element is regarded as a rota-
tion of a particular deformation. The rotation is derived
from the displacement gradient tensor, which is decom-
posed into a rotational component and another com-
ponent by using, e.g., the polar decomposition [23,30],
QR decomposition [27], and the singular value decom-
position (SVD) [17,41]. The SVD is perhaps the most
generic tool to find the rotations although it is compu-
tationally expensive. Recent improvements of corota-
tional methods include those with potential energy [8],
stiffness matrices considering the rotation gradients [2,
4,22], and an example-based scheme [39].

Complications are raised at element inversions, at
which there is no unique way to extract a pure rota-
tion from the 3× 3 deformation gradient tensor. When
the element is inverted, one of the three singular values
of the deformation gradient tensor should be set neg-
ative, and its choice is not unique. In the pioneering
work of Irving et al. [16,17], the singular value with the
smallest magnitude is set negative and, for the com-
putation of the vertex forces, the singular values are
clipped above a small positive value. This strategy has
been extended into “invertible” versions of existing con-
stitutive laws such as an “invertible StVK” material
law [38]. Schmedding and Teschner [37] questioned the
use of the smallest-magnitude singular value through a
careful observation of the force field generated by in-
verted elements, and proposed another strategy that
minimizes the recovering motion of the tetrahedral ele-
ment. Chao et al. [8] used the nearest rotation of the dis-
placement gradient tensor defined in [24]. Civit-Flores
and Suśın [9] provided an improved method consider-
ing the vertex positions before and after the inversion.
Stomakhin et al. [41] especially focused unnatural and
unstable element inversions raised by extreme elonga-
tion of elements, and provided a new constitutive law
depending on the singular values. Their constitutive

laws are given as a form of a potential energy func-
tion, and its analytical derivatives, which are required
for implementation, are composed of many terms.

If the indefiniteness of the matrix Kk is permitted,
some simple constitutive laws without explicit consid-
eration on element rotations are valid even at element
inversions. The StVK material law [19,33] and spring-
network model [1,11,20,21,26] are two of such consti-
tutive laws, of which the potential energies are finite
and smooth at any configurations, while Neo Hookean
and Mooney Rivlin material laws have the potential en-
ergies that go to infinity as the material is compressed.
One drawback of StVK and spring-network models is
the fictitious equilibrium at the mirrored, inverted con-
figuration, but it can be easily avoided by adding a
volumetric penalty [19,21].

The indefinite Ak, which can be caused by the in-
definite Kk, should be treated with linear equation
solvers that are more computationally expensive than
CGM. In the field of computer graphics and interac-
tive simulation, such solvers are rarely used; the few
examples include BiCGStab (Biconjugate gradient sta-
bilized method) [43] for smoke animation [7], GMRES
(Generalized minimal residual method) [35] for electri-
cal discharge [5], and QMR for elastic objects [31]. As
for the treatment of the nonlinearity, some researchers
employ Newton-Raphson method to solve the nonlinear
equation caused by the nonlinear constitutive laws [32,
45], but it is used at the precomputed stage, not in the
realtime computation. As far as the author is aware,
there have been no studies that consider the original
nonlinear equation (7) in the realtime computation.

3 Proposed Method

This section presents an improvement of the algorithm
algU for preventing unnatural behaviors of the sim-
ulated object. In the new algorithm, the approximate
linear equation (17) is solved with QMR, which allows
indefinite matrices, and then the obtained solution vk+1

is corrected by considering the error caused by the lin-
ear approximation. The central idea is to approximately
solve the nonlinear equation (7) in such a way that large
values could not be erroneously included in the solution
vk+1.

3.1 Choice of Linear Equation Solver

There have been many iterative solvers proposed for
linear equations involving indefinite matrices [34]. Bi-
conjugate Gradient method (BiCG) [12] and Conjugate
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Gradient Squared method (CGS) [40] can be consid-
ered as representative classical methods. One of their
major drawbacks is their irregular convergent behav-
ior; their plots of the residual norm versus the itera-
tion count have many peaks during the convergence.
BiCGStab [43] and QMR [14], which were proposed in
the 1990s, are known to exhibit rather smooth conver-
gence behaviors. It can be said that such a property is
suited for realtime simulation because, in realtime simu-
lation, the iterative computation is usually terminated
within the limited timestep size, irrespective of con-
vergence. In particular, QMR incorporates procedure
to quasi-minimize the residual at every iteration while
BiCGStab is mainly intended to stabilize the conver-
gence. For this reason, this paper employs QMR and ex-
perimentally compares it with BiCGStab in Section 4.

3.2 Nonlinearity Correction

As will be shown in Section 4, the use of QMR is ef-
fective in preventing explosive behaviors of the simu-
lated object. It is, however, not enough to prevent some
unnatural behaviors, which are impulsively protruding
motion of vertices that occur when the object is ex-
tremely deformed. Such erroneous behaviors are pre-
sumably caused by the inaccuracy of the linear approx-
imation (9) of the highly nonlinear function F(·). One
can infer that, during such behaviors, some entries of
the solution vk+1 of the linear equation (17) are be-
ing excessively larger than the correct solution of the
nonlinear equation (7).

Here we consider incorporating the error caused by
the approximation (9), which is Rk(vk+1) where

Rk(v) ∆= F(pk + Tv) − fk − TKkv. (20)

Eliminating F(pk + Tvk+1) from (7) and (20) eventu-
ally yields

Akvk+1 + Ek(vk+1) = bk (21)

where

Ek(v) ∆=
Rk(v)
T + β

=
F(pk + Tv) − fk − TKkv

T + β
. (22)

It would be possible to solve the nonlinear equation (21)
with respect to vk+1 by using Newton-Raphson, quasi-
Newton or steepest-descent methods [29, Chap.3]. It is
however computationally expensive because the non-
linear equation must be solved with some iterations at
every timestep, and, at each iteration, a 3n-dimensional
linear equation must be solved.

Instead of the problem (21), we consider setting a
simplified problem. In the upcoming derivation, {X}i

denotes the ith entry of the vector X ∈ R3n and [X]i

denotes the ith 3-dimensional subvector of X ∈ R3n

or the ith 3 × 3 diagonal block of X ∈ R3n×3n. Recall
that an estimate A−1

k bk of the solution vk+1 can be
obtained through a linear equation solver, and that the
aim here is only to prevent large entries being included
in the left-hand side of (21), not to accurately solve (21).
Thus, we here consider obtaining vk+1 that satisfies∥∥∥[Akvk+1 + Ek(vk+1)]j

∥∥∥ ≤
√

∥[bk]j∥2 + Z2
k,j ,

∀j ∈ {1, · · · , n} (23)

vk+1 = ΛkA−1
k bk (24)

where Zk,j > 0 (j ∈ {1, · · · , n}) are appropriately cho-
sen small positive scalars,

Λk = blockdiag [λk,1I3, · · · , λk,nI3] ∈ R3n×3n (25)

and λk,j (j ∈ {1, · · · , n}) are positive scalars smaller
than 1. That is, we consider obtaining vk+1 through
a subvector-wise scaling of A−1

k bk so as to satisfy the
condition (23).

Note that the condition (23) is a relaxation of the
original condition (21), and if Ek(vk+1) is small enough,
the relaxed problem provides the result vk+1 ≈ A−1

k bk.
The positive scalars Zk,j in (23) have the same physi-
cal dimensions as that of Akvk+1, and they are used to
prevent the velocity vk+1 from being excessively small
when ∥[bk]j∥ are very small. Let V > 0 be an appropri-
ately chosen velocity value that is permitted irrespec-
tive of the satisfaction of (21). Then,

Zk,j
∆= tr ([Ak]j) V (26)

can be considered as a possible choice for Zk,j .
The relaxed problem (23)(24) still demands the com-

putation of the nonlinear function F(·) for any iterative
search of λk,i values. To avoid this, here an assumption
is introduced:

Assumption 1 With any v ∈ R3n, the matrix Ak and
the function Ek(·) satisfy the following relations:

AkΛv ≈ ΛAkv (27)

Ek(Λv) ≈ Λ2Ek(v) (28)

where

Λ = blockdiag [λ1I3, · · · , λnI3] ∈ R3n×3n (29)

with 0 < λj ≤ 1 for all j ∈ {1, · · · , n}.

The squared coefficient Λ2 in (28) can be justified by
noticing

Ek(v) ≈ T 2

2(T + β)


vT

(
∂2{F(p)}1

∂p∂p

∣∣∣∣
p=pk

)
v

...

vT

(
∂2{F(p)}3n

∂p∂p

∣∣∣∣
p=pk

)
v


, (30)
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which is derived from the fact that Rk(v) of (20) can
be seen as a second-order term of the Taylor expansion
of F(v). This assumption can be satisfied when Ak

and ∂2{F(p)}i/∂p∂p (i ∈ {1, · · · , 3n}) are sufficiently
diagonally dominant.

By using Assumption 1, one can rewrite the left-
hand side of (23) as follows:∥∥∥[Akvk+1 + Ek(vk+1)]j

∥∥∥
≈

∥∥∥[
Λkbk + Λ2

kEk(A−1
k bk)

]
j

∥∥∥
= λk,j

∥∥∥[bk]j + λk,j

[
Ek(A−1

k bk)
]
j

∥∥∥ . (31)

Thus, (23) can be approximated as follows:

λk,j

∥∥∥[bk]j + λk,j

[
Ek(A−1

k bk)
]
j

∥∥∥ ≤
√

∥[bk]j∥2 + Z2
k,j ,

∀j ∈ {1, · · · , n}. (32)

Such a value of λk,j that satisfies (32) can be obtained
by reducing λk,j from 1 until (32) is satisfied. In con-
clusions, vk+1 satisfying (23)(24) under Assumption 1
can be obtained by the following algorithm:

Algorithm algUNC(pk, vk)

{pk+1, vk+1} ← algU(pk,vk)

{fk, Kk,Ak, bk} ← ⟨Variables used in

algU(pk,vk)⟩

ek+1 ←
F(pk+1) − fk − TKkvk+1

T + β

for j ∈ {1, · · · , n}
λk,j ← 1

Xk,j ← ∥[bk]j∥2 + tr ([Ak]j)
2
V 2

while λ2
k,j ∥[bk]j + λk,j [ek+1]j∥2

> Xk,j

λk,j ← 0.9λk,j

end while

[pk+1]j ← [pk+1]j − (1 − λk,j)T [vk+1]j
[vk+1]j ← λk,j [vk+1]j

end for

Return {pk+1, vk+1}.

It should be noted that the algorithm algUNC re-
quires the computation of the function F(·) twice in
one timestep. Usually, the computation of the constitu-
tive laws F(·) of nonlinear FE models is more expensive
than that of linear FE models [33]. However, the algo-
rithm for F(·) of the StVK FE model presented by the
author and his colleagues [19] demands 70 % smaller
amount of computation than a conventional algorithm
for the StVK model, and it can be even faster than the
linear FE method. Thus, one can say that the algorithm
of F(·) in [19] is well suited for the use in the algorithm
algUNC.

It should be cautioned that the algorithm algUNC
is based on the relaxation (23) of (21) and the Assump-
tion 1. Leaving theoretical validations of such a relax-
ation and an assumption for future work, this paper
focuses on experimental validation of the presented al-
gorithm. Section 4.2 will report some numerical results
for the validation of Assumption 1.

4 Evaluation

4.1 Implementation

The presented algorithm was validated using an exper-
imental simulation environment consisting of a desktop
PC (Intel Core i7-X980, hexa-core, 3.33 GHz) and two
Novint Falcon haptic devices. The simulation software
was developed with Microsoft Visual C++ 2010. Major
parts of the program were parallelized into five threads
by using OpenMP.

The experiment mainly employed an elastic object
model consisting of a tetrahedral mesh of Stanford Ar-
madillo (n = 975 vertices, 2968 tetrahedra, approxi-
mately 150 mm high). The algorithms for F and K
were those presented in [19], which are based on the
StVK constitutive law. Young’s modulus and Poisson’s
ratio were set as E = 1.0 MPa and ν = 0.49, respec-
tively. In order to prevent fictitious inverted equilibrium
caused by the StVK constitutive law, additional volu-
metric penalty forces [19, Section 4] were also applied to
the vertices. These forces were derived from the strain
energy density function ψvol(θ) = 0.1Eθ2/(6(1 − 2ν)),
where θ is the bulk strain. The mass matrix M was
designed to approximate the distributed mass of den-
sity ρ = 10−6 kg/mm3. The damping parameters were
chosen as α = 0.001 s−1 and β = 0.001 s. Timestep size
was chosen as T = 0.03 s. The gravity of 9800 mm/s2

was applied to all vertices.
In the simulation, the object made contact with

rigid horizontal surfaces, which are the fixed “floor” and
the mobile “plate” moved along a predefined trajectory.
The contact forces between the elastic object and the
rigid surfaces were modeled by spring-damper forces
acting to vertices. For simplicity, the friction force was
modeled as a viscous force of which the viscous 1coeffi-
cient is proportional to the normal displacement. That
is, the external force acting to a vertex was defined as
follows:

Hv

([
pN

pT

]
,

[
ṗN

ṗT

])

=


[

KNpN + CN (ṗN − VN )
CT pN (ṗT − V T )

]
if pN > 0

o3 otherwise
(33)
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t = 0.70 s

t = 4.19 s

t = 1.46 s

t = 5.03 s

t = 2.36 s

t = 6.06 s

t = 3.03 s

t = 6.90 s

Fig. 3 Experiment A: Results with QMR+NC, V = 100 mm/s.

(b)

t = 4.23 s

t = 4.93 s t = 5.26 s

t = 4.76 s

(a)

t = 4.23 s

t = 4.36 s t = 4.43 s

t = 4.30 s

Fig. 4 Experiment A: (a) Explosive behavior of BiCGStab. (b) Erroneous impulsive behaviors of QMR. The blue faces are
the inner sides of the faces of tetrahedral elements.

where pN ∈ R and pT ∈ R2 are normal and tangen-
tial components of a vertex position, respectively. For
notational simplicity, in (33), the origin of position vec-
tor is set on the surface, and pN is positive into the
surface. The quantities VN and V T are normal and
tangential components, respectively, of the surface’s ve-
locity, which is zero as for the floor. The parameters
were set as KN = 1000 N/mm, CN = 10 N·s/mm, and
CT = 10 N·s/mm2. The Jacobian matrices KH and BH

were defined accordingly. The velocity vector ϕk in (9),
which is the center of the Taylor expansion, was chosen
based on VN and V T .

Due to the parallelization of the computation, the
simulation results were not exactly reproducible even
when the number of iteration per timestep was fixed.
This can be attributed to the non-associativity of floating-
point additions [18] and to its effect magnified by the
discontinuous mapping resulted from contact/non-contact
transitions. In addition, fixing the number of iterations
per timestep is not practically convenient because the
possible number of iterations should be calibrated in ad-
vance and it varies by many factors such as the complex-
ity of the mesh, contact conditions, and the background
processes of the operating system. Thus, accepting a

certain level of stochasticity of the results, an adaptive
routine was employed to determine the number of iter-
ations at every timestep so that as many iterations as
possible are performed within the timestep size T .

4.2 Experiment A: Crush and Shear with Different
Solvers

In the first set of experiments, the object (Stanford
Armadillo) was initially placed in a posture shown in
the left-top panel of Fig. 3. Some anchor points were
fixed on the floor, as indicated by the green points in
the figure, and they were connected to vertices of the
model via virtual springs with the spring coefficients of
1000 N/mm and the damping coefficients of 10 N·s/mm.
The mobile plate, which appears as a transparent ob-
ject in Fig. 3, was moved along the predefined trajectory
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time (s)

QMR+NC

j ½¡f1,¢¢¢,ng
max k[vk+1]jk (mm/s)

QMR
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2000

3000

0

1000
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3000

0

1000
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3000

0 1 2 3 4 5 6 7
0

1000
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3000

Fig. 5 Experiment A: The maximum vertex velocity ob-
tained with the four schemes with which the simulation con-
tinued. The value 1500 mm/s, indicated by the horizontal
dotted lines, is the threshold value used in Experiment B.

described by the following function of time:

ppl(t) =



 0
20 + 300(1 − t)

0

 if t ∈ [0 s, 1 s]

 100 sin(2π(t − 1)/1.3)
max(0, 20 − 100 sin(2π(t − 1)))

−100 sin(2π(t − 1)/0.7)


if t ∈ [1 s, 6 s] 100 sin(2π · 5/1.3)

20 + 300(t − 6)
−100 sin(2π · 5/0.7)

 if t ∈ [6 s, 8 s].

(34)

That is, the plate was moved downward (i.e., in the
negative y direction), moved in a Lissajous-like trajec-
tory, and then moved upward. When the second entry
of ppl is zero, the plate was in touch with the floor.

The following six schemes were compared in the ex-
periments:

– CGM: algU with slv being CGM.
– CGM+NC: algUNC with slv being CGM.
– BiCGStab: algU with slv being BiCGStab.
– BiCGStab+NC: algUNC with slv being BiCGStab.
– QMR : algU with slv being QMR.
– QMR+NC : algUNC with slv being QMR.

time (s)

QMR+NC

kb
k
¡A

k
v
k+1
k (N)

QMR

CGM+NC

BiCGStab+NC

0

100

200

300

400

1 2 3 4 50 6 7
time (s)

1 2 3 4 50 6 7

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

10¡5

1

105

number of iterations per timestep

10¡5

1

105

10¡5

1

105

10¡5

1

105

Fig. 6 Experiment A: The number of iterations and the
residual error of the iterative solver slv within the timestep
size T = 0.03 s at each timestep.

min  ̧ k,j
j2f1,¢¢¢,ng

 t (s)
0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

e1,k e2,k

Fig. 7 The criteria e1,k and e2,k and the minimum of λk,j

at every timestep during the same scenario as Experiment A
with QMR+NC, V = 100 mm/s.

Here, NC stands for the nonlinearity correction. In the
algorithm algUNC, the V -value was chosen as 100 mm/s
through some preliminary experiments.

The whole process of the simulation with QMR+NC
is shown in Fig. 3. As can been seen here, the object
is flattened and sheared by the friction force from the
plate and the floor. It is shown that the simulation con-
tinues even when there is an extreme deformation. Af-
ter the plate is removed, the object resumes its original
shape.

In the cases of CGM and BiCGStab (without NC),
the object showed explosive behaviors, as seen in Fig. 4(a),
and the simulation did not continue. With the use of
CGM+NC, BiCGStab+NC and QMR (without NC),
the simulation did continue without explosions, but some
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instantaneous impulsive behaviors were observed as seen
in Fig. 4(b).

To evaluate the frequency of the erroneous impul-
sive behaviors, the maximum vertex velocity at each
timestep was recorded. Fig. 5 shows the temporal pro-
files of the maximum vertex velocity in the mesh ob-
tained from the four schemes, CGM+NC, BiCGStab+NC,
QMR, and QMR+NC, with which the simulation con-
tinued without explosions. It is shown that, with any
methods other than QMR+NC, there are some impul-
sive, high values in the maximum vertex speed. These
results show that QMR is suited for this purpose and
that NC is effective to enhance the stability.

Fig. 6 shows the number of iterations and the resid-
ual error achieved with each method. This figure shows
that, although the numbers of iterations are smaller
with QMR than with CG1, the residual error of QMR
is overall comparable with that of CG, and that its peak
values are smaller than that of CG. In addition, from
the comparison between QMR+NC and QMR, one can
see that the nonlinearity correction contributes the re-
duction of peak values in the residual error but does not
cost as much computational time as to result in much
reduction of the number of iterations.

Numerical validation of Assumption 1 was also per-
formed. A session of simulation was performed with
QMR+NC and V = 100 mm/s in the same scenario
as Fig. 3. In this session, the following criteria were
computed at every timestep k:

e1,k =
∥AkΛkvk+1 − ΛkAkvk+1∥

∥ΛkAkvk+1∥
(35)

e2,k =
∥Ek(Λkvk+1) − Λ2

kEk(vk+1)∥
∥Λ2

kEk(vk+1)∥
, (36)

which are for evaluating the accuracy of the approxima-
tions (27) and (28), respectively. The results are shown
in Fig. 72. This shows that, although e1,k and e2,k took
the values around 0.5 at some peaks, they are mostly
much smaller than 1 even when Λk has small compo-
nents. These results imply that the approximations (27)
and (28) are mostly valid.

The “rotational linear” method suggested by [17]
combined with CGM was also tested in the same sce-
nario. As can be seen in Fig. 8, it resulted in some un-
natural behaviors especially when it is stretched, and
it took a longer time (about t = 13 s) to eventually

1 This result is as expected because QMR performs two
matrix-vector multiplications per iteration while CG per-
forms only one.

2 The criteria e1,k and e2,k were not computed in the ex-
periments of Fig. 3, but was performed in another session
because the computation of e1,k and e2,k resulted in non-
negligible computational time. This computation resulted in
roughly 10 % reduction in the number of QMR iterations.

t = 1.46 s

t = 5.03 s t = 6.90 s

t = 3.03 s

Fig. 8 Results of the “rotational linear” method in [17] com-
bined with CGM. The blue faces are the inner sides of the
faces of tetrahedral elements.

(a) (b) (c) (d)

number of occurences of    max  k[vk+1]jk > 1500 mm/s
j ½¡f1,¢¢¢,ng

0.8 4 20 100 500 2500 12500
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(b) bunny (n  = 1113)

(c) dinosaur (n  = 856)

(d) wolf (n  = 796)

0

2

4
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8

10

Fig. 9 Experiment B: The number of occurrence of
maxj ∥[vk+1]j∥ > 1500 mm/s with QMR+NC with differ-
ent V -values, during the same scenario as Experiment A.

recover the original shape. The artifact of the corota-
tional methods at the time of stretch has been pointed
out by Stomakhin et al. [41], and such artifacts may
be remedied by more sophisticated methods, e.g., [9,
37,41]. This paper however does not consider such ap-
proaches any further because the focus of this paper is
on the time integration scheme that can be combined
with simple hyperelastic constitutive laws.

4.3 Experiment B: Crush and Shear with Different
V -Values

The effect of the V -value used in QMR+NC was eval-
uated by another set of experiments. The same pro-
cedure as Experiment A was followed with QMR+NC
with six different V -values ranging from 0.8 mm/s to
12500 mm/s. Considering that the results are stochas-
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(a) V = 0.8 mm/s (b) V = 100 mm/s

t = 0.06 s 0.30 s 2.01 s t = 0.06 s 0.30 s 2.01 s

Fig. 10 Experiment C: QMR+NC with V = 0.8 mm/s and
V = 100 mm/s.

0.8 4 20 100 500 2500
 V (mm/s)

(a) armadillo (n  = 975)

(b) bunny (n  = 1113)

(c) dinosaur (n  = 856)

(d) wolf (n  = 796)

time t
50

 (s)

0
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0.4

0.6

0.8

1

Fig. 11 Experiment C: Results with QMR+NC with differ-
ent V -values and different meshes. The value t50 is the time
required for the bottom most vertex of the object reaching
50 mm above its initial height.

tic, ten trials with each V -value were performed. It was
performed with four different meshes indicated in the
top of Fig. 9.

The program recorded the number of timesteps at
which the maximum vertex speed is above 1500 mm/s
during each trial. The averages and standard deviations
are shown in the graph in Fig. 9. This shows that the
probability of the high vertex velocity increases as V
increases, and that V should be set appropriately low,
being no higher than 100 mm/s.

4.4 Experiment C: Artifact of Excessively Low
V -Values

Another set of experiments were performed to show a
negative effect of excessively low V -values. The scenario
of the experiments is shown in Fig. 10. Here, the object
was initially hanged at an anchor point, which was con-
nected to a vertex on the top part of the object through
a virtual spring. At t = 0 s, the anchor point started
to move up at a constant speed of 1000 mm/s, and at
t = 0.3 s, it stopped. The procedure was also performed
with four meshes indicated in the top of Fig. 9.

As seen in Fig. 10(a), when V is low (e.g., V =
0.8 mm/s), the bottom part remains stopped for a while
after the beginning of the pulling-up, and it results in
the stretching of the object. When V is high enough
(e.g., V = 100 mm/s), such an artifact does not ap-
pear, and the object moves with its original shape be-
ing maintained, as seen in Fig. 10(b). The intensity of
such an effect was evaluated with the time t50 required
for the bottom most part of the object reaching 50 mm
above the initial position. Fig. 11 shows the time t50
with different V values with the four meshes. These re-
sults suggest that V should be no lower than 100 mm/s
to prevent the insensitivity to external forces.

Considering the results of Experiments II and III, it
can be concluded that V should be low enough not to
cause erroneous impulsive behaviors, and high enough
not to cause the insensitivity to external forces. It has
also be shown that there exist appropriate values in
between, i.e., V = 100 mm/s in this case.

5 Conclusions

This paper has proposed a method for time integra-
tion of realtime simulation involving extreme hypere-
lastic deformation. The method is based on the linear
approximation of the backward-Euler discretization of
the equation of motion. The solution of the linear equa-
tion is corrected by an algorithm based on a rough ap-
proximation of the nonlinearity. The method has been
validated through experiments. It has also been shown
that, for solving the approximated linear equation, QMR
is better than BiCGStab and CGM. The experiments
have also investigated the effect of V , which is a param-
eter used in the algorithm of the nonlinearity correction.

Remaining problem is theoretical validation of the
method. Optimal choice of the parameter V should also
be clarified in the future study.
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4. Barbič, J., Zhao, Y.: Real-time large-deformation sub-
structuring. ACM Transactions on Graphics (2011)

5. Bickel, B., Wicke, M., Gross, M.: Adaptive simulation of
electrical discharges. In: Proceedings of Vision, Modeling,
and Visualization 2006, pp. 209–216 (2006)

6. Bouaziz, S., Martin, S., Li, T., Kavan, L., Pauly, M.: Pro-
jective dynamics: Fusing constraint projections for fast
simulation. ACM Transactions on Graphics 33(4), 154:1–
154:11 (2014)

7. Brochu, T., Keeler, T., Bridson, R.: Linear-time smoke
animation with vortex sheet meshes. In: Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 87–95 (2012)

8. Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple
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