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Abstract

In contrast with the growth of plants and trees, human organs can undergo signi�cant changes in shape
through a variety of global transformations during the growth period, such as bending or twisting.
In our approach, the topology of a human organ is represented by a skeleton in the form of a tree
or cycled graph. The length of skeleton growth can be simulated by an algebraic L-system that also
produces discrete events. The paper shows how to include global transformations into the formalism
of L-systems to obtain a continuous process. The shape of the organ is approximated by a number of
ellipsoidal clusters centred at points on the skeleton. The proposed growth model of the organ continually
responds to the positional changes of surrounding organs, thereby changing the organ shape locally. In
our study, the stomach of a human embryo is used for the demonstration of organ development, and
the methodology employed is also applicable to the animation of animal organs and their development.

1. Introduction

The development of biological organs, such as the
stomach or the intestines, takes place through a com-
plicated process. The shape and structure of such or-
gans change signi�cantly over a short period of time.
Embryologists therefore strive to visualise changes in
organs over the passage of time. The visualisation of
organ development is also important for education and
training in medical school, as students must obtain
knowledge related to the development of the human
body.

Growth of biological organs is nonlinear and yet
obeys certain rules. However, the entire growth pro-
cess and mechanism have not yet been made clear,
with many unknown factors remaining. Fortunately,
the principal processes governing the development of
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human organs and geometric structures at several
stages have been investigated1 . The best way to vi-
sualise such development while making the most of
achievements in the �eld of embryology is not key-
frame animation; rather it is rule-based animation,
such as in botanical growth models.

Several attempts have been made using computer
graphics to visualise biological growth. Methods for
modelling botanical trees were developed to generate
natural tree images2; 3. These methods directly model
the growth process using statistical data, such as the
angle between trunk and branch. An L-system formal-
ism was proposed by Lindenmayer4 , and the method
has been used as a general framework for plant mod-
elling. An L-system with several extensions was exten-
sively described by Prusinkiewicz and Lindenmayer5 ,
and the extensions allow for such factors as context-
sensitivity, random variations, and branch cutting.
An expansion of the L-system to handle the interac-
tion between plants and their environment has also
been developed6; 7. A recently proposed method con-
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siders the plant and its environment as two sepa-
rate models with information owing between them
in both directions8 . Another interesting extension of
L-systems is a behavioural L-system capable of ani-
mation the autonomous actors by external tactile and
behavioural forces9.

The L-system is an excellent method for mod-
elling botanical growth, as demonstrated in many
publications10; 8. However, the method cannot be di-
rectly applied to human organ development. Trees or
plants monotonically increase their length and thick-
ness of branches. In contrast, the growth process of
human organs is more complicated. In the early stages
of human organ development, a number of signi�cant
changes occur, making it very di�cult to simulate or-
gan growth. Generally, organs have no tree structure
and their growth is not a monotone process. For exam-
ple, in stomach and intestine development, di�erent
combinations of rotation, bending and twisting take
place. These di�culties are unique to the modelling of
human organ growth; they are not encountered in the
modelling of tree or plant growth. Although, attempts
to bend the plant leaves and apexes have been made
in plant formation11, they do not allow the bending
transformation of the entire plant structure.

In this paper, we propose a method for modelling
human organ growth with the aim of visualising organ
development over the passage of time. Using a skeleton
structure, we represent the topology of an organ. In
addition, we expand the L-system to be able to handle
cycles, as many organs have a complex topology, which
can only be described by graphs with cycles. Besides
topology, the depiction of the growth process requires
the representation of geometry and interaction with
surrounding objects. The geometrical structure of or-
gans is modelled using ellipsoids centred at nodes es-
tablished on the skeleton. We introduce several tables
with which to store the database of statistical geome-
try of organs, such as size, growth speed, among oth-
ers. The proposed method also takes into account the
interaction between the organ and its surroundings.

In the next section, a newly developed biological
model of stomach growth is described. In Section 3,
after explaining algebraic L-systems, the system con-
tinuity and an expansion of the L-system with cycles
is proposed. Growth functions and tables in which to
store the statistical geometry of human organs are dis-
cussed in Sections 4 and 5, respectively. Interaction
with the environment surrounding the organ is de-
scribed in Section 6. To demonstrate the usefulness
of the proposed method, an animation of the stomach
of a human embryo was generated.

2. Biological model of stomach growth

The stomach appears as a fusiform dilation of the
foregut in week four of development1 . Its appearance
and position change greatly as a result of the di�erent
growth rates of the various regions of its wall, in ad-
dition to the position changes of surrounding organs.
The liver is the nearest fast-growing organ with large
volume. Positional changes are easily explained by as-
suming that the stomach rotates around a longitudinal
and an anteroposterior axis.

The stomach rotates 90 degrees clockwise around
its longitudinal axis. During this rotation, the origi-
nal posterior wall of the stomach grows faster than
the anterior portion, resulting in the formation of the
greater and lesser curvatures. During further growth,
the stomach rotates around an anteroposterior axis
such that the pyloric part moves to the right and up-
ward and the cardiac portion moves to the left and
slightly downward (see Fig. 1).

Figure 1: Schematic drawing to show stomach rota-
tion. a), b) Rotation along the longitudinal axis at 4th
and 10th week of development, respectively. c), d) Ro-
tation of the stomach around the anteroposterior axis
at 12th and 20th week of development, respectively.

2.1. Organ representation with ellipsoidal

clusters of cells

Every organ is built up from a huge number of cells,
each growing with di�erent properties, such as speed
and direction of growth. The objective is to reduce the
number of cells without compromising to any great
degree such organ properties as volume, surface area,
topology, speed of grow in speci�c areas, and the like.
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Figure 2: Process of stomach representation.

To approximate the shape of an organ while consid-
ering the speed and direction of cell growth at the
same time, we group the entire set of cells into a num-
ber of ellipsoidal bunches (clusters), as indicated in
Fig. 2. The cells included in a single cluster share sim-
ilar growth properties within a certain deviation from
the properties of the average cluster. Thus, the skele-
ton of the organ is de�ned by a chain of linear seg-
ments connecting the cluster centres. Organ growth
can then be modelled by the growth of the skeleton,
and variations in shape during the growth process can
be captured by variations in cluster size. When an
ellipsoidal cluster changed in size, it was understood
that the organ cells grew in the directions emanating
from the cluster centre. Similarly, when the skeleton
segment underwent changes in length, it was under-
stood that the cells included in two adjoined clusters
grew in directions parallel to this segment. Nutrition
ow and information exchange between cells along the
organ is simpli�ed by ow between clusters.

Figure 3: Object representation with cell clusters. Hu-
man embryo liver and stomach.

Published methods dealing with the spherical rep-
resentation of 3-D objects12 can be used to obtain

the initial skeleton and spherical clusters for the ap-
proximation of organ shape. The initial representation
should be slightly modi�ed to take into account simi-
lar growth properties within each cluster. For the sake
of clarity, in Fig. 3, we demonstrate the ellipsoidal and
spherical representation in two dimensions. For a 3-D
representation, the term \circle" should be substituted
with \sphere" and \2-D skeleton" with \3-D skeleton".
Figure 3 shows the skeleton and spherical clusters for
a human embryo liver and stomach, respectively, that
have grouped cells with similar growth speed.

2.2. Reconstruction of an ellipsoidal

representation

The ellipsoidal representation is stable, that is, pertur-
bation of several boundary points results in very simi-
lar ellipsoidal representations. On the other hand, the
disadvantage of this representation is that the ellipse
has very few degrees of freedom, only, limited types
of shapes can be accurately represented by the union
of a small number of ellipses. Nevertheless, the ellip-
soidal representation can accurately capture the aver-
age growing properties of an organ. Further, such or-
gan representation is useful for the biologically correct
animation of growth processes successfully modelled
by the theory of formal languages, as will be shown
in this paper. Every skeleton segment and ellipsoidal
cluster can be easily represented by a module using
the terminology of L-systems4, while the growth can
be controlled by module parameters.

As ellipses are used in the modelling process, the
surface generated from the union of original ellipsoidal
clusters is not smooth, a situation that unfortunately
leads to an appearance that is not smooth. One e�ec-
tive way to smooth the surface without a�ecting the
representation itself is to use scaled blended spheres13

(also known as blobbies) during the process of render-
ing the organ.

3. Continuous Algebraic L-systems

The proposed algebraic L-systems are extended to the
dL-systems8 by introducing continuous global time
control over the productions, stochastic rules for the
capture of small variations, and explicit functions of
time used to describe continuous aspects of model be-
haviour, in addition to di�erential equations.

In some cases it is convenient to describe contin-
uous behaviour of the model using explicit functions
of time rather then di�erential equations. For exam-
ple, global shape transformations varying over time
require a large and complicated system of di�erential
equations, while only few explicit functions of time are
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su�cient for description of the transformations. Con-
tinuous time ow is introduced, in place of discrete
derivation steps. A module A(w; �) of a continuous al-
gebraic L-system depends on parameters w from the
domain of values DA and local time � 2 [0;1). The
interval [�a; �b] � TA, �a � �b < 1 determines the
start and the end of module activity according to the
local time � . As long as the parameters w belong to
the interior of domain DA and � 2 TA, the module
grows (parameters w are updated) in a continuous
manner. At the moment w reaches boundary DA while
� 2 TA, a production rule is applied as in L-systems4.
The production rule replaces module A(w; �) by its
descendants in a discrete event. The local time � of
the module is continually updated even if � =2 TA. The
state of algebraic L-system at time t is represented as
a sequence of modules

� = A1;A2; : : : ;An:

The modules immediately preceding and following a
given module are called the left context and the right
context, respectively. Subscripts l; r are used to specify
the left and right contexts.

The continuous behaviour of A(w; �) in the con-
text of Al(wl; �l) < A(w; �) > Ar(wr ; �r), w =
(wE ;wD) = (w1; : : : ; ws; ws+1; : : : ; wn) is proposed to
be described by a system of explicit functions

wE = FA(wD; t) (1)

that determine the vector of parameters w =
(w1; : : : ; ws), and ordinary di�erential equations de-
termining the rate of change dwi=dt of parameters
ws+1; : : : ; wn

dwD

dt
= fA(wl;w;wr; t)

d�

dt
= 1:

We assume that DA is a simple connected and open set
(a set with no self-intersecting boundary CA nor holes).
To ensure the existence and uniqueness of the solution,
the arbitrary function fA(wl;w;wr; t) is assumed to
have a bounded �rst derivation according to w, and
arbitrary function FA is assumed to be continuous in
all parameters.

The production rule comes into e�ect when one of
the parameters w reaches a point CA0 of the boundary
CA while � 2 TA. Let us note t� as the time when the
boundary is reached. Production at time t� written

pAk
: Al(wl; �l) < A(w; �) > Ar(wr; �r)!

Bk;1(wk;1; �k;1)Bk;2(wk;2; �k;2) : : :

Bk;mk
(wk;mk

; �k;mk
) : prob

replaces module A(w; �) with descendant modules
Bk;j . The index k is used to emphasise that di�erent

productions can be associated with individual points
or areas of the boundary CAk

. mk is the number
of newly created modules associated with production
pAk

. The last term in the production noted as prob
is the probability of the production application. It is
used when two or more productions are related to
one module A with parameters satisfying the same
boundary conditions pAk

. In this case, the production
to be applied to module A is determined randomly.
An extension of the branching structures is straight-
forward using the de�nition of context as given by
Prusinkiewicz and Lindenmayer5 .

3.1. Continuity

Proposed here is the determination of the initial pa-
rameters for newly created modules. The hypothetical
path of parameter vector w in its domain DA is shown
in Fig. 4a. The application of production on context
can result in C1 discontinuity of w(t). Moreover, if the
explicit function of time FA in Eq. 1 depends on left
and right context parameters wl;wr, the production
applied on context can result in the C0 discontinuity
of w(t). Since this is undesired behaviour, the param-
eters of function FA are restricted to wD and t. The
initial value of parameters associated with newly cre-
ated module Bk;j(wk;j ; �k;j) is determined by a func-
tion hAk;j

:

wDk;j
= lim

t!t
�

�

hAk;j
(wl(t);w(t);wr(t))

wEk;j
= FA(wD; t�): (2)

The new vectorwk;j must belong to the domain DBk;j
.

As the general conditions Eqs. 2 are not su�cient for
our application, stronger conditions will be used. First,
we assume that all parameters wE ;wEk;j

have the
same domain of values E. Second, Eq. 1 is modi�ed
to guarantee continuity in time for parameter wE . Let
us observe Fig. 4b showing the hypothetical trajectory
of parameter wE along with two additional parame-
ters wEk1

;wEk2
assigned to modules Bk;1(wk;1; �k;1)

and Bk;2(wk;2; �k;2) upon their creation at time t�.
There is an obvious discontinuity between parame-
ters wE;wEk1

and wEk2
at time t�, as the applica-

tion of production determines that di�erent explicit
functions FBk1

and FBk2
are used to calculate param-

eters wEk1
;wEk2

. An S-shaped blending function is
introduced to guarantee the time continuity of time-
explicit parameters after application of the produc-
tion rule (the discrete event). The blending function
bk;j(�), monotonically increasing from 0 to 1 over the
time interval [�k;j ; T ], is applied to Eq. 1 as follows

wEk;j
= FA(wD; t�)+

bk;j(�)(FBk;j
(wDk;j

; t�)� FA(wD; t�)); (3)
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where � and �k;j denote the local time and initial lo-
cal time of newly created module Bk;j, respectively.
Explicate function FA is a function from Eq. 1 related
to the original module. Although the C1 discontinuity
can occur at boundary points of the blending function,
the trajectory of parameters wE and wEk;j

are con-
tinuous in time (see Fig. 4c). Higher order blending
functions can solve the problem of C1 discontinuity.

Figure 4: Hypothetical path of parameters in their
domain. a) Parameter wE in domain DA. b) Time
discontinuity of parameterswE ;wEk1

;wEk2
2 E when

the blending function is not used. c) C0 continuity of
wE ;wEk1

;wEk2
2 E using the blending function.

3.2. Algebraic L-systems with cycles

A class of planar graphs with cycles can be formally
represented by L-systems with markers5. The markers
proposed here are di�erent from those introduced by
Prusinkiewicz5 , in which case they determined only
the geometry of a system. In this paper, markers de-
termine not only geometry but also neighbourhood
relationships and information ow between modules.
The markers specify the position of inserted points
shared by the associated modules. Let us de�ne a new
star symbol `*' to denote the marker. To de�ne a sin-
gle cycle, two markers should occur within the string.
The markers are handled as pointers indicating the
locations where other neighbourhood modules can be
found during the derivation step. For example, let us
consider the derived string D[EF�]C � G, where [ ]
de�nes a branch as usual5 . The neighbourhood rela-
tionships are as follows: module D is a left context of
modules E and C, module E is a left context of F , and

modules F and C are left contexts ofG. See Fig. 5a for
a possible graphical representation. The simplest way
to de�ne the multiple cycles is to use multiple mark-
ers de�ned by sequences of stars as `**' , `***', : : : For
example, `***' is a one symbol, that can be used to
de�ne the third cycle. The left and right contexts as
understood from L-systems are therefore extended by
multiple markers to an arbitrary neighbourhood in the
cyclic L-system. Self loops such as the one in Fig. 5b
can also be represented by this syntax using a symbol
between two markers, as in the following DC �E�.

Figure 5: L-systems with markers used for represen-
tation of planar graphs with cycles.

3.3. Derivation process of algebraic L-systems

The derivation process is the calculation of the
sequence of strings �(0) = �0; �(�t) = �1;
: : : ; �(n�t) = �n representing the stages of the growth
model at the desired intervals �t. Global time is ad-
vanced repeatedly by the step �t. During each step,
the explicit and di�erential equations are solved nu-
merically. If the discrete event (production) should oc-
cur at time t0 2 [t; t+�t), the interval is divided and
the di�erential equations are integrated in the inter-
val [t; t0). The parameters obtained are then used in
the production application at time t0 to determine the
initial parameters for the explicit or di�erential equa-
tions associated with newly created modules. These
equations are then integrated in interval [t0; t+�t).

The derivation process applicable to the cycles
within the string is an extension of the derivation pro-
cess (string rewriting) discussed above. A derivation
step in cyclic L-systems consists of two phases:

� Input string is scanned for matching markers to
determine the neighbourhood relationship between
modules.

� Each module in the string is replaced by successor
modules using the corresponding production rule as-
sociated with the neighbourhood of the module.
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4. Growth Functions

Continuous processes such as the elongation of skele-
ton segments, growth of cell clusters, and gradual in-
crease in branching angles over time can easily be
described by the growth functions. Growth functions
are included into algebraic L-systems as explicit func-
tions or di�erential equations. Growth is often slow
initially, accelerating near the maximum stage, slow-
ing again and eventually terminating. A popular ex-
ample of the growth function8 is an S-shaped func-
tion g�x;T0 ;T (t), monotonically increasing from xmin

to xmax with growth rates of zero at both ends of in-
terval [T0; T ]. It is often known when the developmen-
tal processes begin and terminate in the case of nor-
mal development of organs. Although organs have no
sense of time, their growth follows speci�c time inter-
vals for di�erent individuals quite accurately, making
the use of growth functions with explicit dependence
on time reasonable for the biological modelling of or-
gan growth.

4.1. Global and local transformations

The special growth functions proposed herein repre-
sent such transformations as twisting, bending and
tapering. The local transformations are easily com-
bined to create complex shapes, while preserving
(or modifying) volume, surface or arc length. The
main transforming equation of any space curve x =
(x1(s); x2(s); x3(s))

T ; s0 � s � s1 preserving the arc
length is given by

y(s) =

Z s

s0

M(s)x0(s)ds; (4)

where M(s) is the tangent transformation matrix,
and x0 is a tangent vector of the space curve. Note
that jx0j = 1 for a curve is parameterized by arc
length. For global twisting and bending, the transfor-
mation matrix M is the Jacobian matrix of respective
transformation14 .

Any local bending transformation preserves the arc
length when M is a rotation matrix. For example, let
us consider the local bending along the Z-axis with the
radius of curvature 1=k. The centre of the bend occurs
at sc 2 [s0; s1], and the range of the bend is controlled
by �smin 2 [s0; sc] and �smax 2 [sc; s1]. The tan-
gent transformation matrix associated with bending
is given by:

M =

 
C� �S� 0
S� C� 0
0 0 1

!

where the bending angle measured in radians is:

� = k(ŝ� sc); C� = cos(�); S� = sin(�);

and where ŝ� sc is a clipping function

ŝ� sc =

(
��smin s < sc ��smin

s� sc sc ��smin � s � sc +�smax

�smax s > sc +�smax:

Multiple bending or twisting transformations with dif-
ferent parameters can be hierarchically combined to-
gether by using the multiplication of their tangent
transformation matrices. Fortunately, the integral in
Eq. 4 does not need to be calculated, as our interest
lies in the rate of angle change between tangent vec-
tors of the original curve and the transformed curve.

We de�ne the angle growth function GM
y 2

[�180; 180] transforming model locally

GM
y (x0; y0; s; t) = sign((x0�y0)y) arccos(x

0(s)�y0(s; t))
(5)

where y0(s; t) = M(s)x0(s) is a tangent vector of the
transformed curve, and � is a dot product. Function
GM
y corresponds to the rotation angle between vectors

x and y around the Y principal axis at position s and
in time t. The �nal rotation angle has a sign equal to
the sign of the Y coordinate of a vector product x0�y0.
To generate a smooth transformation (deformation) of
structure, the parameters sc; smin; smax and k vary in
time according to the S-shaped growth function. The
rotation angles around the X and Z principal axes
at position s and time t associated with transforma-
tion matrix M are generated by the growth functions
GM
x and GM

z , respectively. The angle growth functions
GM
x and GM

z are derived by analogy using the above
procedure.

5. Mathematical Modelling of Stomach

Development

Many organs have a complex topology, which can
only be described by graphs with cycles. Besides the
topology, the growth process can require boundary
conditions or information ow between the ends of
branches. In particular, the stomach model (see Fig. 3)
should satisfy the connectivity criterion between the
main stomach axis and the branch in order to obtain
the shape of the stomach. The branch was introduced
into the topology with the aim of modelling the con-
cave shape that results from di�erent rates of growth
in cell clusters along the main and branch stomach
axes. Simple control of the angle between the main
axis and the branch axis cannot guarantee shape con-
nectivity at any point. To model the branch axis the
L-system with cycles introduced above was used. An
alternative approach is to compute one axis reecting
the centres of ellipsoidal clusters without a branch.
Unfortunately, this approach can handle only the sim-
ple tubular shapes.
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The modelling methodology proposed herein con-
sists of two stages. First, the topology of the organ
and its development is expressed using algebraic L-
systems with cycles. At this stage the neighbourhood
relationship between modules and the length of mod-
ules are established. This step captures the growth of
cell clusters in size and along the organ skeleton. In
the next stage, the geometry is modelled by �lling up
the space surrounded by cycles, and by applying the
global transformations onto the skeleton.

The overall growth process naturally splits into a
sequence of events described by \short" algebraic L-
systems called tables. The output string of the table
immediately preceding a given table is used as the in-
put string to the given table. Each table has the pre-
scribed number of iterations speci�ed as an argument,
see Tab. 1. An in�nite number of iterations means
that the table is repeatedly iterated until there are
no changes in resulting strings. The simpli�ed model
of stomach growth repeatedly processes the following
series of tables in each time step �t:

Skeleton growth table(1),
Arc length calculation table(1),
Skeleton bending table(1),
Cluster growing table(1),
Geometry representation table(1).

Table 1: Series of tables simulating stomach growth.

The resulting string from the table series in each
time step can be represented graphically, and shading
methods can be used for visualisation. In the following
sections, the above tables are discussed in detail, while
assuming a common notation for modules15 :

� +(�),�(�) orientation change of the following mod-
ule by �� degrees with respect to the preceding
module,

� [, ] initialisation and termination of a branch, i.e
push and pop the module position and orientation
from the stack, respectively.

5.1. Skeleton growth table

Each module in the algebraic L-systems depends on
its local time (age). Therefore, di�erent productions
related to a module can be used at di�erent time in-
tervals, thus controlling the variety of processes that
may take place in complex growth. The algebraic L-
system model given in Fig. 6 controls the expansion of
all components and gradually increases branching an-
gles over time. A single marker `*' was used to de�ne
the cycle between the branch and the main skeleton
axis.

table Skeleton f
initial string: load from �le axiom.tmp
output string: save to �le axiom.tmp
Fi(x; �) :

if x < xth & � 2 [�s; �e]

solve dx
dt

= v; d�
dt

= 1
if x = xth & � 2 [�s; �e] & � 6= �b & i = A

produce DA(kx; �)C(r(t); �)FA((1� k)x; �) (a)
if x = xth & � = �b & i = A

produce DA(kx; �)C(r(t); �)[+(�0)Fb(x0; �)�] (b)
FA((1� k)x; �)

if x = xth & � 2 [�s; �e] & i = a

produce Fa((1� k)x; �)C(rb(t); �)Da(kx; �) (c)
if x = xth & � 2 [�s; �e] & i = b

produce Db(kx; �)Cb(r0; �)Fb((1� k)x; �) (d)
if � =2 [�s; �e]

solve dx
dt

= 0; d�
dt

= 1

Di(x; �) : solve
dx
dt

= g�x;0;T1 (t) (e)
Ci(r; �) :

if i = a;A

solve
dr(s;t)
dt

= grmax;p(r) (f)
if i = b

r(s; t) = Gb(s; t) (g)

�(�) : solve d�
dt

= g��;T0;T4 (t) (h)
g

Figure 6: L-system table controlling the growth of
stomach skeleton. Function g�x;T0 ;T is the same as
proposed by Prusinkiewicz et. al.8.

The �rst part of Fig. 6 supports the reading of ini-
tial axiom from �le \axiom.tmp". The output string
derived from this table after the given number of iter-
ations is saved to the same �le \axiom.tmp". Initially,
the axiom stored in �le \axiom.tmp" at time t = 0
has the form jFa(x0; �0)C(r0; �0)FA(x0; �0)�, where j
is equivalent to �(180). Apical segments Fa; FA; and
Fb located at both ends of the main axis and at the
endpoint of the branch cause elongation of the stom-
ach (see Fig. 7). They are most active during develop-
ment of the primitive stomach from a single cylinder.
Two markers \*" create a single cycle in the stomach
skeleton.

The largest part of Fig. 6 describes the behaviour
of the apical segments. Every apex Fi has two param-
eters x and � , which indicate its current length and
local time. The combination of linear growth of apex
segments with the cubic growth of internode segments
Di cause the �rst order continuity of the entire skele-
ton length. Upon reaching the threshold length xth,
the apex produces an ellipsoidal node Ci and subdi-
vides into an internode Di of length kx and a shorter
apex with length (1 � k)x, given by productions a, c,
and d in Fig. 6. Apex FA, which grows in a downward
direction, produces an additional branching apex at
time � = �b (see Fig. 6b). The S-shaped growth func-
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tions describe the increasing length of internodes Di

and the magnitude of branching angle � (see Fig. 6e
and h). Ellipsoidal node Ci represents a cell cluster
with the shape of an ellipsoid. It has two parameters r
and � , which indicate its current vector of radiuses and
local time. The additional third vector of parameters
� can be added to manipulate the orientation of the
ellipsoid with respect to the principal axes. The other
possibility implemented in our approach16 is to use
the module specifying orientation change with respect
to the orientation of the previous module. The orien-
tation change of the ellipsoidal modules was omitted
from Fig. 6 for simplicity. The radiuses of the ellip-
soidal node increase according to the growth function
depending on global time and the position of the node
calculated from arc length s (see Fig. 6f and g). De-
pendence of the growth function on position is quite
natural in biology, as many organs grow at di�erent
rates depending on location.

Figure 7: Geometrical representation of modules in
the string.

5.2. Arc length calculation table

As mentioned above, few growth functions depend on
the position of the actual module calculated from arc
length parameter s. To have this information available
at each time step, all modules in a system are made
dependent on arc length parameter. This parameter is
updated regularly, just after any module in a skeleton
exhibits any growth. Therefore, all modules belonging
to the main skeleton axis depend on the arc length
parameter s equal to distance from the origin, and
on the total length of main axis S. Similarly, mod-
ules belonging to the branch contain the arc length
parameter measuring the length from the origin of the
branch, and the parameter of the total branch length.

Each module on the main skeleton axis has its arc
length parameter calculated from the sending of the
signal starting at the skeleton origin (see Fig. 7) while
collecting the length of internode segments along the
string and storing the actual summation in parameter
s. When the summation signal reaches the end of the
skeleton, it sends back a signal containing the total
length of the main axis and stores it as parameter S for
each module passed. A similar process is implemented
for the branch. The algebraic L-system for sending
signals in upward and downward5 directions can be
modi�ed in a straightforward manner to handle the
calculation of arc length. The arc length calculation
table neither updates the global time t and local time �
of modules nor their growth. Therefore, the rewriting
process ends after a �nite number of derivation steps
when the signals return.

5.3. Skeleton bending table

Total bending transformation can consist of multi-
ple local bending transformations, whose parameters
change over time. By focusing on transformation of
the main axis, the transformation of the associated
branch can be performed in the same way. Without
loss of generality, suppose that at the very early stage
of development the main axis of the stomach skeleton
is a simple straight vertical line parametrized by arc
length x = (0; 0;�s). The vertical line is then contin-
ually bent into required shapes using the transforma-
tion matrices that vary over time. The bending angle �
is a new parameter introduced for this purpose into the
internode module Di(x; �; �; s; S), although not writ-
ten in Fig. 6. Since every module in the string depends
on arc length s calculated from previous tables, the
arc length at module Di is also known. Assuming the
given transformation matrix M(s; t), nothing remains
unknown for the evaluation of angle-growth function,
Eq. 5, which can be further simpli�ed to

GM
y (y0; s; t) = � sign(y0y(s)) arccos(�y

0
z(s)): (6)

Bending angle �, in other words the angle between the
vertical line x and the actual internode segment Di,
is therefore given by an explicit function of time

� = GM
y (y0; s; t):

The angle growth functions GM
x and GM

z can be sim-
pli�ed similarly. The continuity of the bending an-
gle over time when the production rules are applied
onto the internode segments is guaranteed by using
the blending function, Eq. 3.

It is not a challenging task to implement the matrix
productions of Eq. 6 using the L-system formalism as
a separate table. The global and local times should re-
main unchanged for all modules in the derived string
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after processing the skeleton bending table. Rewrit-
ing the iteration processes of this table will stop after
application of a �nite number of production rules.

5.4. Cluster growth table

A separate table has been written to calculate the ra-
diuses of all ellipsoidal modules Cb from Fig. 6g dis-
tributed along the stomach branch axis. The radius of
an ellipsoidal cluster increases according to an explicit
function of time and the position of ellipsoidal mod-
ules within a skeleton speci�ed by arc-length s. Several
statistical measurements have been made to specify
the shape of explicit growth function Gb(s; t). Table 2
shows the mean stomach thickness measured as a ra-
dius of a circle perpendicular to the main stomach
axis. Measurements were taken at locations c0; c1; c2
and c3 relative to the length of stomach axis1. There-
after, the growth function Gb(s; t) approximates the
collected statistical measurements. Due to its compli-
cated analytical form, it will not be stated here.

Table 2: Measurements of human embryo stomach.

day length [mm] diameter [mm]
embryo stomach c0 c1 c2 c3

21 3 0 0.08 0.08 0.08 0.08

28 4.3 0.84 0.08 0.12 0.21 0.10

35 9.6 1.37 0.14 0.27 0.34 0.20

70 50 8.89 0.89 3.37 3.55 2.84

84 71 12.6 1.26 5.41 5.71 4.20

140 160 33.3 3.33 14.7 13.3 9.99

252 500� 61.5 4.92 25.8 23.4 18.4

* Total height including the legs.

c1

c2

c3

1/2

1/4

3/4

5.5. Geometry representation table

The aim of this table is to generate an actual 3-D
object that can be visualised. Symbols in the derived
string from the previous table can be related to struc-
tural elements in the growing form. Each structural el-
ement can have a geometric representation. The shape

of the organ in this paper is a smooth surface envelop-
ing ellipsoids centred at nodes on the main axis and
the branch skeleton axis, respectively. For simple visu-
alisation purposes, each module of the resulting string
acts as a command to a drawing device by turtle graph-
ics15. The turtle state is characterised by position ~P
and its local coordinate system ~H; ~U and ~L, indicating
the turtle's heading direction, the upward direction,
and the direction to the left. The local turtle coordi-
nate system serves to represent the local orientation of
each module. The brief introduction of the geometrical
representation of modules from Fig. 6 is as follows

� ellipsoidal module Ci corresponds to a scaled
blended sphere (blob13) �tting the sizes of the el-
lipsoid

� internode segments Da;DA with length equal to x
located at the main skeleton axis corresponds to a
meta-cylinder with length x de�ned by several blob-
bies in a line. The pro�le of the cylinder is scaled
with respect to the radiuses of previous ellipsoidal
modules.

� internode segment Db located on the branch corre-
sponds to a move with step x in the heading direc-
tion ~H

� bending angle � corresponds to a rotation of intern-
ode an segment with respect to the upward direction
~U

� apex module Fi is treated as an internode segment.

The implicit energy iso-surface de�ned by the collec-
tion of blobbies creates a smooth surface of the stom-
ach without a�ecting the representation itself.

6. Taking into account positional changes of

surrounding organs

In the previous section, a modelling methodology of
organ growth determined by the di�erent rates of
growth in various regions of the organ was proposed.
For the method to be in harmony with the �eld of em-
bryology, the shape of the organ should accommodate
the changes of surrounding organs through changes in
position and size. Fast-growing organs of hard tissue
overpower softer organs in their vicinity. For exam-
ple, a fast growing liver a�ects the global bending of
the stomach. This section extends the model of organ
growth discussed above in the sense that the simu-
lated organ continually responds to events occurring
in the surrounding space, the environment. The model
proposed herein is a closed-loop system involving the
organ and its environment. After the organ reacts to
the actual conditions taking place in its environment,
it will reciprocally a�ect the environment. For exam-
ple, when the simulated organ changes position, the
tissue density and occupied space in the environment
also change.
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Figure 8: Block diagram of simulation growth of multiple organs sharing the same environment.

6.1. Information ow in the system

According to Fig. 8, the growth system controlling
multiple organs can be understood as two independent
blocks connected in a feedback loop. The two blocks
represent the part for derivation of the algebraic L-
system and the model of an environment including
the physical model of an organ. This idea is similar to
one proposed by M�ech and Prusinkiewicz11 . However,
the environment proposed in their research was lim-
ited to the modelling of tips of young plants and their
changes, but changes in the entire plant in response
to the environment could not be modelled. Here we
propose the embedding of a physical model into the
physical environment, thus allowing for local changes
anywhere on the surface of a simulated organ.

Assume the model of an organ speci�ed by the al-
gebraic L-system, a string of symbols, equipped with
growth functions derived from the statistical descrip-
tion of known changes in shape and position, proposed
in Sec. 5. The proposed method also introduces the
communication module11 , ?E(x1; : : : ; xm) as a sensor
perceiving environmental information. The communi-
cation module placed before each module in the result-
ing string from table series Tab. 1 carries complete
information about the simulated organ. The sensors
are placed before each module in the string in order
to capture possible collisions with other organs or the
environment occurring anywhere along the organ sur-
face.

De�nition of the organ is passed to the derivation
block where the axiom of the model's L-system ex-
pands according to the rewriting rules. Derivation is
performed sequentially in a number of small temporal
steps �t, in contrast to discrete integer steps used in
plant development7 .

In the interpretation part, the resulting string at
each temporal step is scanned from left to right to
determine the local coordinate system (state of the
turtle) associated with each communication module.
The state of the turtle and the information stored in
the communication module is transferred serially in
packages for each separate organ to the environmental
module. Environmental data are de�ned by the user
to allow easy modi�cation of environmental parame-
ters, such as space limitations of the environment or
distribution of external forces.

Consequently, a physical model of the organ is cre-
ated and placed into the bounded environment. In-
ternal physical properties of the organ, such as the
elasticity of the tissue, are used to simulate the com-
petition for space between organs. Equilibrium among
multiple organs and the environment is calculated by
optimisation methods using �nite di�erencing17 . The
internal forces of an organ, such as elasticity, stand in
opposition to the external force from a pushing organ
at places of collision. The result is an updated state
of the surrounding environment and the optimal posi-
tion of the organs, while at the same time preserving
their volume.

Required parameter values are sent back to the
derivation block to be substituted into communication
modules. After all replies from the environment have
been received, the resulting string may be interpreted
and visualised. The next derivation step may be per-
formed for a new time step, taking into account the
newly stored parameters in the communication mod-
ules. Thus, another step of simulation is initiated.
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6.2. Communication module

The communication module sends messages to the en-
vironment including the turtle position, orientation
(vectors ~H; ~L; ~U) and all the parameters of the imme-
diately following module. For example, when the com-
munication module is followed by an ellipsoidal mod-
ule, all major radiuses are sent out. This allows the re-
building of a simpli�ed three-dimensional model in the
environment. The communication module has the fol-
lowing format ?E(x1; : : : ; xm; �;m), where x1; : : : ; xm
are parameters of the next module, and the remaining
parameters carry only received information. Messages
returned to the organ model represent the direction
of further growth given by a vector of rotation angles
� around the vectors ~H; ~L; ~U and the magnitude of
direction m.

6.3. Model of the environment

The environment comprises a three-dimensional dis-
crete �eld that keeps track of organs, updating colli-
sion forces and transforming the organs according to
the external forces applied. The optimisation method
calculates the optimal position of organs, particularly
their ellipsoidal modules, taking into account internal
and external forces. The displacement vector D de-
�nes a module's movement from its original position
into an optimal one. The environment also determines
further growth direction for each module. Assume a
given module, the direction of future growth T can
be derived from a linear combination of the displace-
ment vector D and heading direction vector ~H (see
Fig. 9). Vector T represented by the rotation angles
� = (�1; �2) with respect to ~L; ~U and by its magni-
tude m = jTj is sent back into the derivation block.
Rotation angles �1 and �2 align vector T with heading
direction ~H.

In the derivation block the turtle state of each mod-
ule is updated by the rotation of heading direction
~H about the angles �1 and �2 with respect to ~L; ~U .
Therefore, the direction of internode segments is the
same as the direction of further growth at that loca-
tion.

7. Implementation and Results

One problem during implementation is selecting
proper parameters of growth functions. The statistical
measurements and a three-dimensional model of a real
human embryo stomach over several stages of devel-
opment were obtained from microscopic cross-sections
and from Sadler's book1 (see Tab. 2). First, the el-
lipsoidal representation of the organ for all available
stages of development was established. Second, the de-
velopment of an organ skeleton was modelled by elon-

Figure 9: De�nition of environmental output param-
eters � and m.
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Figure 10: Function Gb(s; t) shown for time 70, 84,
and 140 days representing the size [mm] of the ellip-
soid located at the skeleton branch. The arc length pa-
rameter was scaled to interval [0,1].

gating internode segments to accommodate the entire
length of the stomach. Each of the inter-node seg-
ments grew 0:18mm per 154 days according to the
S-shaped grow function g0:18;0;154 (t), Fig. 6e. Such a
small growth rate indicates a large increase of the
length because of a large number of ellipsoidal clus-
ters. Similarly, the function g70;28;252 (t), monotoni-
cally increasing from 0 to 70 within the time inter-
val measuring from 28 to 252 days, controlled the
variation of the angle between the main and branch
skeleton axis of the stomach, Fig. 6h. Assuming the
unique length of the main skeleton axis, the global
bending e�ect of a stomach was represented by four
bending transformations varying over time applied on
both the main and branch axes. For example, a 252-
day-old stomach shown in Fig. 7 had the main axis
transformed using the following parameters: the cen-
tre of the bends occurred at s1c = 0:85, s2c = 0:67,
s1c = 0:26, s1c = 0:23; with the curvatures being
k1 = 10, k2 = �15, k3 = �5, k4 = 3:3; and the range
of the bends was s1min = 0, s1max = 0:15, s2min = 0,
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s2max = 0:07, s3min = 0:11, s3max = 0:25, s4min = 0:19,
s4max = 0:06. Lastly, the growth functions modelling
the size of ellipsoidal clusters were determined. For
example, the thickness of a stomach trunk { in other
words the size of ellipsoids distributed along the main
skeleton axis { used the logistic function18

grmax;p(r) = p
�
1�

r

rmax

�
r;

where scaling factor p = 0:031 and maximal thick-
ness rmax = 10:35, (see Fig. 6f). The radius of an
ellipsoidal cluster located at the stomach branch axis,
however, increased according to explicit function of
time Gb(s; t), which approximates statistical measure-
ments. For example, Fig. 10 demonstrates the growth
function for the major radius of the ellipsoid cluster at
time 70 days, 84 days, and 140 days, where the func-
tion values representing the major ellipsoid radius are
measured in millimetres. Arc length parameter s in
those graphs was normalised by the total length of
the branch at the corresponding time.

Shown in Fig. 11 are several frames from a gen-
erated animation simulating stomach growth based
on the proposed algebraic L-system using the above
growth functions. The shape of the stomach model
shown in this �gure undergoes global bending trans-
formation and deformations resulting from competi-
tion for space between the fast-growing liver and the
stomach itself. Although meta-balls were used to ob-
tain the smooth appearance, creating the surface from
a swept-sphere rather than a collection of implicit sur-
faces would probably yield a smoother stomach19.

8. Summary

In this paper, we introduced a method for the mod-
elling and simulation of human or animal organs obey-
ing actual biological movements known to embryolo-
gists. We proposed a system in which multiple organs
and the environment are separate processes, informa-
tion from each of which is transmitted using communi-
cation modules. The physical environment and physi-
cal model allow for local changes anywhere on the sur-
face of the simulated organ. The proposed algebraic L-
systems with cycles introduced global transformations
and explicit functions of time into the formalism of L-
systems. By using blending functions, parameters hav-
ing a common de�nite domain have guaranteed con-
tinuity in time, even after the application of discrete
production rules. To store the statistical geometry of
human organs, growth functions and L-system tables
have been proposed.

The proposed methodology was demonstrated on
a growth model of the human embryo stomach. The
developed model produces convincing simulated im-
ages showing considerable likeness to an actual human

stomach at its di�erent stages of development. Gen-
erated computer animation and visual interpretation
make it possible to understand the modelled processes
accurately and lead to realistic exploration of the hu-
man stomach at various stages of its development.

The proposed framework is also designed for use in
the simulation of growth of other organs. Our future
research is to concern development of a model of a
human gut with all its complicated movements.
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