ポリ(4-メチル-1-ペンテン)超薄膜の結晶成長

広大院 総合科学 田口 健

[緒言]結晶性高分子薄膜の物理的性質は薄膜中の結晶配向・モ ルフォロジー等に左右されるので、薄膜中における結晶成長機構 を理解することは重要である。これまで報告されている種々の高 分子薄膜における結晶成長過程では、概して超薄膜領域における 結晶成長速度の低下や、樹枝状晶のような分岐構造や同心リング 状形態などバルクと異なる興味深いモルフォロジーが観測され ている。成長速度の低下は高分子薄膜における分子鎖易動度の低 下を示唆し、モルフォロジーの変化は物質拡散・輸送過程が高分 子薄膜結晶成長における重要な役割を担っていることを意味す るが、そのメカニズムの詳細は未解明な部分が多く、結晶性高分 子薄膜の結晶成長機構について十分な理解に達しているとは言 えない。

我々はこれまで、アイソタクチック・ポリスチレン(it-PS)薄 膜における結晶成長機構を、その膜厚・分子量依存性から探って きた。その結果、絡み合い分子量以下のit-PS薄膜においては成長 速度の膜厚依存性が極めて弱くなることを見いだした(Fig. 1)。 また、分岐構造(Fig. 2)や成長速度の分子量依存性の観察結果(Fig. 3)から、超薄膜領域においては基板に吸着した高分子鎖の2次元 的拡散がモルフォロジー形成過程を支配しており、分子鎖の絡み 合いを通して成長速度の低下をもたらしていると考えている。

本研究ではポリ(4-メチル-1-ペンテン)(poly(4-methly-1-pentene), P4MP1)薄膜からの結晶成長調で得られた結果について報告する。 P4MP1はその大きな側鎖のため、室温付近で結晶密度が非晶密度 よりも小さくなることが知られており[1]、そのような密度の逆 転領域において高分子結晶分岐構造がどのような変化を受ける かは興味深い。

【実験】 試料には P4MP1 (MFI=8g/10min、Scientific Polymer
Products, Inc.)を用いた。P4MP1 結晶の融点は約 245℃である[1]。
0.05~0.2wt%の P4MP1・シクロヘキサノン溶液を作製し、カバーガラス基板 (φ=15mm)の上にスピンコート法 (1500rpm、1分間)によって厚さ 5~30 nm 超薄膜を作製した。得られた P4MP1薄膜を 260℃で約 30 秒融解させた後、ホットステージ (Mettler
FP82)によって 200℃~120℃の範囲で等温結晶化を行った。結晶成長は位相差顕微鏡法を用いてその場観察し、成長後に室温
で膜厚とモロフォロジーの観察 AFM (SPI-3800N)を行った。

Figure 1. Growth rates (G) at 180° C vs. inverse of film thickness (1/d) for it-PS thin films with six different molecular weights.

Figure 2. AFM image $(10\mu m^2)$ of iPS crystal grown in 13nm thick films at 180C.

Figure.3. Double logarithmic plot of w^2G vs. $M_{w.}$, where w represents the width of the branch and G the growth rate of iPS crystals in ca. 10 nm thick films.

[結果・考察] P4MP1 は結晶化速度が速く(200℃付近で最大)、 室温付近の非晶試料を得ることや、低温での結晶成長の観察がバ ルク試料においては通常困難である。しかし、室温でスピンコー ト法を用いて作製した 10nm 程度の超薄膜は製膜直後に非晶状態 であった。超薄膜状態においては核形成が制限され、また後述す るように成長速度も低下するため、低温領域(高過冷却度領域) も含め広い温度範囲での結晶成長観察を行うことが可能となる。

Figure 4、5 にそれぞれ約 10nm、16nm の超薄膜ににおいて結晶 化温度 200℃で等温成長した P4MP1 結晶モルフォロジーの AFM 像を示す。P4MP1 超薄膜でも it-PS と同様に、超薄膜領域におい ては樹枝状晶が出現すること、また膜厚が薄くなるほど分岐構造 が大きくなることなどの傾向が明らかになった。観察される樹枝 状晶は正方晶の対称性を反映した十字型の flat-on 結晶である。ま た、Fig. 4 に示されるように、樹枝状晶以外にも長い線状の形態 の側方に枝が生えた櫛状のモルフォロジーがしばしば観察され る。中心の線状結晶は edge-on 結晶であると見られ、edge-on 結 晶が初期に急速に成長した後にその周囲に flat-on 樹枝状晶結晶 が成長したものと考えられる。光学顕微鏡によるその場観察から この edge-on 結晶の成長速度は Flat-on 樹枝状晶の 20 倍近くある と見られ、超薄膜領域での結晶成長速度が flat-on と edge-on 結晶 で大きく異なることが示唆される。これは成長速度低下の起源 を解明する上で重要な手がかりとなる。

ラメラ結晶厚さはAFM 測定より容易に測定可能で、200℃で 約 21nm、180℃で 20nm、160℃以下では約 13nm とほぼ一定と なり、各温度で初期の薄膜厚さ(d)にはほとんど依存しなかった。 超薄膜領域(\sim 10nm)では膜厚よりも結晶の方が厚く、Flat-on 結晶の成長にともなって初期の膜厚は低下していき、成長にと もなって樹枝状晶の成長速度の低下が観測される(Figure 6)。 Figure 7 に、200℃において観測された flat-on 結晶の成長速度 G の膜厚依存性を、膜厚の逆数(1/d)に対して示す。P4MP1 でも超 薄膜領域における Flat-on 結晶の成長速度は大幅に低下している。

以上の様な P4MP1 超薄膜における結晶成長の膜厚・成長温 度・分子量変化の詳細な観察を通じて超薄膜結晶成長機構の解 明が期待される。さらに P4MP1 では、結晶・非晶密度の差が 逆転する低温領域に向けどのようなモルフォロジー変化が現 れるかは興味深い。

[1] Rastogi, S; Newman, M; Keller, A Nature 1991, 353, 55-57.

Figure 4. AFM image of P4MP1 crystals grown at 200C for 12 min in ca. 10 nm thick ultrathin film.

Figure 5. AFM image of P4MP1 crystals grown at 200C for 12 min in ca. 16 nm thick ultrathin film.

Figure 6. Growth of dendritic P4MP1 crystals at 200°C in ca. 10 nm ultrathin films

Figure 7. Growth rates (*G*) vs. inverse of film thickness (1/d) for P4MP1 ultrathin films at 200°C