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Abstract— This paper investigates the application of neural
networks to the guaranteed cost control problem of discrete–
time uncertain system. Based on the Linear Matrix Inequality
(LMI) design approach, a class of a state feedback controller
is established, and sufficient conditions for the existence of
guaranteed cost controller are derived by making use of the
LMI. The novel contribution is that the neurocontroller is
substituted for the additive gain perturbations. It is newly
shown that although the neurocontroller is included in the
discrete–time uncertain system, the robust stability for the
closed-loop system and the reduction of the cost performance
are attained.

I. INTRODUCTION

In recent years, the problem of robust control for the
discrete–time system with parameter uncertainties has been
studied (see e.g., [1] and reference therein). In these studies,
much effort has been made towards finding a controller that
guarantees robust stability, but less attention has been paid
to cost performance. In real control system applications, the
ability to guarantee robust stability as well as an adequate
cost performance should be taken into account for. One
approach to this problem is the so–called guaranteed cost
control approach [2]. This approach has the advantage of
providing an upper bound on a given performance index.
The guaranteed cost control for the uncertain discrete–time
system by means of the output feedback control has been
discussed in [3]. On the other hand, recent advance in theory
of Linear Matrix Inequality (LMI) has allowed a revisiting
of the guaranteed cost control approach. The guaranteed
cost control problem for a class of the uncertain discrete–
time system which is based on the LMI design approach
was solved by using the state feedback [4]. However, due
to the presence of the design parameter, it is well–known
that the cost performance becomes quite large.

A neural network (NN) has been actively exploited
to construct an intelligent control system because of its
nonlinear mapping approximation for system uncertainties
involved. Then some control methodologies utilizing NN
have been proposed by combining with modern control
techniques. For example, an adaptive controller using NN
was designed within the framework of the adaptive control
theory in the literature [5], and feedback control systems in
which NN were placed instead of a conventional controller
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[6] or in parallel with [7] for identifying and canceling the
plant uncertainties. As important studies in particular, the
linear quadratic regulator (LQR) problem using multiple
NN has been investigated [8, 9]. In these approaches,
one neural network is dedicated to the forward model for
identifying the uncertainties of the controlled plant, and
the other network may compensate for the influence of the
uncertainties based on the trained forward model. However,
in these researches, there is a possibility that NN can not
stabilize the system, because the stability of the closed–
loop system which includes the neurocontroller has not
been considered. For example, the system stability may
not be guaranteed any longer when the degree of system
nonlinearity is strong [8]. Moreover, it is shown that the
robustness of the closed–loop system is not guaranteed
without the margin of the controller gain perturbations
by the neurocontroller [10]. Therefore, the neurocontroller
in the closed–loop system is required to tolerate some
uncertainties of the controlled system [11].

In this paper, the guaranteed cost control problem of
the discrete–time uncertain system with the neurocontroller
is discussed. Firstly, a class of the fixed state feedback
controller of the discrete–time uncertain system with the
gain perturbations is derived. Secondly, some sufficient
conditions to design the guaranteed cost controller is newly
established by means of the LMI. In order to reduce large
cost performance caused by the guaranteed cost control,
NN is used. The new idea is that the neurocontroller is
substituted for the additive gain perturbations. The stability
for the system with the neurocontroller is guaranteed. It
should be noted that there is no result for the stability of the
closed–loop system under the neurocontroller. The training
data is extracted from the model difference between the
practical plant and the nominal plant compared with the
existing results. As a result, although the neurocontroller is
included in the discrete–time uncertain system, the robust
stability of the closed–loop system and the reduction of
the cost are attained. Finally, in order to demonstrate the
efficiency of our design approach, the numerical example
is given.

II. PRELIMINARY

Consider the following class of a uncertain discrete–time
linear system:

x(k + 1) = [A + D1F (k)E1] x(k) + Bu(k), (1a)

u(k) = [K + D2N(k)E2] x(k), (1b)

where x(k) ∈ �n is the state, u(k) ∈ �m is the control
input, A, B, D1, D2, E1 and E2 are known constant
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Fig. 1. Block diagram of proposed system.

matrices, K is the fixed gain matrix for the controller
(1b), and F (k) ∈ �p×p is unknown matrix function and
N(k) ∈ �q×q is the output of NN. It is assumed that F (k)
and N(k) are satisfying

FT (k)F (k) ≤ Ip, NT (k)N(k) ≤ Iq. (2)

Block diagram of a new proposed method is shown in
Fig. 1, where L is a time lag diagram. It should be noted
that the controller (1b) has the neurocontroller as additive
perturbations D2N(k)E2 compared with the existing results
[1, 4].

Associated with the system (1) is the quadratic cost
function

J =
∞∑

k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
, (3)

where Q and R are given as positive definite symmetric
matrices. In this situation, the definition of the guaranteed
cost control with the additive gain perturbations is given
below.

Definition 1: For the uncertain system (1) and cost func-
tion (3), if there exist a control gain matrix K and a positive
scalar J∗ such that for the admissible uncertainties and gain
perturbations (2), the closed–loop system is asymptotically
stable and the closed–loop value of the cost function (3)
satisfies J < J∗, then J∗ is said to be a guaranteed cost
and K is said to be a guaranteed cost control gain matrix
of the uncertain system (1) and cost function (3).

The above definition is very popular for dealing with
time–varying uncertainties and is also used in [2].

It is noted that if the controller (1b) is the guaranteed
cost control in the infinite horizon, then it is also the
quadratically stabilizing controller. Conversely, it can be
easily shown that a quadratically stabilizing controller will
achieve the guaranteed cost. The following result shows that
the guaranteed cost control for the system (1) has an upper
bound on the cost function (3).

Lemma 1: Consider the following matrix inequality un-
der the uncertain discrete–time system (1) with the cost
function (3);

xT (k + 1)Px(k + 1) − xT (k)Px(k) + xT (k)
[
Q

+(K + D2N(k)E2)T R(K + D2N(k)E2)
]
x(k) < 0, (4)

for all nonzero x(k) ∈ �n and the uncertain matrix F (k),
and the gain perturbation matrix N(k).

Under such condition, the matrix K of the controller (1b)
is the guaranteed cost control gain matrix associated with
the cost function (3). That is, the closed–loop uncertain
system

x(k + 1) = [(A + D1F (k)E1)
+B(K + D2N(k)E2)]x(k) (5)

is stable and achieves

J < J∗ = xT (0)Px(0). (6)

Proof: Let us define the following Lyapunov function
candidate

V (x(k)) = xT (k)Px(k), (7)

where P is the positive definite matrix. Then, the proof can
be done by using the similar technique in [10]. In this paper,
it is omitted.

The objective of this section is to design the fixed
guaranteed cost control gain matrix K for the discrete–time
system (1).

Theorem 1: Consider the uncertain discrete–time system
(1) and cost function (3). For the uncertain matrix F (k)
and the gain perturbation matrix N(k), if the LMI (8) has a
feasible solution such as symmetric positive definite matrix
X ∈ �n×n and Y ∈ �m×n, and positive scalar εi > 0 (i =
1, 2), then K = Y X−1 is the guaranteed cost control gain
matrix.

Furthermore, the corresponding value of the cost function
(3) satisfies the following inequality (9) for all admissible
uncertainties F (k), and the gain perturbations N(k):

J < J∗ = xT (0)X−1x(0). (9)
Proof: Let us introduce the matrices X = P−1 and

Y = KP−1. Pre– and post–multiplying both sides of the
inequality (8) by the positive definite matrix⎡

⎢⎢⎢⎢⎢⎢⎣

P 0 0 0 0 0
0 Ip 0 0 0 0
0 0 Iq 0 0 0
0 0 0 In 0 0
0 0 0 0 Im 0
0 0 0 0 0 In

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0 (10)

and applying the Schur complement [13] gives (11).
Using a standard matrix inequality [12] to the matrix

inequality (11) for all admissible uncertainties and the gain
perturbations (2), and applying the Schur complement to
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⎡
⎢⎢⎢⎢⎣

−X (E1X)T (E2X)T X Y T (AX + BY )T

E1X −ε1Ip 0 0 0 0
E2X 0 −ε2Iq 0 0 0
X 0 0 −Q−1 0 0
Y 0 0 0 −R−1 + ε2D2D

T
2 (ε2BD2D

T
2 )T

AX + BY 0 0 0 ε2BD2D
T
2 −X + ε1D1D

T
1 + ε2BD2D

T
2 BT

⎤
⎥⎥⎥⎥⎦ < 0. (8)

⎡
⎢⎣

− P + ε−1
1 ET

1 E1 + ε−1
2 ET

2 E2 In KT (A + BK)T

In −Q−1 0 0
K 0 −R−1 + ε2D2D

T
2 (ε2BD2D

T
2 )T

A + BK 0 ε2BD2D
T
2 −P−1 + ε1D1D

T
1 + ε2BD2D

T
2 BT

⎤
⎥⎦ < 0. (11)

the matrix inequality, it is easy to verify that the matrix
inequality (4) is satisfied.

Thus, K is the guaranteed cost control gain matrix. On
the other hand, since the results of the cost bound (9) can
be proved by using the similar argument for the proof of
Theorem 1, it is omitted.

Since the LMI (8) consists of a convex solution set
of (ε1, ε2, X, Y ), various efficient convex optimization
algorithm can be applied. Moreover, its solutions represent
a set of the guaranteed cost control gain matrix K . This
parameterized representation can be exploited to design the
guaranteed cost control gain which minimizes the value of
the guaranteed cost for the closed–loop uncertain system.
Consequently, solving the following optimization problem
allows us to determine the optimal bound.

J < J∗ < min
(ε1, ε2, X, Y )

α, (12)

such that (8) and [ −α xT (0)
x(0) −X

]
< 0. (13)

The problem addressed in this section is defined as
follows:

Problem 1: Find the guaranteed cost control gain K =
Y X−1 satisfying the LMIs (8) and (13) to make the cost
α become as small as possible.

Since the bound in Problem 1 depends on the initial con-
dition x(0), it is assumed to remove such condition that x(0)
is a zero mean random variable satisfying E[x(0)xT (0)] =
In.

Then, the LMI (13) yields[ −M In

In −X

]
< 0, (14)

where E[·] denotes the expectation, M is the expectation
of α. In this paper, the condition (14) is used instead of
(13) in the optimization problem and M would be gotten
as small as possible.

The crucial difference between the uncertain discrete–
time system in [1], [4] and the considered system of
this paper is that the controller gain perturbations as the
neurocontroller are newly added. Therefore, the obtaining
results of this section are original.

III. NEURAL NETWORKS FOR ADDITIVE GAIN
PERTURBATIONS

The LMI approach for the uncertain discrete–time sys-
tems usually results in the conservative controller design

due to the existence of the uncertainties F (k) and the
gain perturbations N(k), which lead the large cost J . The
main purpose of this paper is to introduce NN as additive
gain perturbations into the discrete-time uncertain system
to improve the cost performance. Note that the proposed
neurocontroller regulates its outputs in real-time under the
robust stability guaranteed by the LMI approach.

A. On–line learning Algorithm of neurocontroller
It can be much expected that the reduction of the cost will

be attain when a neurocontroller can manage the uncertain
system as a nominal linear system while compensating for
control errors by a conservative controller. That is, the
neurocontroller is required to compensate the conservative
controller to work as a LQR controller in the uncertain
system.

Let us consider the following nominal system without
uncertainties as:

x̂(k + 1) = Ax̂(k) + Bû(k), (15)

where x̂(k) ∈ �n is the state and û(k) ∈ �m is the control
input. For such linear system, it is well–known that the
LQR control is an effective method to design a controller
which can minimize the cost function (3). Based on LQR,
the optimal control û∗(k) can be designed as

û∗(k) = K̂x̂(k), (16a)

K̂ = −(R + BT P̂B)−1BT P̂A, (16b)

where K̂ is the optimal feedback gain, and the matrix
P̂ is the positive semidefinite symmetric solution of the
following algebraic Riccati equation as:

P̂ = AT P̂A − AT P̂B(R + BT P̂B)−1BT P̂A + Q. (17)

The NN in the proposed system should be trained in real–
time so that the state discrepancy

∣∣∣∣x̂(k + 1) − x(k + 1)
∣∣∣∣

becomes as small as possible at each step k. N(k), in
equation (2), can be expressed as a nonlinear function of
the state x(k), the weight coefficient of NN w(k), and the
threshold θ(k) as follows

N(k) = f
(
x(k), w(k), θ(k)

)
. (18)

An energy function E(k) is defined as the discrepancy
between the behavior of the nominal system according to
the LQR method and the one of the uncertain discrete–time
system of step k. At each step, the weight coefficients are
modified so as to minimize E(k) given as

E(k) � 1
2
(x̂(k+1) − x(k+1))T (x̂(k+1) − x(k+1)) (19)

811



E(k) can be calculated by using the observed state value,
x(k + 1). If E(k) can be minimized as small as possible,
the discrepancy

∣∣∣∣x̂(k + 1) − x(k + 1)
∣∣∣∣2 would also be

minimized so that the cost of the uncertain discrete–time
system is close to the cost of the nominal system based on
the LQR control.

In the learning of NN, the modification of weight coef-
ficient, ∆w(k), is given as

w(k + 1) = w(k) + ∆w(k), (20a)

∆w(k) = −η
∂E(k)
∂w(k)

, (20b)

∂E(k)
∂w(k)

=
∂E(k)
∂N(k)

∂N(k)
∂w(k)

, (20c)

where η is the learning ratio. The term
∂E(t)
∂N(k) can be

calculated from the energy function (19) as follows:
∂E(k)
∂N(k)

= −(
x̂(k + 1) − x(k + 1)

)
BD2E2x(k) (21)

and
∂N(k)
∂w(k) can be calculated using the chain rule on the

NN. From (18)∼(21), NN can be trained so as to decrease
the cost J on–line.

B. Multilayered Neural networks

The utilized NN are of a three–layer feed–forward net-
work as shown in Fig. 2. A linear function is utilized in the
neurons of the input and the hidden layers, and a sigmoid
function in the output layer. Inputs and outputs of each layer
can be described as follows

si
g(k) =

⎧⎪⎪⎨
⎪⎪⎩

Ui(k) {g = 1(input layer)}∑
w

(i,j)
1 (k)oj

1(k) {g = 2(hidden layer)}∑
w

(i,j)
2 (k)oj

2(k) {g = 3(output layer)},

oi
g(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si
1(k) {g = 1(input layer)}

si
2(k) + θ

(i)
1 (k) {g = 2(hidden layer)}

1 − e(−si
3(k)+θ

(i)
2 (k))

1 + e(−si
3(k)+θ

(i)
2 (k))

{g = 3(output layer)},

where si
g(k) and oi

g(k) are the input and output of neuron

i in the g–th layer at step k, w
(i,j)
g (k) indicates the weight

coefficient from neuron j in the g–th layer to neuron i in
the (g + 1)–th layer, Ui(k) is the input of NN, θ

(i)
g (k) is a

positive constant for the threshold of neuron i in the (g +
1)–th layer. As the additive gain perturbations defined in
the formula (2), the outputs of NN are set in the range of
[−1.0, 1.0].

IV. NUMERICAL EXAMPLE

In this section, the effectiveness of the proposed method
is verified with the discrete–time uncertain system given by

A =
[

0 1
1 0

]
, B =

[
1
2

]
, D1 =

[
2
2

]
,

E1 =
[

0.2 0
]
, D2 =

[
0.15 0.1

]
, E2 = 1,

F (k) = 1.0, N(k) =
[

N1(k) 0
0 N2(k)

]
,

1

s

S

1

h

H

1

t

T

w1
(1, 1)(k) O1 (k)

Ot (k)

OT (k)

w2
(1, 1)(k)U1 (k)

Uh (k)

UH (k)

w1
(s, h)(k)

input layer output layerhidden layer

w1
(S, H)(k)

1
(S)(k)

w2
(T, S)(k)

2
(T)(k)

threshold threshold

w2
(t, s)(k)

Fig. 2. Structure of the multilayered neural networks.

where N1(k) and N2(k) are the outputs of NN. The initial
system condition is x(0) = [4 − 4]T , and the weighting
matrices are chosen as Q = diag(1, 2) and R = 1.0,
respectively.

The state feedback control gain K based on the proposed
LMI design method with a neurocontroller is given by

K =
[
K1 K2

]
=

[ −4.596 × 10−1 −7.718 × 10−2
]
. (22)

Based on the LQR control (see (16) and (17)), the state
feedback control gain K̂ is calculated as follows:

K̂ =
[
K̂1 K̂2

]
=

[ −4.641 × 10−1 −7.971 × 10−17
]
. (23)

For the system without the proposed neurocontroller, that
is N(k) ≡ 0, the control input of the uncertain system is
described as

u(k) = K̄x(k), (24)

where the state feedback control gain K̄ is designed based
on the LMI approach [4] as

K̄ =
[
K̄1 K̄2

]
=

[ −4.289 × 10−1 −1.423 × 10−1
]
. (25)

The neurocontroller is composed of 30 neurons in the
hidden layer, and two neurons in the input and the output
layers, respectively. The state variables are used as the NN’
inputs and the learning ratio η = 0.1. The initial weights
are randomly set in the range of [−0.05, 0.05].

The cost J with the gain matrix K is 107.8402, while
the cost without the neurocontroller J̄ with K̄ is 178.0061.
Various uncertain systems were examined, by changing
F (k) is 0, exp(−0.5k), and sin(0.5πk). Table I shows that
the cost of the proposed system is smaller than that of the
system without the neurocontroller in all cases.

The simulation results (F (k) = 1) are shown in Fig. 3.
The response of the proposed neurocontroller is stabilized
faster than that without the neurocontroller (Fig. 3 (a)∼(c)).
Fig. 3(d) shows the feedback gain with the additive gain
K + K̃, i.e., K + D2N(k)E2. As other examples, the
simulation results are shown in Figs. 4, 5, 6. The response
of the proposed one is also stabilized faster than that of the
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Fig. 3. Simulation results by using the neu-
rocontroller (F = 1). (a), (b) State variables.
(c) Control input. (d) State feedback gain with
additive gain.
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Fig. 4. Simulation results by using the neu-
rocontroller (F = 0). (a), (b) State variables.
(c) Control input. (d) State feedback gain with
additive gain.
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Fig. 5. Simulation results by using the
neurocontroller (F = exp(−0.5k)). (a), (b)
State variables. (c) Control input. (d) State
feedback gain with additive gain.

controller without one. The proposed neurocontroller could
reduce the cost and compensate for the uncertainties of the
system.

Fig. 7 shows the response with the proposed neurocon-
troller and LQR control (F (k) = 1). The state variables
x1, x2 can trace the state variables x̂1, x̂2 well as shown
in Fig. 7(a), (b). Therefore, the proposed neurocontroller
can reduce the cost. Thus, K + K̃ changes in order to
compensate for the system uncertainties, and its response
can be close to the nominal response via the LQR design
method. Therefore, the energy function E(k) is adequate
for the learning algorithm.

V. CONCLUSIONS
The application of neural networks to the guaranteed

cost control problem of the discrete–time uncertain system
has been investigated. Using the LMI technique, the class
of the state feedback gain has been derived. Substituting

TABLE I

A COMPARISON OF THE COST IN EACH CONDITION.

The cost of the nominal system Ĵ = 110.8512
F (k) Learning ratio η With NN Without NN
1 0.1 107.8402 178.0061
0 0.05 112.3453 122.9732
exp(−0.5k) 0.09 110.1992 145.8423
sin(0.5πk) 0.8 119.8763 150.6293

the neurocontroller into the gain perturbations, the robust
stability of the closed–loop system is guaranteed even if the
systems include NN. Moreover, the reduction of the cost is
attained by using neurocontroller. The numerical example
have shown the excellent result that the NN have succeeded
in reducing the large cost caused by the LMI.
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