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Abstract
In this paper, the mixed H2/H∞ control problems
for the multiparameter singularly perturbed systems
(MSPS) are discussed. In order to obtain the strategies,
the algorithm for solving the cross–coupled algebraic
Riccati equations (CARE) is proposed. Since a new al-
gorithm is based on the Newton’s method, the proposed
method is computationally attractive and the imple-
mentation of the algorithm is easy. It is newly proven
that the new algorithm guarantees the quadratic con-
vergence. As a result, it is shown that the proposed
algorithm succeed in improving the convergence rate
dramatically compared with the previous results.

1 Introduction
The mixed H2/H∞ control problems have been studied
by using the several approaches. In particular, a state
feedback mixed H2/H∞ control problem has been for-
mulated as a dynamic Nash game as in [1]. The result-
ing feedback controller is characterized by the solution
to a pair of the cross–coupled algebraic Riccati equa-
tions (CARE). It is well known that the CARE plays
an important role to Nash games [1]. In order to ob-
tain the Nash equilibrium strategies, we must solve the
CARE. Various reliable approaches to the theory of the
CARE have been well–documented [2, 3, 7, 8]. These
methods consist of the Riccati iterations [3, 7, 9] and
the Lyapunov iterations [2, 8]. However, the conver-
gence of the Riccati iterations were not proved exactly.
Moreover, there exist no results for the convergence
rate of the Lyapunov iterations. In fact, it is easy to
verify that the convergence speed is very slow when we
run the numerical example [8].

Multimodeling stability, control and filtering problems
have been investigated extensively (see e.g., [4, 5]).
The multimodeling problems arise in large–scale dy-
namic systems. Linear quadratic Nash games for the
multiparameter singularly perturbed systems (MSPS)
have been studied by using composite controller design
[4]. When the parameters represent the small unknown
perturbations whose values are not known exactly, the
composite design is very useful. However, there ex-
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ists drawback for the composite design. Firstly, the
composite Nash equilibrium solution achieves only a
performance which is O(||µ||) (where ||µ|| denotes the
norm of the vector [ε1 ε2]) close to the full–order per-
formance. Secondly, since the closed–loop solution of
the reduced Nash problem depends on the path along
ε1/ε2 as ||µ|| → 0, we cannot expect that the closed–
loop solution of the full problem tends to the closed–
loop solution of the reduced problem [5]. Therefore,
as long as the small perturbation parameters εj are
known, much effort should be made towards finding the
exact strategies which guarantees the Nash equilibrium
without the ill–conditioning. From the above point of
view, it is easily found that the mixed H2/H∞ control
problems for the MSPS have also these disadvantages
because the H2/H∞ control strategies are obtained by
solving the CARE.

In this paper, the mixed H2/H∞ control problem for
infinite horizon MSPS is considered. It is worth point-
ing out that although the H∞ control problem for the
MSPS has been investigated [10], the mixed H2/H∞
control problems has never been studied. Newton’s
method is applied to the parameterized CARE. The re-
sulting algorithm consists of the generalized linear ma-
trix equation (GLME). The quadratic convergence of
the proposed algorithm is proved by using the Newton–
Kantorovich theorem [11]. The sufficient conditions are
provided such that the proposed algorithm converges to
a positive semidefinite solution. It should be noted that
the proof of the quadratic convergence property of the
resulting algorithm by using the Newton–Kantorovich
theorem has not been studied so far. Using the new
algorithm, we will improve the convergence speed com-
pared with the previous results [7, 8]. Finally, simula-
tion results show that the proposed algorithm succeed
in improving the convergence rate dramatically.

Notation: The notations used in this paper are fairly
standard. The superscript T denotes matrix transpose.
In denotes the n × n identity matrix. || · || denotes
its Euclidean norm for a matrix. detM denotes the
determinant of M . Reλ[M ] denotes the real part of
the eigenvalue of M . vecM denotes an ordered stack of
the columns of M [12]. ⊗ denotes Kronecker product.
Ulm denotes a permutation matrix in Kronecker matrix
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sense [12] such that UlmvecM = vecMT , (M ∈ Rl×m).
block− diag denotes the block diagonal matrix.

2 Problem Formulation
Consider a linear time–invariant MSPS

ẋ0 =
2∑

i=0

A0ixi +
2∑

i=1

D0iwi +
2∑

i=1

B0iui, (1a)

ε1ẋ1 = A10x0 + A11x1 + D11w1 + B11u1, (1b)
ε2ẋ2 = A20x0 + A22x2 + D22w2 + B22u2, (1c)

xj(0) = 0, j = 0, 1, 2,

with quadratic cost function

J(u, w) =
∫ ∞

0

zT zdt, z = Cx + Hu, (2)

where

C =
[

C10 C11 0
C20 0 C22

]
, H =

[
H1 0
0 H2

]
,

x =


 x0

x1

x2


 , w =

[
w1

w2

]
, u =

[
u1

u2

]
,

and xj ∈ Rnj , j = 0, 1, 2 are the state vector, uj ∈
Rmj , j = 1, 2 are the control input, wj ∈ Rlj , j = 1, 2
are the disturbance. Let us now assume that CTH = 0,
HT H = Im, m1 + m2 = m. All the matrices are
constant matrices of appropriate dimensions. ε1 and
ε2 are two small positive singular parameters of the
same order of magnitude such that

0 < k1 ≤ α ≡ ε1

ε2
≤ k2 < ∞. (3)

Note that the fast state matrices Ajj , j = 1, 2 may be
singular.

Let us introduce the partitioned matrices

Ae = Π−1
e A, De = Π−1

e D, Be = Π−1
e B,

Ue = Π−1
e UΠ−1

e , Se = Π−1
e SΠ−1

e ,

D =
[

D1 D2

]
, B =

[
B1 B2

]
,

D1 =


 D01

D11

0


 , D2 =


 D02

0
D22


 , B1 =


 B01

B11

0


 ,

B2 =


 B02

0
B22


 , Πe =


 In0 0 0

0 ε1In1 0
0 0 ε2In2


 ,

A =


 A00 A01 A02

A10 A11 0
A20 0 A22


 ,

U = DDT =


 U00 U01 U02

UT
01 U11 0

UT
02 0 U22


 ,

S = BBT =


 S00 S01 S02

ST
01 S11 0

ST
02 0 S22


 ,

Q = CT C =


 Q00 Q01 Q02

QT
01 Q11 0

QT
02 0 Q22


 .

We now consider the mixed H2/H∞ control problem
for the MSPS (1) under the following basic assumptions
[1].

Assumption 1 There exists an ||µ||∗ > 0 such that
the triplets (Ae, De, C) and (Ae, Be, C) are sta-
bilizable and detectable for all ||µ|| ∈ (0, ||µ||∗], where
||µ|| := √

ε1ε2.

Assumption 2 (i) The triplets (A11, D11, C11) and
(A11, B11, C11) are stabilizable and detectable.
(ii) The triplets (A22, D22, C22) and (A22, B22, C22)
are stabilizable and detectable.

These conditions are quite natural. The mixed H2/H∞
control problem is formulated as a two–player Nash
game [1] associated with a prescribed disturbance at-
tenuation level γ,

J1(u, w) =
∫ ∞

0

γ2wT wdt − J(u, w), (4a)

J2(u, w) = J(u, w). (4b)

The first is used to reflect an H∞ criterion, while the
second is used for the H2 optimality requirement. The
purpose is to find a linear feedback controller u∗ = Kx
such that

J1(u∗, w∗) ≤ J1(u∗, w), (5a)
J2(u∗, w∗) ≤ J2(u, w∗), (5b)

where w∗ represents the worst–case disturbance. When
J1(u∗, w∗) ≥ 0, we have

sup
w∈Hw

√
J(u∗, w)
||w|| ≤ γ, (6)

the H∞ criterion, where Hw denotes an appropriate
Hilbert space. The second Nash inequality shows that
u∗ regulates the state to zero with minimum output
energy when the disturbance is at its worst value w∗.
The following lemma is already known [1].

Lemma 1 Under Assumptions 1 and 2, there exists
an admissible controller such that (5) iff the following
full–order CARE

AT
e Xe + XeAe + Q + γ2XeUeXe

−XeSeYe − YeSeXe + YeSeYe = 0, (7a)
AT

e Ye + YeAe + Q − YeSeYe

+γ2YeUeXe + γ2XeUeYe = 0, (7b)
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have solutions Xe ≥ 0 and Ye ≥ 0, where

Xe =


 X00 ε1X

T
10 ε2X

T
20

ε1X10 ε1X11
√

ε1ε2X
T
21

ε2X20
√

ε1ε2X21 ε2X22


 ,

Ye =


 Y00 ε1Y

T
10 ε2Y

T
20

ε1Y10 ε1Y11
√

ε1ε2Y
T
21

ε2Y20
√

ε1ε2Y21 ε2Y22


 .

Then, the closed–loop strategies to the full–order prob-
lem are given by

w∗ = γ−2DT
e Xex, (8a)

u∗ = −BT
e Yex. (8b)

3 Asymptotic Structure

In order to obtain the solutions of the CARE (7), we
introduce the following useful lemma.

Lemma 2 The CARE (7) is equivalent to the follow-
ing GCMARE (9), respectively.

AT X + XT A + Q + γ−2XT UX

−XT SY − Y T SX + Y T SY = 0, (9a)
AT Y + Y T A + Q − Y T SY

+γ−2Y T UX + γ−2XT UY = 0, (9b)

where

Xe = ΠeX = XT Πe, Xii = XT
ii , i = 0, 1, 2,

X =


 X00 ε1X

T
10 ε2X

T
20

X10 X11
√

α
−1

XT
21

X20
√

αX21 X22


 ,

Ye = ΠeY = Y T Πe, Yii = Y T
ii , i = 0, 1, 2,

Y =


 Y00 ε1Y

T
10 ε2Y

T
20

Y10 Y11
√

α
−1

Y T
21

Y20
√

αY21 Y22


 .

Proof: The proof is identical to the proof of Lemma
3 in [7].

After substituting X and Y into the GCMARE (9), we
obtain the following equations as εj → +0, j = 1, 2,
where X̄lm, Ȳlm, lm = 00, 10, 20, 11, 21, 22 are the
0–order solutions of the GCMARE (9).

AT X̄ + X̄T A + Q + γ−2X̄T UX̄

−X̄T SȲ − Ȳ T SX̄ + Ȳ T SȲ = 0, (10a)
AT Ȳ + Ȳ T A + Q − Ȳ T SȲ

+γ−2Ȳ T UX̄ + γ−2X̄T UȲ = 0, (10b)

where

X̄ =


 X̄00 0 0

X̄10 X̄11 0
X̄20 0 X̄22


 , Ȳ =


 Ȳ00 0 0

Ȳ10 Ȳ11 0
Ȳ20 0 Ȳ22


 .

The following theorem will establish the relation be-
tween the solutions X and Y and the solutions X̄ and
Ȳ for the reduced–order equations (10).

Theorem 1 Assume that

det∇F(P̄) 
= 0, (11)

where X̄21 = 0, Ȳ21 = 0 and

∇F(P) =
∂vecF(P)
∂(vecP)T

= [(Ã − S̃P −J S̃PJ )T ⊗ IN ]U2N2N

+IN ⊗ (Ã − S̃P − J S̃PJ )T

−[(S̃JP − G̃PJ )T ⊗J ]U2N2N

−J ⊗ (S̃JP − G̃PJ )T , (12)
F(P) := ÃTP + PT Ã + Q̃ −PT S̃P

−JPT S̃JP −PTJ S̃PJ + JPT G̃PJ ,

P̄ :=
[

X̄ 0
0 Ȳ

]
, P =

[
X 0
0 Y

]
, Ã =

[
A 0
0 A

]
,

Q̃ =
[

Q 0
0 Q

]
, S̃ =

[ −γ−2U 0
0 S

]
, G̃ =

[
0 0
0 S

]
,

J =
[

0 IN

IN 0

]
, N = n0 + n1 + n2.

Under Assumptions 1 and 2, the GCMARE (9) admits
the solutions X and Y such that these matrices possess
a power series expansion at ||µ|| = 0. That is,

X = X̄ + O(||µ||), (13a)
Y = Ȳ + O(||µ||). (13b)

Proof: We apply the implicit function theorem [6] to
the GCMARE (9). To do so, it is enough to show that
the corresponding Jacobian is nonsingular at ||µ|| = 0.
It can be shown, after some algebra, that the Jacobian
of (9) in the limit as ||µ|| → +0 is given by

JP̄ = lim
||µ||→+0

∂vecF(P)
∂(vecP)T

= ∇F(P̄). (14)

Therefore, using the assumption (11), JP̄ is nonsingular
at ||µ|| = 0. The conclusion of Theorem 1 is obtained
directly by using the implicit function theorem.

4 Newton’s method

In order to improve the convergence rate of the Lya-
punov iterations [2], we propose the following new al-
gorithm which is based on the Newton’s method [11].

Φ(n)TP(n+1) + P(n+1)T Φ(n)

−Θ(n)TP(n+1)J − JP(n+1)T Θ(n) + Ξ(n) = 0,(15)
n = 0, 1, · · · ,

where

Φ(n) := Ã − S̃P(n) −J S̃P(n)J =

[
Φ(n)

1 0
0 Φ(n)

2

]
,

Θ(n) := S̃JP(n) − G̃P(n)J =

[
0 Θ(n)

1

Θ(n)
2 0

]
,
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Ξ(n) := Q̃ + P(n)T S̃P(n) + JP(n)T S̃JP(n)

+P(n)TJ S̃P(n)J −JP(n)T G̃P(n)J

=

[
Ξ(n)

1 0
0 Ξ(n)

2

]
,

Φ(n)
i :=


 Φ(n)

00i Φ(n)
01i Φ(n)

02i

Φ(n)
10i Φ(n)

11i µΦ(n)
12i

Φ(n)
20i µΦ(n)

21i Φ(n)
22i


 ,

Θ(n)
i :=


 Θ(n)

00i Θ(n)
01i Θ(n)

02i

Θ(n)
10i Θ(n)

11i µΘ(n)
12i

Θ(n)
20i µΘ(n)

21i Θ(n)
22i


 ,

Ξ(n)
i :=


 Ξ(n)

00i Ξ(n)
01i Ξ(n)

02i

Ξ(n)T
01i Ξ(n)

11i µΞ(n)T
21i

Ξ(n)T
02i µΞ(n)

21i Ξ(n)
22i


 , i = 1, 2,

P(n) =
[

X(n) 0
0 Y (n)

]
,

X(n) =


 X

(n)
00 ε1X

(n)T
10 ε2X

(n)T
20

X
(n)
10 X

(n)
11

√
α
−1

X
(n)T
21

X
(n)
20

√
αX

(n)
21 X

(n)
22


 ,

Y (n) =


 Y

(n)
00 ε1Y

(n)T
10 ε2Y

(n)T
20

Y
(n)
10 Y

(n)
11

√
α
−1

Y
(n)T
21

Y
(n)
20

√
αY

(n)
21 Y

(n)
22


 ,

and the initial condition P(0) has the following form

P(0) =
[

X(0) 0
0 Y (0)

]
,

X(0) =


 X̄00 ε1X̄

T
10 ε2X̄

T
20

X̄10 X̄11 0
X̄20 0 X̄22


 ,

Y (0) =


 Ȳ00 ε1Ȳ

T
10 ε2Ȳ

T
20

Ȳ10 Ȳ11 0
Ȳ20 0 Ȳ22


 .

The main result of this section is as follows.

Theorem 2 Let us assume that the condition (11)
holds. Under Assumptions 1 and 2, the new iterative
algorithm (15) converges to the exact solution P∗ of
the GCMARE (9) with the rate of the quadratic con-
vergence. Moreover, the unique bounded solution P∗ of
the GCMARE (9) is in the neighborhood of the matrix
P(0). That is, the following condition is satisfied.

||P(n) − P∗|| ≤ O(||µ||2n

), n = 0, 1, · · · , (16)

where

P = P∗ =
[

X∗ 0
0 Y ∗

]
, L := 6||S̃|| + 2||G̃||,

β := ||[∇F (P(0))]−1||, η := β · ||F(P(0))||, θ := βηL.

Proof: The proof is given directly by applying the
Newton–Kantorovich theorem [11] for the GCMARE
(9). Taking the partial derivative of the function F(P)

with respect to P yields (12). It is obvious that ∇F(P)
is continuous at for all P. Thus, it is immediately ob-
tained from the equation (12) that

||∇F (P1) −∇F(P2)|| ≤ L||P1 −P2||. (17)

Moreover, using the fact that

∇F(P(0)) = ∇F(P̄) + O(||µ||), (18)

it follows that ∇F(P(0)) is nonsingular under the con-
dition (11) for sufficiently small ||µ||. Therefore, there
exists β such that β = ||[∇F (P(0))]−1||. On the other
hand, since F(P(0)) = O(||µ||), there exists η such
that η = ||[∇F (P(0))]−1|| · ||F(P(0))|| = O(||µ||). Thus,
there exists θ such that θ = βηL < 2−1 because of
η = O(||µ||). Now, let us define

t∗ ≡ 1
βL [1 −√

1 − 2θ]. (19)

Using the Newton–Kantorovich theorem, we can show
that P∗ is the unique solution in the subset S ≡ { P :
||P(0) − P|| ≤ t∗ }. Moreover, using the Newton–
Kantorovich theorem, the error estimate is given by

||P(n) −P∗|| ≤ (2θ)2
n

2nβL , n = 1, · · · . (20)

Substituting 2θ = O(||µ||) into (20), we have (16).

Remark 1 It is well–known that the solution of the
GCMARE (9) is not unique and several non–negative
solutions exist. In this paper, it is very important to
note that if the initial conditions ΠeX

(0) and ΠeY
(0)

are the positive semidefinite solutions, the new algo-
rithm (15) converge to the required positive semidefinite
solution in the same way as the Lyapunov iterations.

5 High–Oreder Approximate H2/H∞ Control

In this section, the high–order approximate H2/H∞
control is given. Such control is obtained by using the
iterative solution (15).

w̄(n) = γ−2DT X(n)x, n = 0, 1, · · · , (21a)
ū(n) = −BT Y (n)x, n = 0, 1, · · · . (21b)

Corollary 1 Let us assume that the condition (11)
holds and Reλ[E−1(A+γ−2UX(0) −SY (0))] < 0. Un-
der Assumptions 1 and 2, the following result holds.

Ji(ū(n), w̄(n)) = Ji(u∗, w∗) + O(||µ||2n

), i = 1, 2,(22)
where Ji(u∗, w∗), i = 1, 2 are the equilibrium values
satisfying (5).

Proof: Since it is done by using the similar technique
proposed in [4], it is omitted.
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6 Example
In order to demonstrate the efficiency of our proposed
algorithm, we have run a numerical example. The sys-
tem matrix is given below [10]. It should be noted that
the system matrix is given as a modification of practical
systems (see e.g., Appendix A [4]) which is originated
in the power plant.

A00 =




0 0 4.5 0 1
0 0 0 4.5 −1
0 0 −0.05 0 −0.1
0 0 0 −0.05 0.1
0 0 32.7 −32.7 0


 ,

A01 =




0 0
0 0

0.1 0
0 0
0 0


 , A02 =




0 0
0 0
0 0

0.1 0
0 0


 ,

A10 =
[

0 0 0 0 0
0 0 −0.4 0 0

]
,

A20 =
[

0 0 0 0 0
0 0 0 −0.4 0

]
,

A11 = A22 =
[ −0.05 0.05

0 −0.1

]
,

D01 = D02 = B01 = B02 = 0 ∈ R5,

D11 = D22 =
[

0
0.05

]
, B11 = B22 =

[
0

0.1

]
,

C =
[

block− diag
(
1 1 1 1 1 2 2 2 2

)
0

]
∈ R11×9,

H =
[

0
block− diag

(
1 1

) ]
∈ R11×2.

The H∞ control problem has been considered in [10].
In this paper, in order to guarantee the optimality for
the cost function, the H2/H∞ control is applied to the
MSPS (1). The numerical results are obtained for small
parameter ε1 = ε2 = 10−3. It is found that there exists
the solution of the H∞ control problem for all γ ∈
{γ | 0.501673 < γ} via the MATLAB. Now, we choose
as γ = 1.0 to solve the GCMARE (9). We give the
initial condition (10) and solutions of the GCMARE
(9) as the convergence solution P(5), respectively.

We find that the solution of the GCMARE (9)
converges to the exact solution with accuracy of
||F(P(n))|| < e−10 after 5 iterative iterations. In order
to verify the exactitude of the solution, we calculate
the remainder per iteration by substituting P(n) into
the GCMARE (9) in Table 1, where we present results
for the error ||F(P(n))||. It can be seen that the ini-
tial guess (10) for the algorithm (15) is quite good and
the proposed algorithm has the quadratic convergence
property. Table 2 shows the results of iterations for
both the Lyapunov iterations and the proposed algo-
rithm. On the other hand, in Table 3, we give the re-
sults of the CPU time when we have run the Lyapunov

iterations versus Newton’s method. The CPU time rep-
resents the average based on the computations of 10
runs. It is easy to verify that the convergence speed of
the Lyapunov iterations is slow and needs more CPU
times compared with the Newton’s method. Therefore,
the simulation results have been shown that the pro-
posed algorithm succeed in improving the convergence
rate dramatically and it does not need to much CPU
time compared with the Lyapunov iterations.

Table 1. Errors per Iteration
i ||F(P(n))||
0 9.1844e − 01
1 5.3443e − 02
2 4.5728e − 04
3 1.7249e − 10
4 5.6420e − 12

Table 2. Number of iterations
ε Lyapunov iterations Newton’s method

10−2 29 6
10−3 29 5
10−4 29 4
10−5 29 3
10−6 29 3
10−7 29 3
10−8 29 2

Table 3. CPU time [s]
ε Lyapunov iterations Newton’s method

10−2 3.8047 3.2750
10−3 3.7610 3.4187
10−4 3.2421 2.8891
10−5 3.6235 3.2343
10−6 4.1844 3.8234
10−7 3.5968 3.2079
10−8 3.0469 2.6375

7 Conclusion
The mixed H2/H∞ control problem for infinite horizon
MSPS have been studied. The new algorithm to solve
the GCMARE which is based on the Newton’s method
has been newly proposed. Consequently, the resulting
algorithm achieves the quadratic convergence. More-
over, it is very important to note that the resulting
algorithm is quite different from the existing method
[7]. Comparing with Lyapunov iterations [2], even if
the singular perturbation parameter is extremely small,
we have succeeded in improving the convergence rate
dramatically.

It should be noted that the matrix computation of
our algorithm needs two times dimension of the full–
order CMARE compared with the Lyapunov iterations.
Thus, it seems to be formidable for the proposed algo-
rithm. This drawback must be avoided by all means
because the MSPS includes the numerous fast subsys-
tems. This problem will be addressed in future inves-
tigations.
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X
(0) =

[
X̄00 ε1X̄T

10 ε2X̄T
20

X̄10 X̄11 0
X̄20 0 X̄22

]
, X̄00 =

[
3.7133e + 00 3.6038e − 01 3.2010e + 01 6.4624e − 14 2.4552e − 01
3.6038e − 01 3.7133e + 00 2.0421e − 13 3.2010e + 01 −2.4552e − 01
3.2010e + 01 1.3319e − 13 6.5090e + 02 −2.0457e + 02 4.8400e + 00

−2.8560e − 13 3.2010e + 01 −2.0457e + 02 6.5090e + 02 −4.8400e + 00
2.4552e − 01 −2.4552e − 01 4.8400e + 00 −4.8400e + 00 1.7478e + 00

]
,

X̄10 =
[

5.2916e + 01 −9.0222e − 14 1.0465e + 03 −3.3809e + 02 7.9970e + 00
1.4558e + 01 8.3316e − 14 2.5005e + 02 −9.2913e + 01 2.1958e + 00

]
,

X̄20 =
[

9.1116e − 14 5.2916e + 01 −3.3809e + 02 1.0465e + 03 −7.9970e + 00
−1.2361e − 13 1.4558e + 01 −9.2913e + 01 2.5005e + 02 −2.1958e + 00

]
,

X̄11 =
[

3.6935e + 01 7.9373e + 00
7.9373e + 00 1.6947e + 01

]
, X̄22 =

[
3.6935e + 01 7.9373e + 00
7.9373e + 00 1.6947e + 01

]
,

Y (0) =

[
Ȳ00 ε1Ȳ T

10 ε2Ȳ T
20

Ȳ10 Ȳ11 0
Ȳ20 0 Ȳ22

]
, Ȳ00 =

[
3.8150e + 00 3.8110e − 01 3.2877e + 01 2.1161e − 13 2.4431e − 01
3.8110e − 01 3.8150e + 00 1.6920e − 13 3.2877e + 01 −2.4431e − 01
3.2877e + 01 1.8630e − 13 6.6051e + 02 −2.0697e + 02 4.8362e + 00

−1.7764e − 15 3.2877e + 01 −2.0697e + 02 6.6051e + 02 −4.8362e + 00
2.4431e − 01 −2.4431e − 01 4.8362e + 00 −4.8362e + 00 1.7547e + 00

]
,

Ȳ10 =
[

5.5739e + 01 1.4397e − 13 1.0832e + 03 −3.5113e + 02 8.2091e + 00
1.7378e + 01 8.6035e − 14 2.9194e + 02 −1.0976e + 02 2.5717e + 00

]
,

Ȳ20 =
[

2.2926e − 13 5.5739e + 01 −3.5113e + 02 1.0832e + 03 −8.2091e + 00
−3.6731e − 14 1.7378e + 01 −1.0976e + 02 2.9194e + 02 −2.5717e + 00

]
,

Ȳ11 =
[

3.7496e + 01 9.0012e + 00
9.0012e + 00 1.9007e + 01

]
, Ȳ22 =

[
3.7496e + 01 9.0012e + 00
9.0012e + 00 1.9007e + 01

]
,

X(5) =

[
X

(5)
00

ε1X
(5)T
10

ε2X
(5)T
20

X
(5)
10

X
(5)
11

√
α−1X

(5)T

21
X

(5)
20

√
αX

(5)
21 X

(5)
22

]
, X

(5)
00

=

[
3.7318e + 00 3.5834e − 01 3.2414e + 01 −1.3395e − 01 2.4760e − 01
3.5834e − 01 3.7318e + 00 −1.3395e − 01 3.2414e + 01 −2.4760e − 01
3.2414e + 01 −1.3395e − 01 6.6025e + 02 −2.1004e + 02 4.9057e + 00

−1.3395e − 01 3.2414e + 01 −2.1004e + 02 6.6025e + 02 −4.9057e + 00
2.4760e − 01 −2.4760e − 01 4.9057e + 00 −4.9057e + 00 1.7472e + 00

]
,

X
(5)
10

=
[

5.3086e + 01 −5.6524e − 02 1.0556e + 03 −3.4322e + 02 6.6619e + 00
1.4558e + 01 −3.5609e − 14 2.5196e + 02 −9.3934e + 01 1.7101e + 00

]
,

X
(5)
20

=
[ −5.6524e − 02 5.3086e + 01 −3.4322e + 02 1.0556e + 03 −6.6619e + 00

−1.0252e − 14 1.4558e + 01 −9.3934e + 01 2.5196e + 02 −1.7101e + 00

]
,

X
(5)
11

=
[

3.8681e + 01 8.4009e + 00
8.4009e + 00 1.7076e + 01

]
, X

(5)
22

=
[

3.8681e + 01 8.4009e + 00
8.4009e + 00 1.7076e + 01

]
, X

(5)
21

=
[ −5.6223e − 01 −1.5430e − 01

−1.5430e − 01 −4.2769e − 02

]
,

Y
(5) =

[
Y

(5)
00

ε1Y
(5)T
10

ε2Y
(5)T
20

Y
(5)
10

Y
(5)
11

√
α−1Y

(5)T
21

Y
(5)
20

√
αY

(5)
21

Y
(5)
22

]
, Y

(5)
00

=

[
3.8344e + 00 3.7844e − 01 3.3299e + 01 −1.4166e − 01 2.4625e − 01
3.7844e − 01 3.8344e + 00 −1.4166e − 01 3.3299e + 01 −2.4625e − 01
3.3299e + 01 −1.4166e − 01 6.7015e + 02 −2.1260e + 02 4.8999e + 00

−1.4166e − 01 3.3299e + 01 −2.1260e + 02 6.7015e + 02 −4.8999e + 00
2.4625e − 01 −2.4625e − 01 4.8999e + 00 −4.8999e + 00 1.7536e + 00

]
,

Y
(5)
10

=
[

5.5945e + 01 −6.8681e − 02 1.0931e + 03 −3.5668e + 02 6.8048e + 00
1.7378e + 01 −2.8948e − 14 2.9421e + 02 −1.1096e + 02 1.9823e + 00

]
,

Y
(5)
20

=
[ −6.8681e − 02 5.5945e + 01 −3.5668e + 02 1.0931e + 03 −6.8048e + 00

1.3661e − 14 1.7378e + 01 −1.1096e + 02 2.9421e + 02 −1.9823e + 00

]
,

Y
(5)
11 =

[
3.9351e + 01 9.5556e + 00
9.5556e + 00 1.9175e + 01

]
, Y

(5)
22 =

[
3.9351e + 01 9.5556e + 00
9.5556e + 00 1.9175e + 01

]
, Y

(5)
21 =

[ −5.9900e − 01 −1.8561e − 01
−1.8561e − 01 −5.6336e − 02

]
.
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