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Abstract

In this paper, we study the optimal Kalman filtering
problem for multiparameter singularly perturbed sys-
tem (MSPS). The attention is focused on the design of
the high–order approximate Kalman filters. It is shown
that the resulting filters in fact remove ill–conditioning
of the original full–order singularly perturbed Kalman
filters. In addition the resulting filters can be used
compared with the previously proposed result even if
the Hamiltonian matrices for the fast subsystems have
eigenvalues in common.

1 Introduction
Recently, filtering problems for the multiparameter sin-
gularly perturbed system (MSPS) have been investi-
gated [3, 4, 10, 12]. Such problems arise in large scale
dynamic systems. For example, the MSPS in prac-
tice is illustrated by the passenger car model [4]. A
popular approach to deal with the filtering problem
for the MSPS is the two–time–scale design method
[1, 2]. However, it is well–known that an O(||µ||) (where
µ =

[
ε1 ε2

]
) accuracy is very often not sufficient [4].

In order to obtain the optimal solution of the filtering
problems, we must solve the multiparameter algebraic
Riccati equation (MARE), which are parameterized by
small positive same order parameters ε1 and ε2. Var-
ious reliable approaches to the theory of the algebraic
Riccati equation (ARE) have been well documented
in many literatures (see e.g., [5, 6]). One of the ap-
proaches is the invariant subspace approach which is
based on the Hamiltonian matrix [5]. However, such
an approach is not adequate to the MSPS since for
the computed solution there is no guarantee of symme-
try when the ARE is ill–conditioned [5]. In order to
avoid the numerical stiffness, the recursive algorithms
for solving the MARE and the generalized multiparam-
eter algebraic Lyapunov equation (GMALE) have been
developed [10]. However, there exists the drawback
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that the recursive algorithm converges only to the ap-
proximation solution since the convergence of the re-
cursive algorithm depend on the zero–order solutions.
On the other hand, the exact slow–fast decomposition
method for solving the MARE has been proposed in
[4]. However, the resulting algorithm is restricted to
the MSPS such that the Hamiltonian matrices for the
fast subsystems have no eigenvalues in common ( As-
sumption 5, [4]). Thus, we can not apply the technique
proposed in [4] to the practical system, such as the
Pareto optimal strategy of a multi–area power system
[1]. Furthermore, so far, the loss of steady–state mean
square error between the optimal filter and the result-
ing filter which is based on the exact decomposition
technique has not been investigated.

In this paper, we study the optimal Kalman filtering
problem for the MSPS. The results obtained are valid
for steady state. We first investigate the uniqueness
and boundedness of the solution to such MARE and
establish its asymptotic structure. The proof of the ex-
istence of the solution to the MARE with asymptotic
expansion is obtained by an implicit function theorem
[2]. The main contribution of this paper is to pro-
pose the high–order approximate Kalman filters. Fur-
thermore, we claim that the proposed filters can be
constructed even if the Hamiltonian matrices for the
fast subsystems have eigenvalues in common compared
with the previous result [4]. Therefore, our proposed
algorithm is extremely useful since the proposed algo-
rithm apply to more realistic MSPS. As another im-
portant feature, it is shown that the high–order ap-
proximate Kalman filter achieves a performance which

is
O(||µ||2i+1−1)

2i
close to the optimal mean square er-

ror. It is worth pointing out that the feature of the
O(||µ||2i+1−1)

2i
sub–optimality is established for the first

time for the optimal filtering problem of the MSPS [4].

Notation: The superscript T denotes matrix trans-
pose. detL denotes the determinant of square matrix
L. In denotes the n × n identity matrix. || · || de-
notes its Euclidean norm for a matrix. block− diag
denotes the block diagonal matrix. vecM denotes
the column vector of the matrix M [7]. ⊗ denotes
the Kronecker product. Ulm denotes a permutation
matrix in the Kronecker matrix sense [7] such that
UlmvecM = vecMT , M ∈ Rl×m.
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2 Optimal Kalman Filtering Problem

We consider the linear time–invariant MSPS

ẋ0 = A00x0 +
2∑

j=1

A0jxj +
2∑

j=1

D0jwj , (1a)

εiẋi = Ai0x0 + Aiixi + Diiwi, i = 1, 2, (1b)

with the corresponding measurements

yi = Ci0x0 + Ciixi + vi, i = 1, 2, (2)

where xi ∈ Rni, i = 0, 1, 2 are state vectors,
yi ∈ Rpi , i = 1, 2 are system measurements, wi ∈
Rqi , i = 1, 2 and vi ∈ Rri , i = 1, 2 are zero–mean sta-
tionary, Gaussian, mutually uncorrelated, white noise
stochastic processes with intensities Wi ≥ 0 and Vi > 0,
respectively. All the matrices are constant matrices of
appropriate dimensions.

ε1, ε2 are the small positive singular parameters of the
same order of magnitude [1] such that

0 < k ≤ α :=
ε1

ε2
≤ k̄ < ∞. (3)

That is, we assume that the ratio of ε1 and ε2 is
bounded by some positive constants. In this paper we
design the high–order approximate Kalman filter to es-
timate system states xi. The optimal Kalman filter of
(1) and (2) is given by [4]

ξ̇0 = A00ξ0 +
2∑

j=1

A0jξj +
2∑

j=1

K0jνj, (4a)

εiξ̇i = Ai0ξ0 + Aiiξi +
2∑

j=1

Kijνj, (4b)

νi = yi − Ci0ξ0 − Ciiξi, i = 1, 2, (4c)

where the filter gains Kij are obtained from

Ke = XeC
T V −1 = Φ−1

e Kopt = Φ−1
e XCT V −1

= Φ−1
e


 K01 K02

K11 K12

K21 K22


 , (5)

Φe :=
[

In0 0
0 Πe

]
,

Πe := block− diag
(

ε1In1 ε2In2

)
.

The matrix Xe is the positive semidefinite stabilizing
solution of the following MARE

AeXe + XeA
T
e − XeSXe + Ue = 0, (6)

where

Ae :=
[

A00 A0f

Π−1
e Af0 Π−1

e Af

]
, A0f :=

[
A01 A02

]
,

Af0 :=
[

AT
10 AT

20

]T
,

Af := block − diag
(

A11 A22

)
,

C :=
[

C0 Cf

]
, C0 :=

[
CT

10 CT
20

]T
,

Cf := block− diag
(

C11 C22

)
,

De :=
[

D0

Π−1
e Df

]
, D0 :=

[
D01 D02

]
,

Df := block− diag
(

D11 D22

)
,

W := block− diag
(

W1 W2

)
,

V := block− diag
(

V1 V2

)
,

S := CTV −1C =
[

S00 S0f

ST
0f Sf

]
,

S00 :=
2∑

j=1

CT
j0V

−1
j Cj0,

S0f :=
[

S01 S02

]
=

[
CT

10V
−1
1 C11 CT

20V
−1
2 C22

]
,

Sf := block − diag
(

S11 S22

)
= block− diag

(
CT

11V
−1
1 C11 CT

22V
−1
2 C22

)
,

Ue := DeWDT
e =

[
U00 U0fΠ−1

e

Π−1
e UT

0f Π−1
e UfΠ−1

e

]
,

U00 :=
2∑

j=1

D0jWjD
T
0j ,

U0f :=
[

U01 U02

]
=

[
D01W1D

T
11 D02W2D

T
22

]
,

Uf := block − diag
(

U11 U22

)
= block− diag

(
D11W1D

T
11 D22W2D

T
22

)
.

Since the matrices Ae and De contain the term of ε−1
i –

order, a solution Xe of the MARE (6), if it exists, must
contain terms of order εi. Taking this fact into consid-
eration, we look for a solution Xe to the MARE (6)
with the structure

Xe :=
[

X00 X0f

XT
0f Π−1

e Xf

]
,

X00 = XT
00, Π−1

e Xf = XT
f Π−1

e ,

X0f :=
[

XT
01

XT
02

]T

, Xf :=


 X11

√
αX12

1√
α

XT
12 X22


 .

In the following analysis, we need some assumptions.

Assumption 1 The triples (AT
ii , CT

ii , DT
ii), i = 1, 2

are stabilizable and detectable.

Assumption 2

rank
[

sIn0 − AT
00 −AT

f0 CT
0

−AT
0f −AT

f CT
f

]
= n̄, (7a)

rank
[

sIn0 − A00 −A0f D0

−Af0 −Af Df

]
= n̄, (7b)

with ∀s ∈ C, Re[s] ≥ 0 and n̄ :=
2∑

j=0

nj .
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Assumption 3 The Hamiltonian matrices Tii, i =
1, 2 are nonsingular, where

Tii :=
[

AT
ii −Sii

−Uii −Aii

]
.

First, we investigate the asymptotic structure of the
MARE (6). In order to avoid the ill–conditioned caused
by the large parameter ε−1

i which is included in the
MARE (6), we introduce the following useful lemma
[10, 12].

Lemma 1 The MARE (6) is equivalent to the follow-
ing generalized multiparameter algebraic Riccati equa-
tion ( GMARE ) (8)

F(X) = AXT + XAT − XSXT + U = 0, (8)

where A = ΦeAe, U = ΦeUeΦe and X = ΦeXe.

The GMARE (8) can be partitioned into

f1 = A00X00 + X00A
T
00 + A0fXT

0f + X0fAT
0f

−X00S00X00 − X0f SfXT
0f

−X00S0f XT
0f − X0fST

0f X00 + U00 = 0, (9a)

f2 = A0fXT
f + A00X0f Πe + X00A

T
f0 + X0fAT

f

−X00S00X0fΠe − X0fST
0f X0fΠe

−X00S0f XT
f − X0f SfXT

f + U0f = 0, (9b)

f3 = AfXT
f + XfAT

f + Af0X0f Πe + ΠeX
T
0f AT

f0

−Xf SfXT
f − ΠeX

T
0fS0f XT

f − XfST
0f X0fΠe

−ΠeX
T
0fS00X0fΠe + Uf = 0. (9c)

It is assumed that the limit of α exists as ε1 and ε2

tend to zero (see e.g., [1, 2]), that is

ᾱ = lim
ε1→+0
ε2→+0

α. (10)

Let X̄00, X̄f0 and X̄f be the limiting solutions of the
above equation (9) as ε1 → +0, ε2 → +0, then we
obtain the following equations

A00X̄00 + X̄00A
T
00 + A0f X̄T

0f + X̄0fAT
0f

−X̄00S00X̄00 − X̄0f Sf X̄T
0f

−X̄00S0f X̄T
0f − X̄0f ST

0f X̄00 + U00 = 0, (11a)

A0f X̄T
f + X̄00A

T
f0 + X̄0f Af

−X̄00S0f X̄T
f − X̄0fSf X̄T

f + U0f = 0, (11b)

Af X̄T
f + X̄fAT

f + AT
f X̄f − X̄fSf X̄T

f + Uf = 0,(11c)

where

X̄f :=


 X̄11

√
ᾱX̄12

1√
ᾱ

X̄T
12 X̄22


 , (12)

X̄ii = X̄T
ii , i = 0, 1, 2.

Note that the ARE (11c) is asymmetric. However, it
can be seen that the ARE (11c) admits at least a sym-
metric positive semidefinite stabilizing solution as fol-
lows [12].

Lemma 2 Under Assumption 1, the ARE (11c) ad-
mits a unique symmetric positive semidefinite stabiliz-
ing solution X̄f which can be written as

X̄∗
f := block− diag

(
X̄∗

11 X̄∗
22

)
, (13)

where X̄∗
ii is a unique symmetric positive semidefinite

stabilizing solution of the following AREs respectively

AiiX̄
∗
ii + X̄∗

iiA
T
ii − X̄∗

iiSiiX̄
∗
ii + Uii = 0, i = 1, 2. (14)

Substituting the solution of (11c) into (11b) and sub-
stituting X̄∗

0f into (11a) and making some lengthy cal-
culations (the detail is omitted for brevity), we obtain
the following 0–order equations (15)

AX̄∗
00 + X̄∗

00AT − X̄∗
00SX̄∗

00 + U = 0, (15a)

X̄∗
0f =

[ −X̄00 In0

]
H2H

−1
4

[
In̄

X̄f

]
(15b)

Af X̄∗
f + X̄∗

f AT
f − X̄∗

f Sf X̄∗
f + Uf = 0, (15c)

where

H1 :=
[

AT
00 −S00

−U00 −A00

]
, H2 :=

[
AT

f0 −S0f

−U0f −A0f

]
,

H3 :=
[

AT
0f −ST

0f

−UT
0f −Af0

]
, H4 :=

[
AT

f −Sf

−Uf −Af

]
,

H0 :=
[ AT −S

−U −A
]

= H1 − H2H
−1
4 H3.

Note that Assumption 1 ensures that the matrix
Af − X̄∗

f Sf is nonsingular because the matrices Aii −
X̄∗

iiSii, i = 1, 2 are nonsingular. Moreover, Assump-
tion 3 ensures that H4 are also nonsingular because
ΩT H4Ω = block− diag

(
T11 T22

)
, where

Ω =




In1 0 0 0
0 0 In2 0
0 In1 0 0
0 0 0 In2


 . (16)

In the following we established the relation between the
GMARE (8) and the 0–order equations (15). Before
doing that, we give the results for the ARE (15a) [12].

Lemma 3 Under Assumptions 1–3, there exist a ma-
trix C ∈ Rp̄×n0 , p̄ := p1 + p2 and a matrix D ∈
Rn0×q̄, q̄ := q1 + q2 such that S = CT V −1C, U =
DWDT . Moreover, the triple (AT , CT , DT ) is stabi-
lizable and detectable.

Since the triple (AT , CT , DT ) is stabilizable and de-
tectable, the ARE (15a) admits a unique stabilizing
positive semidefinite symmetric solution, denoted by
X̄∗

00, and A− X̄∗
00S is stable.

The limiting behavior of Xe as the parameter ||µ|| =√
ε1ε2 → +0 is described by the following theorem.
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Theorem 1 Under Assumptions 1–3, there exists a
small σ∗ such that for all ||µ|| ∈ (0, σ∗) the MARE
(6) admits a symmetric positive semidefinite stabiliz-
ing solution Xe which can be written as

Xe = Φ−1
e

[
X̄∗

00 + O(||µ||) X̄∗
0f + O(||µ||)

Πe{X̄∗
0f + O(||µ||)}T X̄∗

f + O(||µ||)
]

=
[

X̄∗
00 + O(||µ||) X̄∗

0f + O(||µ||)
{X̄∗

0f + O(||µ||)}T Π−1
e {X̄∗

f + O(||µ||)}
]

. (17)

Proof: We apply the implicit function theorem [2]
to (9). To do so, it is enough to show that the corre-
sponding Jacobian is nonsingular at ||µ|| = 0. It can be
shown, after some algebra, that the Jacobian of (9) in
the limit as ||µ|| → 0 is given by

J = ∇F =
∂vec(f1, f2, f3)

∂vec(X00, X0f , Xf )T

∣∣∣
φ

=


 J00 J01 0

J10 J11 J12

0 0 J22


 , (18)

φ = (||µ|| = 0, X00 = X̄∗
00, X0f = X̄∗

0f , Xf = X̄∗
f ),

where

J00 = Γ1 ⊗ In0 + In0 ⊗ Γ1,

J01 = Γ3 ⊗ In0 + (In0 ⊗ Γ3)Un0n̂,

J10 = Γ2 ⊗ In0 , J11 = Γ4 ⊗ In0 ,

J12 = (In̂ ⊗ Γ3)Un̂n̂, J22 = Γ4 ⊗ In̂ + In̂ ⊗ Γ4,

Γ1 = A00 − X̄∗
00S00 − X̄∗

0f ST
0f ,

Γ3 = A0f − X̄∗
00S0f − X̄∗

0f Sf .

The Jacobian (18) can be expressed as

detJ = detJ22 · detJ11 · det[Γ0 ⊗ In0 + In0 ⊗ Γ0], (19)

where Γ0 := Γ1 − Γ2Γ−1
4 Γ3. Obviously, Jii, j = 1, 2

are nonsingular because the matrix Γ4 = Af − X̄∗
f Sf

is stable under Assumption 1. After some straightfor-
ward but tedious algebra, we see that A − X̄∗

00S =
Γ1 − Γ2Γ−1

4 Γ3 = Γ0. Therefore, the matrix Γ0 is also
stable if Assumption 2 holds. Thus, detJ 
= 0, i.e., J
is nonsingular at ||µ|| = 0. The conclusion of Theorem
2 is obtained directly by using the implicit function
theorem.

The remainder of the proof is to show that Xe is the
positive semidefinite stabilizing solution. Firstly, from
the matrix (17), we get

zT Xez =
[

zT
1 zT

2

] [
X̄∗

00 X̄∗
0f

X̄∗T
0f Π−1

e X̄∗
f

] [
z1

z2

]
= Π−1

e {zT
2 X̄∗

f z2 + O(||µ||)},
where zT =

[
zT
1 zT

2

] ∈ Rn̄. Therefore, Xe ≥ 0 for
small ||µ|| because the matrix X̄∗

f is the positive semidef-
inite stabilizing solution of the ARE (15c). Secondly,

using (17), we obtain

Ae − XeS = Φ−1
e

([
Γ1 Γ2

Γ3 Γ4

]
+ O(||µ||)

)
.

Taking into account the fact that Γ4 and Γ0 are stable
matrix, if the parameter ||µ|| is very small, Ae −XeS is
stable by applying the Theorem 1 in [1].

3 High–order Approximate Kalman Filters for
the Nonstandard MSPS

The required solution of the MARE (6) exists under As-
sumptions 1–3. Our attention is focused on the design
of the high–order approximate Kalman filters. Such
filters are obtained by performing the algorithm which
is based on the Kleinman algorithm [6]. If ||µ|| is very
small, it is obvious that the high–order approximate
Kalman filter gain (5) can be obtained as

K(i)
app = X(i)CT V −1, (20)

where

(A − X(i)S)X(i+1)T + X(i+1)(A − X(i)S)T

+X(i)SX(i)T + U = 0, i = 0, 1, 2, · · · , (21a)

X(i) =

[
X

(i)
00 X

(i)
0f

ΠeX
(i)T
0f X

(i)
f

]
, (21b)

with the initial condition obtained from

X(0) = Xapp =
[

X̄∗
00 X̄∗

0f

ΠeX̄
∗T
0f X̄∗

f

]
. (22)

The Kleinman algorithm (21) which is based on the
generalized multiparameter algebraic Lyapunov equa-
tion (GMALE) has the feature given in the following
theorem.

Theorem 2 Under Assumptions 1–3, there exists a
small σ̄ such that for all ||µ|| ∈ (0, σ̄), σ̄ ≤ σ∗ the
iterative algorithm (21) converges to the exact solution
of Xe with the rate of quadratic convergence. That is,
the following conditions are satisfied.

||X(i) − X|| ≤ O(||µ||2i

)
2iβγ

=
O(||µ||2i

)
2i

, i = 0, 1, · · · , (23)

where

γ := 2||S|| < ∞, β := ||[∇F (X(0))]−1||,
η := β · ||F(X(0))||, θ := βηγ, ∇F(X) =

∂vecF(X)
∂(vecX)T

.

Proof: The proof follows directly by applying
Newton–Kantorovich theorem [9, 11] for the GMARE
(8). We now verify that function F(X) is differentiable
on a certain convex set. Using the fact that

∇F(X) = (A − SX) ⊗ In̄ + [In̄ ⊗ (A − SX)]Un̄n̄,

2456
Proceedings of the American Control Conference

Denver, Colorado June 4-6, 2003



we have

||∇F (X1) −∇F(X2)|| ≤ γ||X1 − X2||,
where γ = 2||S||. Moreover, using the fact that

∇F(X(0)) =
[

Γ1 Γ2

Γ3 Γ4

]
⊗ In̄ + In̄ ⊗

[
Γ1 Γ2

Γ3 Γ4

]
Un̄n̄,

it follows that ∇F(X(0)) is nonsingular because Γ4 and
Γ0 are stable under Assumptions 1 and 2 (see e.g.,
Theorem 1 [1]). Therefore, there exists β such that
β = ||[∇F (X(0))]−1||. On the other hand, we verify
that F(X(0)) = O(||µ||). Hence, there exists η such
that ||[∇F (X(0))]−1|| · ||F(X(0))|| = η = O(||µ||). Thus,
there exists θ such that θ = βγη < 2−1 because of
η = O(||µ||). Using Newton–Kantorovich theorem [9],
the strict error estimate is given by (23). Therefore,
the proof is completed.

When ||µ|| is sufficiently small, we know from Theorem
3 that the resulting filter gain (20) will be sufficiently
close to the optimal Kalman filters gain (5).

Theorem 3 Under Assumptions 1–3, the use of the
high–order approximate Kalman filter gain (20) results
in

Trace We = Trace Xe +
O(||µ||2i+1−1)

2i
, i = 0, 1, · · · ,(24)

where Trace Xe is the optimal steady–state mean square
error, while Trace We is the high–order sub–optimal
steady–state mean square error and We is a positive
semidefinite solution of the following multiparameter
algebraic Lyapunov equation ( MALE )

(Ae − X(i)
e S)We + We(Ae − X(i)

e S)T

+X(i)
e SX(i)

e + Ue = 0, (25)

with X
(i)
e := Φ−1

e X(i).

Proof: Subtracting (6) from (25) we find that Ve =
We − Xe satisfies the following MALE

(Ae − X(i)
e S)Ve + Ve(Ae − X(i)

e S)T

+(Xe − X(i)
e )S(Xe − X(i)

e ) = 0. (26)

Similarly, subtracting (6) from (21a) we also get the
MALE

(Ae − X(i)
e S)(X(i+1)

e − Xe)
+(X(i+1)

e − Xe)(Ae − X(i)
e S)T

+(Xe − X(i)
e )S(Xe − X(i)

e ) = 0. (27)

Therefore, it is easy to verify that Ve = X
(i+1)
e − Xe

[8] because Ae −X
(i)
e S is stable from Theorem 1 in [1].

Consequently we obtain that

||Ve|| = ||We − Xe|| = ||X(i+1)
e − Xe||

≤ ||Φ−1
e || · ||X(i+1) − X|| ≤ ||µ||−1||X(i+1) − X||

=
O(||µ||2i+1−1)

2i
. (28)

Hence

Ve = We − Xe =
O(||µ||2i+1−1)

2i
, (29)

which implies (24).

4 Numerical Example

In order to demonstrate the efficiency of our proposed
algorithm, we have run a numerical example. The sys-
tem matrix is given as a modification of [4].

A00 =




0 0 1 0.8755
0 0 1 −1.79
0 0 1 0
0 0 0 1


 ,

A01 =




0 −1
0 0
0 0
0 0


 , A02 =




0 0
0 −1
0 0
0 0


 ,

A10 = A20 = 0 ∈ R2×4,

A11 = A22 =
[

0 6.0435
−6.0435 0

]
,

D01 = D02 = 0 ∈ R4, D11 = D22 =
[ −0.1 0

]T
,

C10 =
[

1 0 0 0
0 1 0 1

]
, C20 =

[
1 0 0 0
1 0 1 0

]
,

C11 = C22 = I2, V1 = V2 = I2, W1 = W2 = 1.

The small parameters are chosen as ε1 = ε2 = 0.1.
It should be noted that we cannot apply the technique
proposed in [4] to the MSPS since the Hamiltonian ma-
trices Tjj , j = 1, 2 have eigenvalues in common. We
give a solution of the MARE (6) in Table 1. In order
to verify the exactitude of the solution, we calculate
the remainder per iteration by substituting X

(i)
e into

the MARE (6). In Table 2 we present results for the
error ||F(X(i)

e )|| per iterations. We find that the solu-
tion of the MARE (6) converge to the exact solution
with accuracy of ||F(X(i)

e )|| < 10−10 after 3 iterative
iterations. It can be seen that the initial guess (22)
for the algorithm (21a) is quite good and the proposed
algorithm is the quadratic convergence.

Table 2.
i ||F(X(i)

e )||
0 5.412527504675319 × 10−3

1 2.171750232633503 × 10−6

2 1.983629567766865 × 10−10

3 6.129528501153141 × 10−14

5 Conclusions

The optimal Kalman filtering problem for MSPS has
been investigated. The new design method of the
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Table 1.

Xe =

[
X00 X0f

XT
0f Π−1

e Xf

]
=




X00 X01 X02

XT
01 ε−1

1 X11
1√
ε1ε2

X12

XT
02

1√
ε1ε2

XT
12 ε−1

2 X22




X00 =




5.4694 × 10−1 −8.6872 × 101 8.4483 × 10−2 5.3570 × 10−1

−8.6872 × 10−1 5.4383 1.2040 −2.3840
8.4483 × 10−2 1.2040 4.6080 × 10−1 −4.2233 × 10−1

5.3570 × 10−1 −2.3840 −4.2233 × 10−1 1.1077




X01 =




−8.0319 × 10−3 6.0658 × 10−3

−3.5836 × 10−2 −1.1246 × 10−2

−9.2557 × 10−3 5.4330 × 10−4

1.4901 × 10−2 6.6275 × 10−3


 , X02 =




−7.5605 × 10−3 6.2316 × 10−3

−1.5508 × 10−2 −1.1129 × 10−2

−6.4282 × 10−3 6.2053 × 10−4

−1.4165 × 10−3 6.4898 × 10−3




X11 =

[
7.1318 × 10−2 −4.1516 × 10−4

−4.1516 × 10−4 7.1291 × 10−2

]
, X22 =

[
7.0728 × 10−2 −4.2174 × 10−4

−4.2174 × 10−4 7.0709 × 10−2

]

X12 =

[
3.1628 × 10−4 −5.0918 × 10−6

−4.4501 × 10−6 3.0306 × 10−4

]

high–order sub–optimal Kalman filters has been pro-
posed. As a result, solving the high–dimension and
ill–conditioned MARE has been replaced by solving the
low–order and well–conditioned ALE. Furthermore, the
proposed filters can be implemented even if the fast
state matrices are singular and the Hamiltonian matri-
ces for the fast subsystems have eigenvalues in common
compared with the existing results [4].
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