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Abstract— In this paper, the linear quadratic N–players
Nash games for infinite horizon large–scale systems are dis-
cussed. Nash strategies are obtained by solving the cross–
coupled algebraic Riccati equations (CARE) via the numerical
technique. The asymptotic expansions for the CARE are newly
established. The main contribution in this paper is that the
linear convergence of the proposed algorithm which is based
on the fixed point algorithm is proved. In order to demonstrate
the efficiency of the algorithm, numerical example is given for
the practical power systems.

I. INTRODUCTION

The linear quadratic Nash games and their applications
have been studied widely in many literatures (see e.g.,
[1]). It is well–known that in order to obtain a Nash
equilibrium strategy, the cross–coupled algebraic Riccati
equations (CARE) must be solved by means of the nu-
merical algorithm. In [2], the Newton–type algorithm for
solving the CARE has been applied. However, this research
has concentrated on determining feedback gain matrices for
the 2–players Nash games. It should be noted that for the
general N–players Nash games, it is hard to solve the N–
coupled CARE (see e.g., [3] and reference therein). That
is, when the N–players Nash games are considered via
the Newton’s method, the required workspace is needed to
N times of the dimension of the full–systems. Recently,
an algorithm which is called the Lyapunov iterations for
solving the CARE has been introduced [4]. Although the
Lyapunov iterations can be computed in the same subsystem
dimension, there are no results for the convergence rate of
the Lyapunov iterations. In order to improve the conver-
gence rate of the Lyapunov iterations, the Riccati iterations
for solving the CARE have been proposed [5]. However,
the proof of the convergence has not been shown.

The control problems of the large–scale systems have
been investigated extensively (see e.g., [6], [7]). These
large–scale system situations in practice are illustrated by
the multiarea power systems [7]. When the N–players
Nash games are applied to such systems, the reduction
of the algebraic manipulation must be needed because
the large–scale systems include numerous subsystems. A
popular approach to deal with the large–scale systems is the
hierarchical technique (see e.g., [7]). In particular, a near–
optimal controller has been proposed [7]. However, when
the coupling parameter ε is not small enough, it is known
from [8] that the optimality of the cost is not guaranteed.
In order to avoid such drawback, the 2–players Nash games
for the large–scale systems via the recursive approach have
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been investigated in [9]. Although the recursive approach
has the advantage that the required workspace for com-
puting the solution is the same as the dimension of each
subsystem, it is very hard to apply the recursive approach to
the generalized N–players Nash games because the solution
of the algorithm depends on the other solutions.

This paper studies the linear quadratic N–players Nash
games for the infinite horizon large–scale interconnected
systems. After establishing the asymptotic structure for the
CARE, a new algorithm for solving the CARE is proposed.
It should be noted that our algorithm is based on the fixed
point algorithm which are quite different from the recursive
algorithm. Therefore, the computation of the algorithm is
very simple and independent of the other solutions. As
another important feature, it is shown that the new algorithm
has the linear convergence property. In particular, it is worth
pointing out that the convergence rate of the proposed
algorithm and its exact proof are first given. Finally, in order
to demonstrate the efficiency of the algorithm, numerical
example is given for the practical power systems [7].
Notation: The notations used in this paper are fairly stan-
dard. The superscript T denotes matrix transpose. In de-
notes the n × n identity matrix. || · || denotes its Euclidean
norm for a matrix. detM denotes the determinant of the
matrix M . vecM denotes the column vector of the matrix
M [11]. Reλ M denotes the real part of the eigenvalue of
the matrix M . ⊗ denotes Kronecker product. δij denotes
the Kroneker delta.

II. PROBLEM FORMULATION

Consider the large–scale linear systems with N–players

ẋi(t) = Aiixi(t) + Biiui(t) + ε

N∑
j=1, j �=i

Aijxj(t)

+ε
N∑

j=1, j �=i

Bijuj(t),

xi(0) = x0
i , i = 1, ... , N, (1)

where xi ∈ Rni , i = 1, ... , N represent i–th state
vectors. ui ∈ Rmi , j = 1, ... , N represent i–th control
inputs. ε denotes a small positive weak coupling parameter
which connect the other subsystems. Each player is trying
to minimize its own cost performance subject to (1) by
exploiting the available information to take the correct deci-
sion according to the sought strategy. The cost performance
for each strategy subset is defined by

Ji(u1, ... , uN )

=
∫ ∞

0

[
xT (t)Qiεx(t) + uT

i (t)Riiui(t)
]
dt, (2)
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where

Qiε =

⎡
⎢⎢⎢⎣

ε1−δi1Qi1 εQi12 · · · εQi1N

εQT
i12 ε1−δi2Qi2 · · · εQi2N

...
...

. . .
...

εQT
i1N εQT

i2N · · · ε1−δiN QiN

⎤
⎥⎥⎥⎦

∈ Rn̄×n̄,

Rii = RT
ii > 0 ∈ Rmi×mi , i = 1, ... , N,

x(t)T :=
[

x1(t)T · · · xN (t)T
]T ∈ Rn̄, n̄ :=

N∑
i=1

ni.

The Nash equilibrium strategies (u∗
1, ... , u∗

N ) are defined
as satisfying the following conditions

Ji(u∗
1, ... , u∗

i−1, u∗
i , u∗

i+1, ... , u∗
N)

≤ Ji(u∗
1, ... , u∗

i−1, ui, u∗
i+1, ... , u∗

N),
i = 1, 2, ... , N. (3)

It should be noted that the following assumption guarantees
the existence of the admissible strategies.

Assumption 1: Each player uses the linear feedback
strategies ui(t) = Kiεx(t), i = 1, ... , N such that the
closed–loop system is asymptotically stable for sufficiently
small ε.

The optimal state strategies of the Nash games are given
by

u∗
i (t) = −R−1

ii BT
iεPiεx(t), i = 1, ... , N, (4)

where Piε are the positive semidefinite solutions of the
following N–cross–coupled algebraic Riccati equations
(CARE)

Fi(P1ε, ... , PNε)

:= Piε

⎛
⎝Aε −

N∑
j=1

SjεPjε

⎞
⎠ +

⎛
⎝Aε −

N∑
j=1

SjεPjε

⎞
⎠

T

Piε

+PiεSiεPiε + Qiε = 0, (5)

with

Aε :=

⎡
⎢⎢⎢⎣

A11 εA12 · · · εA1N

εA21 A22 · · · εA2N

...
...

. . .
...

εAN1 εAN2 · · · ANN

⎤
⎥⎥⎥⎦ ,

Biε :=

⎡
⎢⎢⎢⎣

ε1−δ1iB1i

ε1−δ2iB2i

...
ε1−δNiBNi

⎤
⎥⎥⎥⎦ , Siε := BiεR

−1
ii BT

iε.

Since Aε and Siε include the term of the small weak
coupling parameter ε, the solution Piε of the CARE (5),
if it exists, must contain terms of order ε. Taking this fact
into account, the solution Piε of the CARE (5) with the

following structure is considered [8].

Piε :=

⎡
⎢⎢⎢⎣

ε1−δi1Pi1 εPi12 · · · εPi1N

εPT
i12 ε1−δi2Pi2 · · · εPi2N

...
...

. . .
...

εPT
i1N εPT

i2N · · · ε1−δiN PiN

⎤
⎥⎥⎥⎦

∈ Rn̄×n̄.

In the following analysis, the basic assumption is needed.
Assumption 2: The triples (Aii, Bii,

√
Qii), i =

1, ... , N are stabilizable and detectable.

III. ASYMPTOTIC STRUCTURE OF THE CARE

Firstly, in order to obtain the strategies, the asymptotic
structure of the CARE (5) is established. Substituting the
matrices Aε, Siε, Qiε and Piε into the CARE (5), set-
ting ε = 0 and partitioning the CARE (5), the follow-
ing reduced–order AREs are obtained, where P̄ii, i =
1, · · · , N be the limiting solutions of the CARE (5) as
ε → +0.

P̄iiAii + AT
iiP̄ii − P̄iiSiiP̄ii + Qii = 0, (6)

where Sii := BiiR
−1
ii BT

ii .
The limiting behavior of Piε as the parameter ε → +0

is described by the following theorem.
Theorem 1: Under Assumption 2, there exists a small σ∗

such that for all ε ∈ (0, σ∗) the CARE (5) admits a positive
semidefinite solution Piε which can be written as

Piε = P̄i + O(ε)
= block − diag

(
ε1−δi1 P̄i1 · · · ε1−δii P̄ii

· · · ε1−δiN P̄iN

)
+ O(ε). (7)

Proof: The proof can be done by using the implicit
function theorem [9] to the CARE (5). To do so, it is enough
to show that the corresponding Jacobian is nonsingular at
ε = 0. The derivative of the function Fi(P1ε, ... , PNε) at
the matrix Piε is given by

Jii :=
∂

∂vecPiε
vecFi(P1ε, ... , PNε)

=

⎛
⎝Aε −

N∑
j=1

SjεPjε

⎞
⎠

T

⊗ In̄

+In̄ ⊗

⎛
⎝Aε −

N∑
j=1

SjεPjε

⎞
⎠

T

, (8a)

Jij :=
∂

∂vecPjε
vecFi(P1ε, ... , PNε)

= −(SjεPiε)T ⊗ In̄ − In̄ ⊗ (SjεPiε)T . (8b)

Using the fact that

Aε −
N∑

j=1

SjεPjε = block − diag
(

A11 − S11P̄11

· · · ANN − SNN P̄NN

)
+ O(ε)
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and SjεPiε = O(ε), it can be shown, after some algebra,
that the Jacobian of the CARE (5) in the limit as ε → +0
is given by

J =

⎡
⎢⎣

J11|ε=0 · · · J1N |ε=0

...
. . .

...
JN1|ε=0 · · · JNN |ε=0

⎤
⎥⎦

=

⎡
⎢⎣

J0 · · · 0
...

. . .
...

0 · · · J0

⎤
⎥⎦ , (9)

where

J0 = block − diag
(

D11 · · · DNN

)
,

Dii := (Aii − SiiP̄ii)T ⊗ Ini + Ini ⊗ (Aii − SiiP̄ii)T .

Obviously, Dii := Aii − SiiP̄ii is nonsingular because the
ARE (6) has the positive semidefinite stabilizing solution
under Assumption 2. Thus, detJ �= 0, i.e., J is nonsingular
at ε = 0. The conclusion of Theorem 1 is obtained
directly by using the implicit function theorem. On the other
hand, taking into account the fact that P̄ii is the positive
semidefinite matrix, for sufficiently small parameter ε, Piε

is also the positive semidefinite solution. The detailed proof
can be done by using the similar technique in [12].

IV. ITERATIVE ALGORITHM FOR SOLVING
CARE

In order to obtain the optimal strategies, the following
useful algorithm is given.

Theorem 2: Consider the following iterative algorithm

P
(k+1)
iε

⎛
⎝Aε −

N∑
j=1

SjεP
(k)
jε

⎞
⎠

+

⎛
⎝Aε −

N∑
j=1

SjεP
(k)
jε

⎞
⎠

T

P
(k+1)
iε

+P
(k)
iε SiεP

(k)
iε + Qiε = 0, k = 0, 1, ... , (10a)

P
(k)
iε :=

⎡
⎢⎢⎢⎢⎣

ε1−δi1P
(k)
i1 εP

(k)
i12 · · · εP

(k)
i1N

εP
(k)T
i12 ε1−δi2P

(k)
i2 · · · εP

(k)
i2N

...
...

. . .
...

εP
(k)T
i1N εP

(k)T
i2N · · · ε1−δiN P

(k)
iN

⎤
⎥⎥⎥⎥⎦(10b)

with the initial condition

P
(0)
iε = P̄i

= block− diag
(

ε1−δi1 P̄i1 · · · ε1−δii P̄ii

· · · ε1−δiN P̄iN

)
. (11)

Under Assumption 2, there exists a small σ̄ such that for
all ε ∈ (0, σ̄), σ̄ ≤ σ∗ the iterative algorithm (10)
converges to the exact solution of Piε with the rate of
the linear convergence, where P

(k)
iε is positive semidefinite

and Aε −
N∑

j=1

SjεP
(k)
jε is stable. That is, the following

conditions are satisfied.

||P (k)
iε − Piε|| = O(εk+1), (12a)

Reλ

⎡
⎣Aε −

N∑
j=1

SjεP
(k)
jε

⎤
⎦ < 0, k = 0, 1, ... (12b)

Proof: The proof of this theorem can be done by
using mathematical induction. When k = 0 for the iterative
algorithms (10), taking (7) into account, it is easy to verify
that the first order approximations Piε corresponding to the
small parameter ε are P̄i. Moreover, since

Aiε −
N∑

j=1

SjεP
(0)
jε = block − diag

(
D11

· · · DNN

)
+ O(ε)

is satisfied, there exists the small perturbation parameter σ0

such that Aiε −
N∑

j=1

SjεP
(0)
jε is stable because Dii is stable

for sufficiently small ε. When k = h, h ≥ 1, it is assumed
that

||P (h)
iε − Piε|| = O(εh+1), (13a)

Reλ

⎡
⎣Aε −

N∑
j=1

SjεP
(h)
jε

⎤
⎦ < 0. (13b)

Subtracting (5) from (10a) and setting k = h, the following
equations are satisfied.

(
P

(h+1)
iε − Piε

)⎛
⎝Aε −

N∑
j=1

SjεP
(h)
jε

⎞
⎠

+

⎛
⎝Aε −

N∑
j=1

SjεP
(h)
jε

⎞
⎠

T (
P

(h+1)
iε − Piε

)

+
N∑

j=1, j �=i

PiεSjε

(
Pjε − P

(h)
jε

)

+
N∑

j=1, j �=i

(
Pjε − P

(h)
jε

)
SjεPiε

+
(
P

(h)
iε − Piε

)
Siε

(
P

(h)
iε − Piε

)
= 0. (14)

Using the fact that the assumption (13a) hold, it is easy to
derive that

N∑
j=1, j �=i

PiεSjε

(
Pjε − P

(h)
jε

)
= O(εh+2),

(
P

(h)
iε − Piε

)
Siε

(
P

(h)
iε − Piε

)
= O(ε2h+2).
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Thus, the following relation is satisfied.

(
P

(h+1)
iε − Piε

)⎛
⎝Aε −

N∑
j=1

SjεP
(h)
jε

⎞
⎠

+

⎛
⎝Aε −

N∑
j=1

SjεP
(h)
jε

⎞
⎠

T (
P

(h+1)
iε − Piε

)

+O(εh+2) = 0. (15)

Taking into account the fact that the stability assumption
(13b) holds and using the standard properties of the alge-
braic Lyapunov equation (ALE) [10], it is easy to verify
that

||P (h+1)
iε − Piε|| = O(εh+2). (16)

Furthermore, using the relation (16), it is shown that there
exists the small perturbation parameter σh+1 such that

Aiε −
N∑

j=1

SjεP
(h+1)
jε = Aiε −

N∑
j=1

SjεPjε + O(εh+2)

= Aiε −
N∑

j=1

SjεP̄j + O(ε)

is stable. Consequently, choosing σ̄ := min{σ0, ... , σh+1},
the relation (12b) holds for all k ∈ N. This completes
the proof of Theorem 2 concerned with the fixed point
algorithm.

It should be noted that if the coupling effect between
subsystems are strong, the proposed approach may not be
applied.

When the algebraic Lyapunov equation (ALE) (10a) is

solved, the dimension n̄ :=
N∑

i=1

ni larger than the dimen-

sions ni, i = 0, 1, ... , N is needed. Thus, in order to
reduce the dimension of the workspace, the new algorithm
for solving the ALE (10a) which is based on the fixed point
algorithm is established. Let us consider the following ALE
(17), in a general form.

G(ε, Xε) = XεΛε + ΛT
ε Xε + Uε = 0, (17)

In particular, the following special matrices Xε, Λε and Uε

which are related to the ALE (17) are considered because
the other case i = 2, ... , N can be changed into the similar
form by using the similarity transformation Ti,
where

Ti :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ... In1

... block − diag(1 ... 1)
...

Ini ... 0
...

. . .
...

0 ... 0

,

... 0
. . .

...
... 0

block − diag(1 ... 1)
...

... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Xε :=

⎡
⎢⎢⎢⎣

X11 εX12 · · · εX1N

εXT
12 εX22 · · · εX2N

...
...

. . .
...

εXT
1N εXT

2N · · · εXNN

⎤
⎥⎥⎥⎦ ,

Λε :=

⎡
⎢⎢⎢⎣

Λ11 εΛ12 · · · εΛ1N

εΛ21 Λ22 · · · εΛ2N

...
...

. . .
...

εΛN1 εΛN2 · · · ΛNN

⎤
⎥⎥⎥⎦ ,

Uε :=

⎡
⎢⎢⎢⎣

U11 εU12 · · · εU1N

εUT
12 εU22 · · · εU2N

...
...

. . .
...

εUT
1N εUT

2N · · · εUNN

⎤
⎥⎥⎥⎦ .

In order to guarantee the existence of the solution and the
convergence of the algorithm, another assumption is needed.

Assumption 3: Λ11, · · · , ΛNN are stable.
Without loss of generality, it should be noted that the

above assumption is satisfied automatically under the con-
dition of Theorem 2.

The ALE (17) can be changed as follows by partition-
ing.

X11Λ11 + ΛT
11X11 + ε2

N∑
l=2

(X1lΛl1 + ΛT
l1Xl1)

+U11 = 0, (18a)

X1jΛjj + ΛT
11X1j + X11Λ1j − εX1jΛjj

+ε
N∑

l=2

(X1lΛlj + ΛT
l1Xlj) + U1j = 0, (18b)

XiiΛii + ΛT
iiXii

+ε
N∑

l=1, l �=i

(XilΛli + ΛT
liXli) + Uii = 0, (18c)

XijΛjj + ΛT
iiXij + ε(XiiΛij −XijΛjj)

+ε

N∑
l=1, l �=i

(XilΛlj + ΛT
liXlj) + Uij = 0,

i, j = 2, · · · , N. (18d)

Taking the form of (18) into account, the algorithm (19)
for solving the ALE (17) is given.

X
(k+1)
11 Λ11 + ΛT

11X
(k+1)
11 + ε2

N∑
l=2

(X(k)
1l Λl1 + ΛT

l1X
(k)
l1 )

+U11 = 0, (19a)

X
(k+1)
1j Λjj + ΛT

11X
(k+1)
1j + X

(k+1)
11 Λ1j − εX

(k)
1j Λjj
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+ε
N∑

l=2

(X(k)
1l Λlj + ΛT

l1X
(k)
lj ) + U1i = 0, (19b)

X
(k+1)
ii Λii + ΛT

iiX
(k+1)
ii + ε

N∑
l=1, l �=i

(X(k)
il Λli + ΛT

liX
(k)
li )

+Uii = 0, (19c)

X
(k+1)
ij Λjj + ΛT

iiX
(k+1)
ij + ε(X(k)

ii Λij − X
(k)
ij Λjj)

+ε
N∑

l=1, l �=i

(X(k)
il Λlj + ΛT

liX
(k)
lj ) + Uij = 0, (19d)

where k = 0, 1, · · ·, X
(0)
ii = X̄ii, X

(0)
ij = X̄ij , i <

j, X̄ij = X̄T
ji,

X̄iiΛii + ΛT
iiX̄ii + Uii = 0, i = 1, ... , N,

X̄1jΛjj + ΛT
11X̄1j + X̄11Λ1j + U1j = 0, j = 2, ... , N,

X̄ijΛjj + ΛT
iiX̄ij + Uij = 0, i, j = 2, · · · , N.

The following theorem indicates the convergence of the
algorithm (19).

Theorem 3: Under Assumption 3, the fixed point algo-
rithm (19) converges to the exact solution Xij with the rate
of

||X(k)
11 − X11|| = O(ε2k+2), (20a)

||X(k)
ij − Xij || = O(εk+1), (20b)

i ≤ j, ij �= 11, k = 1, 2, ...

Proof: The proof of Theorem 3 can be done by using
mathematical induction. When k = 0 for the algorithms
(19), it is easy to verify that the first order approximations
Xii and Xij corresponding to the small parameter ε are
X̄ii and X̄ij , respectively. It follows from these equations
that

||X(0)
11 − X11|| = ||X̄11 − X11|| = O(ε2), (21a)

||X(0)
ij − Xij || = ||X̄ij − Xij || = O(ε). (21b)

When k = h, h ≥ 1, it is assumed that

||X(h)
11 − X11|| = O(ε2h+2), (22a)

||X(h)
ij − Xij || = O(εh+1). (22b)

Subtracting (18) from (19) and setting k = h, the following
equations hold.

(X(h+1)
11 − X11)Λ11 + ΛT

11(X
(h+1)
11 − X11)

+O(ε2h+4) = 0, (23a)

(X(h+1)
ij − Xij)Λjj + ΛT

ii(X
(h+1)
ij − Xij)

+O(εh+2) = 0. (23b)

After the cancellation takes place, since Λii, i =
1, 2, ... , N are stable from Assumption 3, the following
relations hold

||X(h+1)
11 − X11|| = O(ε2h+4), (24a)

||X(h+1)
ij − Xij || = O(εh+2). (24b)

Consequently, the error equations (20) hold for all k ∈ N.
This completes the proof of Theorem 3.

twocolumn[ ]

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed
algorithm, an illustrative example is given. Consider a
practical power systems plant which are known as the
large–scale system (1) composed of three four–dimensional
subsystems [7]. The system matrices are given as follows.

A11 =

⎡
⎢⎢⎣

0 1 −0.266 −0.009
−2.75 −2.78 −1.36 −0.037

0 0 0 1
−4.95 0 −55.5 −0.039

⎤
⎥⎥⎦ ,

εA12 =

⎡
⎢⎢⎣

0.0024 0 −0.087 0.002
−0.185 0 1.11 −0.011

0 0 0 0
0.222 0 8.17 0.004

⎤
⎥⎥⎦ ,

εA13 =

⎡
⎢⎢⎣

0.073 0 −0.25 0.003
−0.46 0 2.8 −0.02

0 0 0 0
0.924 0 17.5 0.02

⎤
⎥⎥⎦ ,

εA21 =

⎡
⎢⎢⎣

0.021 0 0.121 0.003
−1.1 0 −1.62 −0.015

0 0 0 0
−2.43 0 1.37 −0.034

⎤
⎥⎥⎦ ,

A22 =

⎡
⎢⎢⎣
−0.21 1 −1.6 −0.005
−1.9 −1.8 9.3 −0.12

0 0 0 1
−3.1 0 −56 0.032

⎤
⎥⎥⎦ ,

εA23 =

⎡
⎢⎢⎣

0.06 0 0.46 0.002
−1 0 1.49 −0.04
0 0 0 0

0.12 0 29.8 −0.028

⎤
⎥⎥⎦ ,

εA31 =

⎡
⎢⎢⎣
−0.002 0 0.83 0
−6.78 0 −10.1 0.09

0 0 0 0
−1.24 0 0.498 −0.017

⎤
⎥⎥⎦ ,

εA32 =

⎡
⎢⎢⎣

0.011 0 0.22 0
−2.1 0 1.7 −0.123

0 0 0 0
−0.07 0 6.38 −0.011

⎤
⎥⎥⎦ ,

A33 =

⎡
⎢⎢⎣
−0.197 1 −1.2 −0.003
−54.5 −20 70.1 −2.37

0 0 0 1
−3.4 0 −21.0 −0.017

⎤
⎥⎥⎦ ,

B11 =

⎡
⎢⎢⎣

0
36.1
0
0

⎤
⎥⎥⎦ , B22 =

⎡
⎢⎢⎣

0
78.9
0
0

⎤
⎥⎥⎦ , B33 =

⎡
⎢⎢⎣

0
1000

0
0

⎤
⎥⎥⎦ ,

Bij = 0, i �= j.

The small parameter is chosen as ε = 0.5065. The weight-
ing matrices of the cost performance are given by R11 =

5645



Table 1.
k ||F(k)(0.5065)|| ||F(k)(1.0e − 01)|| ||F(k)(1.0e − 02)|| ||F(k)(1.0e − 03)|| ||F(k)(1.0e − 04)||
0 2.6662e + 01 5.2643 5.2643e − 01 5.2643e − 02 5.2643e − 03
1 8.3958 3.4809e − 01 3.3150e − 03 3.3014e − 05 3.3003e − 07
2 1.9676 1.1748e − 02 1.0246e − 05 1.0105e − 08 3.5639e − 11
3 7.9849e − 02 9.3374e − 05 9.5683e − 09 2.8657e − 11
4 3.6930e − 03 3.1704e − 06 5.8256e − 11
5 4.2296e − 04 1.0000e − 07
6 8.1772e − 05 1.0304e − 09
7 1.1519e − 05 6.5768e − 11
8 8.9876e − 07
9 6.9238e − 08
10 1.7170e − 08
11 2.2137e − 09
12 1.8077e − 10
13 3.9460e − 11

R22 = R33 = 1, Q1 = block − diag
(

0.5I4 O8×8

)
,

Q2 = block − diag
(

O4×4 0.5I4 O4×4

)
, Q3 =

block − diag
(

O8×8 0.5I4

)
. It should be noted that

the algorithm (10a) converges to the exact solution with
accuracy of ||F (k)(ε)|| < 1.0e−10 after 13 iterations, where

||F (k)(ε)|| := ||F1(P
(k)
1ε , P

(k)
2ε , P

(k)
3ε )||

+||F2(P
(k)
1ε , P

(k)
2ε , P

(k)
3ε )||

+||F3(P
(k)
1ε , P

(k)
2ε , P

(k)
3ε )||.

In order to verify the exactitude of the solution, the remain-
der per iteration by substituting P

(k)
iε into the CARE (5) is

computed. In Table 1, the results for the error ||F (k)(ε)|| per
iterations are given. It can be seen that the algorithm (10a)
has the linear convergence. Table 2 shows the result for the
effect of the residual error in the second iterations (19) to
the convergence of the first iterations.

Table 2.

k ||G(1.0e− 02, P
(1)
1ε )||

0 2.2640e − 02
1 1.4673e − 04
2 7.4634e − 07
3 8.0243e − 09
4 1.0138e − 10
5 5.0296e − 12

It can be also seen that the algorithm (19) has the linear
convergence.

From this example point of view, it is worth pointing out
that even if number of the subsystems is more than four
but not three, the required workspace for calculating the
strategies is the same as the dimension of the subsystems.
That is, even if the large–scale system (1) is composed of
N four–dimensional subsystems, the required workspace is
four.

VI. CONCLUSION

In this paper, the Nash games for the large–scale systems
which are connected by the weak small coupling parameter
has been studied. The main contribution of this paper is
to propose the new algorithm for solving the large–scale
CARE. It should be noted that the proposed design method

is quite different from the existing method such as the
recursive approach [9]. As a result, we have succeeded in
improving the convergence rate dramatically because the
proposed algorithm has linear convergence.
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