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Newton’s method for solving cross-coupled
sign-indefinite algebraic Riccati equations
for weakly coupled large-scale systems q

Hiroaki Mukaidani

Graduate School of Education, Hiroshima University, 1-1-1, Kagamiyama, Higashi-Hiroshima 739-8524, Japan

Abstract

In this paper, a new algorithm for solving cross-coupled sign-indefinite algebraic Riccati equations (CSAREs) for
weakly coupled large-scale systems is proposed. It is shown that since the proposed algorithm is based on the Newton’s
method, the quadratic convergence is attained. Moreover, the local uniqueness of the convergence solutions for the
CSAREs is investigated. Finally, in order to overcome the computation of large- and sparse-matrix related to the Newton’s
method, the fixed point algorithm and the alternating direction implicit (ADI) method are combined.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The robust equilibria in indefinite linear quadratic differential games under the disturbance input affecting
the systems have been discussed in [1]. It is well known that in order to obtain the equilibrium strategy, the
cross-coupled sign-indefinite algebraic Riccati equations (CSAREs) must be solved. In [2], the numerical algo-
rithm that is based on the calculation of the eigenstructure for solving the soft-constrained Nash equilibria has
been developed. However, the scalar case has only been considered. Moreover, the convergence rate is unclear.
On the other hand, the Newton-type algorithm for solving the CSAREs seems to be reliable. However, it is
well-known that if the initial conditions are not chosen adequately, the algorithm may not converge because
the Newton’s method guarantees the local convergence.

The control problems of weakly coupled large-scale systems have been studied by several researchers (see
[1–10] and references therein). In particular, the Nash games for such systems have been investigated via the
Lyapunov iterations [8,9]. However, the convergence speed is slow because the Lyapunov iterations have
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linear convergence. Moreover, the uniqueness of the convergence solutions for the CSAREs have not been
discussed so far.

This paper investigates the numerical algorithm for solving the CSAREs of weakly coupled large-scale sys-
tems. The main contribution is to propose a new algorithm that is based on the Newton’s method. After deriv-
ing the asymptotic structure of the CSAREs and taking into account such structure, the initial condition of the
Newton’s method is given. As a result, it is shown that the new algorithm has a quadratic convergence prop-
erty even if the CSAREs has the sign-indefinite quadratic term [8,9]. Additionally, the existence and the local
uniqueness of the solutions is proved via the Newton–Kantorovich theorem. As another important features, in
order to overcome the computation of large- and sparse-matrix that arises in the Newton’s method, the fixed
point algorithm [7] and the alternating direction implicit (ADI) method [13,14] are combined. Finally, in order
to demonstrate the efficiency of the algorithm, a computational example is included.

Notation: The notations used in this paper are fairly standard. The superscript T denotes the matrix trans-
pose. In denotes the n · n identity matrix. block diag denotes the block diagonal matrix. k Æk denotes its Euclid-
ean norm for a matrix. � denotes the Kronecker product. dij denotes the Kronecker delta. vecM denotes the
column vector of the matrix M. The space of Rk-valued functions that are quadratically integrable on (0,1) is
denoted by Lk

2ð0;1Þ.

2. Problem formulation

Consider the weakly coupled large-scale linear systems with N-players:

_xiðtÞ ¼ AiixiðtÞ þ BiiuiðtÞ þ e
XN

j¼1; j 6¼i

AijxjðtÞ þ e
XN

j¼1; j 6¼i

BijujðtÞ þ EiiwiðtÞ þ e
XN

j¼1; j 6¼i

EijwjðtÞ;

xið0Þ ¼ x0
i ; i ¼ 1; . . . ;N ; ð1Þ

where xi 2 Rni , i = 1, . . .,N represent ith state vectors. ui 2 Rmi , i = 1, . . .,N represent ith control inputs.
wi 2 Rki , i = 1, . . .,N represent ith disturbance vectors. e denotes a small positive weak coupling parameter
which connect the other subsystems.

Let us introduce the partitioned matrices

Ae :¼

A11 eA12 � � � eA1N

eA21 A22 � � � eA2N

..

. ..
. . .

. ..
.

eAN1 eAN2 � � � ANN

2
666664

3
777775;

Bie :¼

e1�d1i B1i

e1�d2i B2i

..

.

e1�dNi BNi

2
66664

3
77775;

Ee :¼

E11 eE12 � � � eE1N

eE21 E22 � � � eE2N

..

. ..
. . .

. ..
.

eEN1 eEN2 � � � ENN

2
66664

3
77775:

By using above relations, the system (1) can be changed as

_xðtÞ ¼ AexðtÞ þ
XN

i¼1

BieuiðtÞ þ EewðtÞ; ð2Þ
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where

xðtÞ :¼ x1ðtÞT; . . . ; xN ðtÞT
h iT

2 R�n; �n :¼
XN

i¼1

ni;

wðtÞ :¼ w1ðtÞT; . . . ;wN ðtÞT
h iT

2 R
�k; �k :¼

XN

i¼1

ki:

The cost performance for each strategy subset is defined by

J iðu1; . . . ; uN ; w; xð0ÞÞ ¼
Z 1

0

xTðtÞQiexðtÞ þ uT
i ðtÞRiiuiðtÞ þ l

XN

j¼1; j 6¼i

uT
j ðtÞRijujðtÞ � wTðtÞV ilwðtÞ

" #
dt;

ð3Þ
where

Qie ¼

e1�di1 Qi1 eQi12 � � � eQi1N

eQT
i12 e1�di2 Qi2 � � � eQi2N

..

. ..
. . .

. ..
.

eQT
i1N eQT

i2N � � � e1�diN QiN

2
66664

3
77775 2 R�n��n;

Rii ¼ RT
ii > 0 2 Rmi�mi ; Rij ¼ RT

ij P 0 2 Rmj�mj ;

V il ¼ block diag ðl�ð1�di1ÞV i1; . . . ; l�ð1�diN ÞV iN ÞP 0 2 R
�k��k; i; j ¼ 1; . . . ;N :

The state weight matrices Qie is symmetric and assumed to be sign-indefinite [1]. Furthermore, it should be
noted that l denotes a small positive parameter which is the same order for the parameter e. That is, the fol-
lowing assumption is made.

Assumption 1. The ratio of the small positive parameters e and l is bounded by some positive constants ~k.

0 < ~k :¼ l
e
<1: ð4Þ

For the matrices Ae, Bie, i = 1, . . .,N, the set FN is defined by

FN :¼ ðF 1e; . . . ; F NeÞjAe þ
XN

j¼1

BjeF je is stable:

( )
:

The soft-constrained Nash equilibrium strategy pair ðF �1e; . . . ; F �NeÞ is defined as satisfying the following con-
ditions [1]:

�J iðF �1e; . . . ; F �Ne; xð0ÞÞ 6 �J iðF �1e; . . . ; F �i�1e; F ie; F �iþ1e; . . . ; F �Ne; xð0ÞÞ; i ¼ 1; . . . ;N ; ð5Þ

where

�J iðF 1e; . . . ; F Ne; xð0ÞÞ :¼ sup
w2L�k

2
ð0;1Þ

J iðF 1e; . . . ; F Ne;w; xð0ÞÞ; J iðF 1e; . . . ; F Ne;w; xð0ÞÞ

¼
Z 1

0

xTðtÞ Qie þ F T
ieRiiF ie þ l

XN

j¼1; j 6¼i

F T
jeRijF je

" #
xðtÞ � wTðtÞV ilwðtÞ

" #
dt;

for all x(0) and for all (F1e, . . .,FNe) that satisfy

F �1e; . . . ; F �i�1e; F ie; F �iþ1e; . . . ; F �Ne

� �
2FN :

It should be noted that the following assumption guarantees the existence of the admissible strategy.

Assumption 2. Each player uses the linear feedback strategy ui(t) = Kiex(t), i = 1, . . .,N such that the closed-
loop system is asymptotically stable for sufficiently small parameters e and l.

H. Mukaidani / Applied Mathematics and Computation 188 (2007) 103–115 105



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Obviously, this assumption is made in order to obtain a stable system. Using the fact studied by [1], the
soft-constrained feedback Nash equilibrium is given below.

Lemma 1. Assume that there exist N real symmetric matrices Pie and Wie, such that

GiðP 1e; . . . ; P NeÞ :¼ P ie Ae �
XN

j¼1

SjeP je

 !
þ Ae �

XN

j¼1

SjeP je

 !T

P ie þ P ieSieP ie þ l
XN

j¼1; j 6¼i

P jeSijeP je

þ P ieMilP ie þ Qie ¼ 0; ð6Þ

where

Sie :¼ BieR�1
ii BT

ie; Sije :¼ BjeR�1
jj RijR�1

jj BT
je; Mil :¼ EeV �1

il ET
e :

Ae �
PN

j¼1SjeP je þMilP ie is stable for i = 1, . . .,N, Ae �
PN

j¼1SjeP je is stable,

W ie Ae �
XN

j¼1; j 6¼i

SjeP je

 !
þ Ae �

XN

j¼1; j 6¼i

SjeP je

 !T

W ie � W ieSieW ie þ l
XN

j¼1; j 6¼i

P jeSijeP je þ Qie P 0: ð7Þ

Define the N-tuple ðF �1e; . . . ; F �NeÞ by

u�i ðtÞ :¼ F �iexðtÞ ¼ �R�1
ii BT

ieP iexðtÞ; i ¼ 1; . . . ;N : ð8Þ
Then, ðF �1e; . . . ; F �NeÞ 2FN and this N-tuple is a soft-constrained Nash equilibrium. Furthermore,

J iðF �1e; . . . ; F �Ne, x(0)) = x(0)TPiex(0).

It should be noted that if Qie P 0 and Sije P 0 for all i = 1, . . .,N, the matrix inequality (7) is trivially
satisfied with Wie = 0 [1]. Then, only the CSAREs (6) should be solved.

In the following analysis, the basic assumption is needed.

Assumption 3. The triples ðAii;Bii;
ffiffiffiffiffiffi
Qii

p
Þ; i ¼ 1; . . . ;N are stabilizable and detectable.

3. Asymptotic structure of the CSAREs

Firstly, in order to obtain the strategy, the asymptotic structure of the CSAREs (6) is established. Since Ae,
Sie, Sije and Mil include the term of the small parameters e and l, the solution Pie of the CSAREs (6), if it
exists, must contain these parameters. Moreover, it should be noted that two parameters e and l are the same
magnitude such that Assumption 1 holds. Taking these facts into account, the solution Pie of the CSAREs (6)
with the following structure is considered [4,8,9].

P ie :¼

e1�di1 P i1 eP i12 � � � eP i1N

eP T
i12 e1�di2 P i2 � � � eP i2N

..

. ..
. . .

. ..
.

eP T
i1N eP T

i2N � � � e1�diN P iN

2
66664

3
77775 2 R�n��n:

Substituting the matrices Ae, Sie, Sije, Mil, Qie and Pie into the CSAREs (6), letting e = 0 and l = 0, and par-
titioning the CSAREs (6), the following reduced-order algebraic Riccati equations (AREs) are obtained,
where P ii; i ¼ 1; . . . ;N be the 0-order solutions of the CSAREs (6) as e = l = 0.

P iiAii þ AT
ii P ii � P iiðSii �MiiÞP ii þ Qii ¼ 0; ð9Þ

where Sii :¼ BiiR�1
ii BT

ii and Mii :¼ EiiV �1
ii ET

ii .
In order to guarantee the existence of a positive semidefinite stabilizing solution of the ARE (9), the follow-

ing condition is assumed.

Assumption 4. The ARE (9) has a positive semidefinite stabilizing solution such that Aii � SiiP ii is stable.
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The asymptotic expansion of the CSAREs (6) at e = l = 0 is described by the following lemma.

Lemma 2. Under Assumptions 1–4, there exist the small constants r* and q* such that for all e 2 (0,r*) and

l 2 (0,q*), the CSAREs (6) admits a unique positive semidefinite solution P �ie that can be written as

P ie :¼ P �ie ¼ �P i þOðeÞ ¼ block diagð 0 � � � P ii � � � 0 Þ þOðeÞ: ð10Þ

Proof. The proof can be derived by using the implicit function theorem [7] for the CSAREs (6). Using the
implicit function theorem, it can be shown that there exists a neighbourhood of e = l = 0 and a unique func-
tion P ie :¼ �P i þOðeÞ. It should be noted that under Assumption 4, since the solution of the reduced-order
ARE (9) is unique (see, e.g., Theorem 13.5 of [11]), �P i is a unique solution. Therefore, the CSAREs (6) has
a unique positive semidefinite solution P �ie under the sufficiently small parameters e and l. h

4. Newton’s method for solving CSAREs

In order to obtain the solution of CSAREs (6), the following useful algorithm is given. Consider the fol-
lowing iterative algorithm.

P ðkþ1Þ
ie Ae �

XN

j¼1

SjeP
ðkÞ
je þMilP ðkÞie

 !
þ Ae �

XN

j¼1

SjeP
ðkÞ
je þMilP ðkÞie

 !T

P ðkþ1Þ
ie

�
XN

j¼1; j 6¼i

P ðkþ1Þ
je SjeP

ðkÞ
ie �

XN

j¼1; j 6¼i

P ðkÞie SjeP
ðkþ1Þ
je þ l

XN

j¼1; j 6¼i

P ðkþ1Þ
je SijeP

ðkÞ
je þ l

XN

j¼1; j 6¼i

P ðkÞje SijeP
ðkþ1Þ
je

þ
XN

j¼1; j 6¼i

P ðkÞje SjeP
ðkÞ
ie þ

XN

j¼1; j 6¼i

P ðkÞie SjeP
ðkÞ
je þ P ðkÞie SieP

ðkÞ
ie � l

XN

j¼1; j 6¼i

P ðkÞje SijeP
ðkÞ
je

� P ðkÞie MilP ðkÞie þ Qie ¼ 0; k ¼ 0; 1; . . . ; ð11aÞ

P ðkÞie :¼

e1�di1 P ðkÞi1 eP ðkÞi12 � � � eP ðkÞi1N

eP ðkÞTi12 e1�di2 P ðkÞi2 � � � eP ðkÞi2N

..

. ..
. . .

. ..
.

eP ðkÞTi1N eP ðkÞTi2N � � � e1�diN P ðkÞiN

2
66664

3
77775 ð11bÞ

with the initial conditions

P ð0Þie ¼ P i ¼ block diagð 0 � � � P ii � � � 0 Þ: ð12Þ

The algorithm (11a) can be constructed by setting P ðkþ1Þ
ie ¼ P ðkÞie þ DP ðkÞie and neglecting O(D2) term. The fol-

lowing theorem indicates that the algorithm (11a) is Newton’s method.

Theorem 1. Suppose that there exist a solution to the CSAREs (6). It can be obtained by performing the

algorithm (11) which is equal to the Newton’s method.

Proof. Taking the vec-operator transformation on both sides of (11a) and Gi ¼ GiðP ðkÞ1e ; . . . ; P ðkÞNe Þ ¼ 0 and sub-
tracting these equations, it is easy to verify the following equation:

vecP ðkþ1Þ
1e

..

.

vecP ðkþ1Þ
Ne

2
64

3
75 ¼ vecP ðkÞ1e

..

.

vecP ðkÞNe

2
64

3
75� rG P ðkÞ1e ; . . . ; P ðkÞNe

� �h i�1

�
vecG1 P ðkÞ1e ; . . . ; P ðkÞNe

� �
..
.

vecGN P ðkÞ1e ; . . . ; P ðkÞNe

� �
2
664

3
775; ð13Þ

where

rGðP 1e; . . . ; P NeÞ ¼
oð½vecG1�T; . . . ; ½vecGN �TÞT

oð½vecP 1e�T; . . . ; ½vecP Ne�TÞ
; G :¼ GðG1; . . . ;GN Þ:

This is the desired result. h
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The following theorem indicates that the proposed algorithm (11) which is based on the Newton’s method
attains the quadratic convergence.

Theorem 2. Under Assumptions 1–4, there exist the small constants �r and �q such that for all e 2 ð0; �rÞ; �r 6 r�

and l 2 ð0; �qÞ; �q 6 q�, the iterative algorithm (11) converges to the exact solution of P �ie with the rate of the

quadratic convergence, where P ðkÞie is positive semidefinite matrix and Ae �
PN

j¼1SjeP
ðkÞ
je þMilP ðkÞie is stable.

Moreover, the convergence solutions attain a local unique solution P �ie of the CSAREs (6) in the neighborhood of
the initial condition P ð0Þie ¼ P i. That is, the following conditions are satisfied.

kP ðkÞie � P �iek ¼ Oðe2k Þ; ð14aÞ

Rek Ae �
XN

j¼1

SjeP
ðkÞ
je þMilP ðkÞie

" #
< 0; k ¼ 0; 1; . . . : ð14bÞ

In order to prove the theorem, the following fact must be needed.

4.1. Newton–Kantorovich theorem [12]

Assume that F:Rn! Rn is differentiable on a convex set D. Suppose that the inverse of map F exists and
moreover it is differentiable on set D and that kF 0(x) � F 0(y)k 6 ckx � yk for all x,y 2 D. Suppose that there
is an x0 2 D such that kF 0(x0)�1k 6 b, kF 0(x0)�1F(x0)k 6 g and h: = bcg < 1/2. Assume that S: = {x :
kx � x0k 6 t*} � D, t� ¼ 1�

ffiffiffiffiffiffiffiffi
1�2h
p

bc . Then Newton iterations xk+1 = xk � F 0(xk)�1F(xk), k = 0,1, . . ., are well
defined and converge to a solution x* of F(x) = 0 in S. Moreover, the solution x* is unique in ~S \ D, where
~S :¼ fx : kx� x0k 6 ~tg � D, ~t ¼ 1þ

ffiffiffiffiffiffiffiffi
1�2h
p

bc and error estimate is given by kx� � xkk 6 ð2hÞ2
k

2kbc
¼

21�kð2hÞ2
k�1g; k ¼ 0; 1; . . ..

Proof. The proof is given directly by applying the Newton–Kantorovich theorem [12] for the CSAREs (6). It
is immediately obtained from the CSAREs (6) that there exists a positive scalar c such that for any P a

ie and P b
ie

rG P a
1e; . . . ; P a

Ne

� �
�rG P b

1e; . . . ; P b
Ne

� ��� ��6 c vecP a
1e

� 	T
; . . . ; vecP a

Ne

� 	T
� �

� vecP b
1e

� 	T
; . . . ; vecP b

Ne

� 	T
� ���� ���:

ð15Þ
Moreover, it is easy to verify that

J ¼
J11je¼0 � � � J1N je¼0

..

. . .
. ..

.

JN1je¼0 � � � JNN je¼0

2
64

3
75 ¼

DA � � � 0

..

. . .
. ..

.

0 � � � DA

2
64

3
75; ð16Þ

where

Jij ¼
ovecGi

o½vecP je�T
;DA ¼ block diagðD11 � � � DNN Þ;

Dii :¼ DT
ii � Ini þ Ini � DT

ii ;Dii :¼ Aii � ðSii �MiiÞP ii:

Thus, since J is nonsingular under Assumption 4, for small e and l,

rG P ð0Þ1e ; . . . ; P ð0ÞNe

� �
¼ rG P 1; . . . ; P N

� �
¼ JþOðeÞ

is also nonsingular. Therefore, there exists b such that b ¼ k½rGðP 1; . . . ; P N Þ��1k. On the other hand, since
kGðP 1; . . . ; P N Þk ¼ OðeÞ, there exists g such that g ¼ k½rGðP 1; . . . ; P NÞ��1k � kGðP 1; . . . ; P N Þk ¼ OðeÞ. Thus,
there exists h such that h = bgc < 2�1 because g = O(e). Finally, the Newton–Kantorovich theorem results
in the desired results (14).

Second, the local uniqueness of the solution is discussed. Now, let us define t� 	 1
cb 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h
ph i

. Clearly,

S 	 fP ie : kP ie � P ð0Þie k 6 t�g is in the convex set D. In the sequel, since kP ie � P ð0Þie k ¼ OðeÞ holds for a small e,
the local uniqueness of P �ie is guaranteed in the neighbourhood of e = l = 0 for a subset S by applying the
Newton–Kantorovich theorem. h
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5. A numerical algorithm for solving the large-scale Lyapunov equations (CLALEs)

When the cross-coupled large-scale algebraic Lyapunov equations (11a) is solved, the existence of the cross-
coupled term

�
XN

j¼1; j 6¼i

P ðkþ1Þ
je SjeP

ðkÞ
ie �

XN

j¼1; j 6¼i

P ðkÞie SjeP
ðkþ1Þ
je þ l

XN

j¼1; j 6¼i

P ðkþ1Þ
je SijeP

ðkÞ
je þ l

XN

j¼1; j 6¼i

P ðkÞje SijeP
ðkþ1Þ
je

in CLALEs (11a) makes it difficult to solve this equation directly due to the large-dimension as N � �n larger
than the dimensions �n :¼

PN
i¼1ni. Thus, in order to avoid the cross-coupled term, a new decoupling algorithm

that is based on the fixed point algorithm [7] is established. Taking into account the fact that
SjeP

ðkÞ
ie ¼ OðeÞ; i 6¼ j, let us consider CLALEs (17) in its general form.

X ieKie þ KT
ieX ie þ e

XN

j¼1; j 6¼i

ðX jeUje þ UT
jeX jeÞ þ Uie ¼ 0; i ¼ 1; . . . ;N ; ð17Þ

where

X ie :¼

e1�di1 X i1 eX i12 � � � eX i1N

eX T
i12 e1�di2 X i2 � � � eX i2N

..

. ..
. . .

. ..
.

eX T
i1N eX T

i2N � � � e1�diN X iN

2
666664

3
777775;

Kie :¼

Ki1 eKi12 � � � eKi1N

eKi21 Ki2 � � � eKi2N

..

. ..
. . .

. ..
.

eKiN1 eKiN2 � � � KiN

2
66664

3
77775;

Uie :¼

Ui1 eUi12 � � � eUi1N

eUi21 Ui2 � � � eUi2N

..

. ..
. . .

. ..
.

eUiN1 eUiN2 � � � UiN

2
66664

3
77775;

U ie :¼

e1�di1 U i1 eUi12 � � � eU i1N

eU T
i12 e1�di2 Ui2 � � � eU i2N

..

. ..
. . .

. ..
.

eUT
i1N eU T

i2N � � � e1�diN U iN

2
666664

3
777775:

It should be noted that

P ðkþ1Þ
ie ) X ie; P

ðkþ1Þ
je ) X je;Ae �

XN

j¼1

SjeP
ðkÞ
je þMilP ðkÞie ) Kie;�SjeP

ðkÞ
ie þ lSijeP

ðkÞ
je ) eUje;

XN

j¼1; j 6¼i

P ðkÞie SjeP
ðkÞ
je þ

XN

j¼1; j 6¼i

P ðkÞje SjeP
ðkÞ
ie þ P ðkÞie SieP

ðkÞ
ie � l

XN

j¼1; j 6¼i

P ðkÞje SijeP
ðkÞ
je þ Qie ) U ie;

where ) represents the replacement. Without loss of generality, the following condition is assumed for
CLALEs (17).

Assumption 5. Ki1, . . .,KiN, i = 1, . . .,N are stable.
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The algorithm (18) for solving CLALEs (17) is given as follows:

X ðnþ1Þ
ie Kie þ KT

ieX
ðnþ1Þ
ie þ e

XN

j¼1; j 6¼i

ðX ðnÞje Uje þ UT
jeX
ðnÞ
je Þ þ U ie ¼ 0; i ¼ 1; . . . ;N ; n ¼ 0; 1; . . . ; ð18Þ

where

X ð0Þie ¼ 0; i ¼ 1; . . . ;N :

It should be noted that the numerical algorithm (18) can be carried out independently for each solution.
The following theorem indicates the convergence of algorithm (18).

Theorem 3. Under Assumption 5, there exists the small constant ~r such that for all e 2 ð0; ~rÞ, the fixed point

algorithm (18) converges to an exact solution Xie with a linear convergence.

Proof. The CLALEs (17) can be changed as follows.

KðeÞ

vecX ðnþ1Þ
1e

vecX ðnþ1Þ
2e

..

.

vecX ðnþ1Þ
Ne

2
666664

3
777775 ¼ �e

0 U2e � � � UNe

U1e 0 � � � UNe

..

. ..
. . .

. ..
.

U1e U2e � � � 0

2
66664

3
77775

vecX ðnÞ1e

vecX ðnÞ2e

..

.

vecX ðnÞNe

2
666664

3
777775�

vecU 1e

vecU 2e

..

.

vecUNe

2
66664

3
77775; ð19Þ

where

KðeÞ :¼ block diag½K1e K2e � � � KNe �; Kie :¼ KT
ie � I�n þ I�n � KT

ie;

and

Uie :¼ UT
ie � I�n þ I�n � UT

ie:

Since Assumption 5 holds, for sufficient small e there exists [K(e)]�1 because

lim
e!þ0

KðeÞ ¼ block diag K1 K2 � � � KN½ �; ð20Þ

where Ki :¼ Kieje=0.
Therefore, it is easy to verify that there exists the small constant ~r such that for all e 2 ð0; ~rÞ:

ek½KðeÞ��1k

0 U2e � � � UNe

U1e 0 � � � UNe

..

. ..
. . .

. ..
.

U1e U2e � � � 0

2
666664

3
777775

�����������

�����������
< 1: ð21Þ

Finally, using the fixed point theorem, it can be shown that the algorithm (18) attains the linear
convergence. h

When each algebraic Lyapunov equation (ALE) (18) is solved, the dimension of the workspace as
�n :¼

PN
i¼1ni larger than the dimensions ni is needed. Thus, in order to reduce the dimension of the workspace,

a new algorithm for solving the ALE (18) which is based on the alternating direction implicit (ADI) method
[13,14] is established. Let us consider the following ALE (22), in a general form of the ALE (18).

XeWe þWT
e Xe þUe ¼ 0: ð22Þ

In particular, the following special matrices Xe, We and Ue which are related to the CLALEs (17) are consid-
ered because the other case i = 2, . . .,N can be changed into the similar form by using the similarity transfor-
mation Ti, where

Xe :¼T�1
i X ðnþ1Þ

ie Ti; We :¼T�1
i KieTi;
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Ue :¼T�1
i e

XN

j¼1; j 6¼i

X ðnÞje Uje þ UT
jeX
ðnÞ
je

� �
þ Uie

" #
Ti;

Ti :¼

0 . . . Ini . . . 0

..

.
block diagð1 . . . 1Þ ..

. . .
. ..

.

Ini . . . 0 . . . 0

..

. . .
. ..

.
block diagð1 . . . 1Þ ..

.

0 . . . 0 . . . InN

2
666666664

3
777777775
;

Xe :¼

X11 eX12 � � � eX1N

eXT
12 eX22 � � � eX2N

..

. ..
. . .

. ..
.

eXT
1N eXT

2N � � � eXNN

2
66664

3
77775 :¼

X11 eX1f

eXT
1f eXf

" #
;

We :¼

W11 eW12 � � � eW1N

eW21 W22 � � � eW2N

..

. ..
. . .

. ..
.

eWN1 eWN2 � � � WNN

2
66664

3
77775 :¼

W11 eW1f

eWf 1 Wf


 �
;

Ue :¼

U11 eU12 � � � eU1N

eUT
12 eU22 � � � eU2N

..

. ..
. . .

. ..
.

eUT
1N eUT

2N � � � eUNN

2
66664

3
77775 :¼

U11 eU1f

eUT
1f eUf

" #
:

In order to guarantee the existence of the solution and the convergence of the algorithm, another assumption
is needed.

Assumption 6. W11, . . .,WNN are stable.
As a result, the ALE (22) can be changed as follows by partitioning.

X11W11 þWT
11X11 þ e2 X1f Wf 1 þWT

f 1X
T
1f

� �
þU11 ¼ 0; ð23aÞ

Xf Wf þWT
f Xf þ e XT

1f W1f þWT
1fX1f

� �
þUf ¼ 0; ð23bÞ

X11W1f þX1f Wf þWT
11X1f þ eWT

f 1Xf þU1f ¼ 0: ð23cÞ

Firstly, using the implicit function, the asymptotic structure of the ALE (23) is established.

Lemma 3. Under Assumption 6, the ALE (23) has unique solutions X11, X1f and Xf such that these matrices

possess a power series expansion at e = 0. That is,

X11 :¼
X1
m¼0

emX
ðmÞ
11 ; X1f :¼

X1
m¼0

emX
ðmÞ
1f ; Xf :¼

X1
m¼0

emX
ðmÞ
f : ð24Þ

Proof. It can be done by applying the implicit function theorem to the partitioned ALE (23). To do so, it is
enough to show that the corresponding Jacobian is nonsingular at e = 0. Since the detailed proof is the same as
the proof that is given by [8], it is omitted. h

Secondly, the methodology for solving the ALE (23) for the matrix solutions X11, X1f and Xf is given.
Substituting the matrices X11, X1f and Xf into the ALEs (23) and equating successively coefficients of equal
powers of e, the following linear equations are obtained.
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X
ðmþ2Þ
11 W11 þWT

11X
ðmþ2Þ
11 þX

ðmÞ
1f Wf 1 þWT

f 1X
ðmÞT
1f ¼ 0; ð25aÞ

X
ðmþ2Þ
f Wf þWT

f X
ðmþ2Þ
f þX

ðmþ1ÞT
1f W1f þWT

1fX
ðmþ1Þ
1f ¼ 0; ð25bÞ

X
ðmþ2Þ
1f Wf þWT

11X
ðmþ2Þ
1f þX

ðmþ2Þ
11 W1f þWT

f 1X
ðmþ1Þ
f ¼ 0; ð25cÞ

where

X
ð0Þ
11 W11 þWT

11X
ð0Þ
11 þU11 ¼ 0; X

ð0Þ
f Wf þWT

f X
ð0Þ
f þUf ¼ 0;

X
ð0Þ
11 W1f þX

ð0Þ
1f Wf þWT

11X
ð0Þ
1f þU1f ¼ 0;

X
ð1Þ
11 ¼ 0; X

ð1Þ
f Wf þWT

f X
ð1Þ
f þX

ð0ÞT
1f W1f þWT

1fX
ð0Þ
1f ¼ 0;

X
ð1Þ
1f Wf þWT

11X
ð1Þ
1f þWT

f 1X
ð0Þ
f ¼ 0:

It should be noted that the successive approximations (25) are independent of the small parameter e. More-
over, the approach used in this paper is quite different because the proposed successive approximations
(25) are based on not the existing algorithm [9] but Maclaurin series expansions. Thus, the desired solutions
with any approximation are obtained by solving the linear equations directly.

Let us consider the following Sylvester’s equations (26), in a general form of the ALEs (25b) and (25c)

AY þ YB ¼ C; ð26Þ
where the matrices A 2 Rp·p, B 2 Rq·q and C 2 Rp·q are given, and the solution matrix Y 2 Rp·q is to be
determined.

The ADI iterative method [13,14] for the solution of (26) proceeds by strictly alternating between the solu-
tion of the two equations

ðA� dlþ1IpÞY 2lþ1 ¼ Y 2lð�B� dlþ1IqÞ þ C; ð27aÞ
Y 2lþ2ð�B� slþ1IqÞ ¼ ðA� slþ1IpÞY 2lþ1 � C; ð27bÞ

for l = 0,1,2, . . . Here Y0 is a given initial approximate solution, and the dl and sl are real or complex param-
eters chosen so that the computed approximate solutions Yl converge rapidly to the solution Ŷ of the Sylvester
equation (26) as l increases.

If the matrices A and B are dense, then the direct solution method by Golub et al. [15] can be used. This
method determines the real Schur factorization of A and brings B into Hessenberg form by orthogonal sim-
ilarity transformation [14]. However, when the matrices Að¼ WT

f Þ and B(=Wf) that appear in (25b) are large
and sparse, iterative solution technique has to be employed. In fact, it is clear that

Wf ¼
W22 � � � eW2N

..

. . .
. ..

.

eWN2 � � � WNN

2
664

3
775!

W22 � � � 0

..

. . .
. ..

.

0 � � � WNN

2
664

3
775; ðe! þ0Þ

are large and sparse for sufficiently small e. Thus, since the ADI iterative method is an attractive technique in
this case, such method will be used.

6. Computational example

In order to demonstrate the efficiency of the proposed algorithm, a computational example is given. The
system matrices are given as follows:

A11 ¼

0 1 �0:266 �0:009

�2:75 �2:78 �1:36 �0:037

0 0 0 1

�4:95 0 �55:5 �0:039

2
6664

3
7775;
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eA12 ¼

0:0024 0 �0:087 0:002

�0:185 0 1:11 �0:011

0 0 0 0

0:222 0 8:17 0:004

2
6664

3
7775;

eA13 ¼

0:073 0 �0:25 0:003

�0:46 0 2:8 �0:02

0 0 0 0

0:924 0 17:5 0:02

2
6664

3
7775;

eA21 ¼

0:021 0 0:121 0:003

�1:1 0 �1:62 �0:015

0 0 0 0

�2:43 0 1:37 �0:034

2
6664

3
7775;

A22 ¼

�0:21 1 �1:6 �0:005

�1:9 �1:8 9:3 �0:12

0 0 0 1

�3:1 0 �56 0:032

2
6664

3
7775;

eA23 ¼

0:06 0 0:46 0:002

�1 0 1:49 �0:04

0 0 0 0

0:12 0 29:8 �0:028

2
6664

3
7775;

eA31 ¼

�0:002 0 0:83 0

�6:78 0 �10:1 0:09

0 0 0 0

�1:24 0 0:498 �0:017

2
6664

3
7775;

eA32 ¼

0:011 0 0:22 0

�2:1 0 1:7 �0:123

0 0 0 0

�0:07 0 6:38 �0:011

2
6664

3
7775;

A33 ¼

�0:197 1 �1:2 �0:003

�54:5 �20 70:1 �2:37

0 0 0 1

�3:4 0 �21:0 �0:017

2
6664

3
7775;

B11 ¼

0

36:1

0

0

2
6664

3
7775; B22 ¼

0

78:9

0

0

2
6664

3
7775; B33 ¼

0

1000

0

0

2
6664

3
7775; Bij ¼ 0; i 6¼ j;

E11 ¼

0:1 0 0 0

0 0 0 0

0 0 0 0:1

0 0 0 0:1

2
6664

3
7775; E22 ¼

0 0 0 0

0:1 0 0 0

0 0 0 0:1

0 0 0 0:1

2
6664

3
7775;
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E33 ¼

0 0 0 0

0 0 0 0

0:1 0 0 0:1

0 0 0 0:1

2
6664

3
7775; Eij ¼ 0; i 6¼ j;

V ii ¼ diag 1 2 2 1ð Þ;
V 1 ¼ block diag V ii l�1I4 l�1I4

� �
;

V 2 ¼ block diag l�1I4 V ii l�1I4

� �
;

V 3 ¼ block diag l�1I4 l�1I4 V ii

� �
;

Q1 ¼ block diag 0:5I4 O8�8ð Þ;
Q2 ¼ block diag O4�4 0:5I4 O4�4ð Þ;
Q3 ¼ block diag O8�8 0:5I4ð Þ;
R11 ¼ R22 ¼ R33 ¼ 1; R12 ¼ R13 ¼ 0:2;

R23 ¼ R21 ¼ 0:3; R31 ¼ R32 ¼ 0:1:

The small parameters are chosen as e = 0.01 and l = 0.005. It should be noted that the algorithm (11a) con-
verges to the exact solution with accuracy of kGðkÞðeÞk < 1.0e�10 after three iterations, where

GðkÞðeÞ
�� �� :¼

X3

i¼1

Gi P ðkÞ1e ; P ðkÞ2e ; P ðkÞ3e

� ���� ���: ð28Þ

In order to verify the exactitude of the solution, the remainder per iteration by substituting P ðkÞie into the
CSAREs (6) is computed. In Table 1, the results of the error kGðkÞðeÞk per iterations are given for several val-
ues e and l = 0.5e. As a result, it can be seen that the algorithm (11a) has the quadratic convergence.

7. Conclusions

In this paper, a new algorithm for solving the CSAREs for weakly coupled large-scale systems has been
proposed. Comparing with the existing result [8,9], the considered equation has the sign-indefinite quadratic
term. It is noteworthy that although the proposed design method is based on the Newton’s method, the con-
vergence rate has been newly proved as a quadratic convergence. Moreover, the local uniqueness of the con-
vergence solutions for the CSAREs have been proved for the first time by using the Newton–Kantorovich
theorem. As another important feature, in order to overcome the computation of large- and sparse-matrix,
the fixed point algorithm and the ADI method have been combined. As a result, both fast convergence and
a reduced-order calculation are attained. Finally, the computational example has shown the excellent results.
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