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Abstract

In this paper, a new algorithm for solving cross-coupled sign-indefinite algebraic Riccati equations (CSAREs) for
weakly coupled large-scale systems is proposed. It is shown that since the proposed algorithm is based on the Newton’s
method, the quadratic convergence is attained. Moreover, the local uniqueness of the convergence solutions for the
CSAREs is investigated. Finally, in order to overcome the computation of large- and sparse-matrix related to the Newton’s
method, the fixed point algorithm and the alternating direction implicit (ADI) method are combined.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The robust equilibria in indefinite linear quadratic differential games under the disturbance input affecting
the systems have been discussed in [1]. It is well known that in order to obtain the equilibrium strategy, the
cross-coupled sign-indefinite algebraic Riccati equations (CSAREs) must be solved. In [2], the numerical algo-
rithm that is based on the calculation of the eigenstructure for solving the soft-constrained Nash equilibria has
been developed. However, the scalar case has only been considered. Moreover, the convergence rate is unclear.
On the other hand, the Newton-type algorithm for solving the CSARESs seems to be reliable. However, it is
well-known that if the initial conditions are not chosen adequately, the algorithm may not converge because
the Newton’s method guarantees the local convergence.

The control problems of weakly coupled large-scale systems have been studied by several researchers (see
[1-10] and references therein). In particular, the Nash games for such systems have been investigated via the
Lyapunov iterations [8,9]. However, the convergence speed is slow because the Lyapunov iterations have

* This work was supported in part by the Research Foundation for the Electrotechnology of Chubu (REFEC) and a Grant-in-Aid for
Young Scientists Research (B)-18700013 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
E-mail address: mukaida@hiroshima-u.ac.jp

0096-3003/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2006.09.100



104 H. Mukaidani | Applied Mathematics and Computation 188 (2007) 103-115

linear convergence. Moreover, the uniqueness of the convergence solutions for the CSAREs have not been
discussed so far.

This paper investigates the numerical algorithm for solving the CSARESs of weakly coupled large-scale sys-
tems. The main contribution is to propose a new algorithm that is based on the Newton’s method. After deriv-
ing the asymptotic structure of the CSAREs and taking into account such structure, the initial condition of the
Newton’s method is given. As a result, it is shown that the new algorithm has a quadratic convergence prop-
erty even if the CSARESs has the sign-indefinite quadratic term [8,9]. Additionally, the existence and the local
uniqueness of the solutions is proved via the Newton—Kantorovich theorem. As another important features, in
order to overcome the computation of large- and sparse-matrix that arises in the Newton’s method, the fixed
point algorithm [7] and the alternating direction implicit (ADI) method [13,14] are combined. Finally, in order
to demonstrate the efficiency of the algorithm, a computational example is included.

Notation: The notations used in this paper are fairly standard. The superscript 7" denotes the matrix trans-
pose. I,, denotes the n x n identity matrix. block diag denotes the block diagonal matrix. |- || denotes its Euclid-
ean norm for a matrix. ® denotes the Kronecker product. J;; denotes the Kronecker delta. vecM denotes the
column vector of the matrix M. The space of R*-valued functions that are quadratically integrable on (0, o0) is
denoted by L5(0, 00).

2. Problem formulation

Consider the weakly coupled large-scale linear systems with N-players:

N N N
x,(t) = Aiixi(t) —|—B,<,-u,»(t) + ¢ Z A,/x,(t) + ¢ Z B,juj(t) +E”‘Wi(t) + ¢ Z EUW/‘(I),
J=1 J=1 j# J=1

x(0)=x) i=1,...,N, (1)

where x; € R", i=1,...,N represent ith state vectors. u; € R™, i=1,...,N represent ith control inputs.
w; € R, i=1,...,N represent ith disturbance vectors. ¢ denotes a small positive weak coupling parameter
which connect the other subsystems.

Let us introduce the partitioned matrices

Ay ey -+ edy
eAdr Ax» <o edoy
Ag = )
eAy1 €Ay - A
Slf(sliBli
81762IB2I‘
Bis = y
glféNiBNi
Ey o eEpn - eEw
eEy Ey - eEyy
E, =
eEyy eEyy - Ewny

By using above relations, the system (1) can be changed as

x(1) = Ax (1) + Z Biui(t) + E;w(1), (2)
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x(t) == [xl(t)T,...,xN(t)T}T ER", n:= zN;ni,

w(t) == [wl(t)T, .. ,WN(z)Tr R, k= ZN:k,-.

i=

The cost performance for each strategy subset is defined by

[ee) N
Ji(uy, .. uy, w, x(0)) = / [xT(t) (1) + ul (ORaus(t) + 1 Y ] (ORyuy(£) = wh () Vw(t) | dt,
0 j=1, j#i
3)
where
e, eOin e eOny

8Q£2 gm0, - eOpy o
Qis = . . . . € Rnxn?

SQiTlN SQiTzN AT O
Rii - R;l; > 0 S Rmixmi, RU - R;r > O S Rm/><m/-
Vi, = block diag (= "=0y,, WYLy > 0e RPE i j=1,... N

The state weight matrices Q,, is symmetric and assumed to be sign-indefinite [1]. Furthermore, it should be
noted that u denotes a small positive parameter which is the same order for the parameter ¢. That is, the fol-
lowing assumption is made.

Assumption 1. The ratio of the small positive parameters ¢ and u is bounded by some positive constants .
0<k:= ; < 00. 4)
For the matrices 4,, B;,, i=1,...,N, the set %y is defined by

N
Fy = {(Flg, L Fy) A+ ZB,-SFJ-S is stable.}.

=
The soft-constrained Nash equilibrium strategy pair (F
ditions [1]:

,F,) is defined as satisfying the following con-

ler s« -

Ti(Fiys o Py X(0)) S TUE s Fiy FiusFlop oo P x(0)), = 1N, (5)
where
Ji(Figy oo Fne,x(0)) = sup  Ji(Figy .. Fe,w,x(0)),Ji(Fig, . .., Frg,w, x(0))

WGL/;(0,00)

=%mkm

for all x(0) and for all (Fy,..., Fy,) that satisfy
(Fi,, ..., Fi\,, Fi, Fi,\,, ..., Fy,) € Zy.

les - -

O, + FIR:Fi + Z FlRyF),
=1 j#i

x(t) — w' (1) VmW(t)] dz,

It should be noted that the following assumption guarantees the existence of the admissible strategy.

Assumption 2. Each player uses the linear feedback strategy u(¢) = K;.x(¢), i =1,..., N such that the closed-
loop system is asymptotically stable for sufficiently small parameters ¢ and u.
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Obviously, this assumption is made in order to obtain a stable system. Using the fact studied by [1], the
soft-constrained feedback Nash equilibrium is given below.

Lemma 1. Assume that there exist N real symmetric matrices P, and W, such that

N N T N
gi(Plsa---)PNa) = Pis <AS_ZSjSPj8> + (As_zsjepjs> Pis +Pi£SisPis+,u Z PjsSijsts
J=1 '

Jj=1 J=1,
+PisMi,uPis + Qis = O’ (6)

where

S = B,R.'B}

ie?

— -1 —1pT
Sy. = BR'RyR'B

Je’

M, = EJV,E.
A, — Z;V:lSjstg + M, Py is stable fori=1,...,N, A, — Zj‘v:lSjst(g is stable,

N N T N
Wie (As - Z Sjspjs> + (As - Z Sjsts> Wie - WisSisWis +,u Z PjsSijsts + Qis > 0. (7)

J=1, A J=N, J=1, A

Define the N-tuple (F3,,...,Fy,) by

u(t) == Fix(t) = —R;'BLP.x(t), i=1,...,N. (8)
Then, (F;,,...,Fy,) € %y and this N-tuple is a soft-constrained Nash equilibrium. Furthermore,

JiF3,, ... Fi., x(0)) = x(0)"P;:x(0).

It should be noted that if Q;, > 0 and S;, > 0 for all i=1,...,N, the matrix inequality (7) is trivially
satisfied with W, =0 [1]. Then, only the CSAREs (6) should be solved.
In the following analysis, the basic assumption is needed.

Assumption 3. The triples (4;;, Bii,\/QO;;), i = 1,...,N are stabilizable and detectable.

3. Asymptotic structure of the CSAREs

Firstly, in order to obtain the strategy, the asymptotic structure of the CSAREs (6) is established. Since 4.,
Sie» Size and M, include the term of the small parameters ¢ and y, the solution P;, of the CSAREs (6), if it
exists, must contain these parameters. Moreover, it should be noted that two parameters ¢ and u are the same
magnitude such that Assumption 1 holds. Taking these facts into account, the solution P;, of the CSAREs (6)
with the following structure is considered [4,8,9].

el py ePin &Py
T 1-9;
eP;, gnpP, .. &Py o
X
Pis; = . . . . c Rn "
T T o 1-oiv p.
&Py &Py & ""Piy

Substituting the matrices A4,, Si, Sis M;,, Q. and P;, into the CSARE:s (6), letting ¢ = 0 and p = 0, and par-
titioning the CSARESs (6), the following reduced-order algebraic Riccati equations (AREs) are obtained,
where P;;, i = 1,...,N be the 0-order solutions of the CSAREs (6) as ¢ = = 0.

Piid; +A;Fz’i — Pi(Si — My)P; + Q,; =0, 9)

where Sii = B”R;IB}; and Mii = E”V;lE;l;
In order to guarantee the existence of a positive semidefinite stabilizing solution of the ARE (9), the follow-
ing condition is assumed.

Assumption 4. The ARE (9) has a positive semidefinite stabilizing solution such that 4;; — S;;P;; is stable.
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The asymptotic expansion of the CSAREs (6) at ¢ = u =0 is described by the following lemma.
Lemma 2. Under Assumptions 1-4, there exist the small constants ¢* and p* such that for all ¢ € (0,6*) and

p € (0,p%), the CSAREs (6) admits a unique positive semidefinite solution P}, that can be written as
Pie = P:; :Pl+0(8) :block diag(O I_)ii 0)"’0(8) (10)

Proof. The proof can be derived by using the implicit function theorem [7] for the CSAREs (6). Using the
implicit function theorem, it can be shown that there exists a neighbourhood of ¢ = ¢ = 0 and a unique func-
tion P;, := P; + O(e). It should be noted that under Assumption 4, since the solution of the reduced-order
ARE (9) is unique (see, e.g., Theorem 13.5 of [11]), P; is a unique solution. Therefore, the CSAREs (6) has
a unique positive semidefinite solution P, under the sufficiently small parameters ¢ and p. [

4. Newton’s method for solving CSAREs

In order to obtain the solution of CSAREs (6), the following useful algorithm is given. Consider the fol-
lowing iterative algorithm.

T
N
k+1 (A o ZS/; _i_MmPl(éf)) + < . — ZS_/(PJ(];) +MZHP1(§)) Pl(§+1)
j=1

N N N N
Z P k+1)Sj8Pl(£c) _ Z PE?S/‘SP%H) +u Z P (k+1) S,ﬂP Z P S,ﬂP (k+1)
J=1 A J=1, j#i J=1, j#i j:I, J#
N N N
+ > PSPy §:P$&39+P$&mﬁ—u > PYsPY
J=1, j#i =1, j#i J=1, j#
_Plf)Ml,UPis +Qis:07 k:()vl?"'v (lla)
gonpleP o ePh
(k)T 1-6; p(k) (k)
eP; g np e eP;
Pl(-f) - l.12 . 2 ' jZN (11b)
PR ey
with the initial conditions
PY =P, = block diag(0 --- P; --- 0). (12)

The algorithm (11a) can be constructed by setting P (k1) f,k )+ APff ) and neglecting O(A?) term. The fol-
lowing theorem indicates that the algorithm (11a) is Newton s method.

Theorem 1. Suppose that there exist a solution to the CSAREs (6). It can be obtained by performing the
algorithm (11) which is equal to the Newton’s method.

Proof. Taking the vec-operator transformation on both sides of (11a) and ¥4; = 4,(P 12, e ,P](\l,‘g)) = 0 and sub-
tracting these equations, it is easy to verify the following equation:

k
VecPllf+1 vecP" B VCC%( Ie a'~'7PI(\fe)>
—| [vg( o ..,PE&‘,?)} x : , (13)
VecP%l+ K vecP\)) Vec%;< PY. ,P}Q)
where
o([vec# ], ..., [vecdy)"
VG(Pr, ..., Py) = QI NIy g g,

6([VecP1,;]T, ol [VecPNé,]T)
This is the desired result. [
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The following theorem indicates that the proposed algorithm (11) which is based on the Newton’s method
attains the quadratic convergence.

Theorem 2. Under Assumptions 1-4, there exist the small constants & and p such that for all ¢ € (0,6),6 < ¢*
and p € (0,p),p < p*, the iterative algorithm (11) converges to the exact solution of P* with the rate of the

quadratic convergence, where P(k) is positive semidefinite matrix and A, — Z 18P +M,#P(> is stable.

Moreover, the convergence solutions attain a local unique solution P}, of the CSAREs (6) in the neighborhood of
the initial condition P( = P;. That is, the following conditions are satlsﬁed

1P — Py |l = O(s”), (14a)
N
Rei|d, =Y SuPY + M, PY| <0, k=0,1,.... (14b)
=1
In order to prove the theorem, the following fact must be needed.

4.1. Newton—Kantorovich theorem [12]

Assume that F:R" — R" is differentiable on a convex set D. Suppose that the inverse of map F exists and
moreover it is differentiable on set D and that ||F'(x) — F'(y)|| < y|]x — p|| for all x,y € D. Suppose that there
is an x”€ D such that |[F(x")7" <pB, |F(")FxO)| <n and 0: = Byn < 1/2. Assume that S:= {x:
lx—x°| <ty cD, r= I‘T‘/@ Then Newton iterations x’Jrl F’(xk)*lF(xk) k=0,1,..., are well
defined and converge to a solution x* of F(x) =0 in S. Moreover, the solution x* is unique in S N D, where

S:={x: ||x— | <y D, i='3=* and error estimate is given by |[lx* — x| < 20) =

2202y k=0,1,.... 2

Proof. The proof is given directly by applying the Newton—Kantorovich theorem [12] for the CSAREs (6). It
is immediately obtained from the CSARESs (6) that there exists a positive scalar y such that for any P and P,

VG (P, oo Po) = V(P o P < ([veePt] o [veePi]T) = ([veeP ). [veept ] )|
(15)
Moreover, it is easy to verify that
Jilo o vl D4 -+ O
J= L : =l i (16)
Inilse o Tl 0 --- 9,
where
J,:,:M,@A:blockdiag(ml .+ D),
G[Vechr]

D, =D, ®1, +1, ®D}

i)

Di; := A; — (Si — Mii)]_)ii-
Thus, since J is nonsingular under Assumption 4, for small ¢ and g,
Ve (P, P)) = VE(Py,... . Px) = J +O)

is also nonsingular. Therefore, there exists f such that ff = ||[V§4(P1, ..,Py)]"'|l. On the other hand, since
|%(Py,...,Py)|| = O(¢), there exists n such that n = ||[V%(P,..., )] " 1%y, ..., Py)|| = O(e). Thus,
there exists 0 such that 0 = iy <2~' because # = O(¢). Finally, the Newton—Kantorovich theorem results
in the desired results (14).

Second, the local unlqueness of the solution is discussed. Now, let us define t = ﬁ [ —V1- 20}. Clearly,

S={P;:|Pi — m H t*} is in the convex set D. In the sequel, since ||P;, — P H = O(¢) holds for a small &,
the local uniqueness of P}, is guaranteed in the neighbourhood of e = =10 for a subset S by applying the
Newton—Kantorovich theorem. [
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5. A numerical algorithm for solving the large-scale Lyapunov equations (CLALESs)

When the cross-coupled large-scale algebraic Lyapunov equations (11a) is solved, the existence of the cross-
coupled term

N N N N
=3 PSP - ST POS P o ST PEs P 4 ST PR, P

J=1, j# J=1, # J=1 A J=1, A

in CLALE:s (11a) makes it difficult to solve this equation directly due to the large-dimension as N x 7 larger
than the dimensions 7 := 3 n,. Thus, in order to avoid the cross-coupled term, a new decoupling algorithm
that is based on the fixed point algorithm [7] is established. Taking into account the fact that
S j[,.PEf ) = 0(e), i # j, let us consider CLALEs (17) in its general form.

N
Xig/lig—i—Ains—'—S Z (X]8¢j8+®;ngs)+U18:Oa izl,...,N, (17)
J=1, j#i
where
[ Xy  eXimy - Xy
SX};Z Sliész,Q oo eX py
Xir, = 5
i SX?iN gXlgN .. gliéinN
 Aa edin - edanT
el Ap o edpy
Ai.t: = ’
LeAivt ediva -+ Ay
[ Pa &Py - ey T
eDjy Dy e eDpy
d)ié: = ’
LeDiy1  ePivy -+ Dy |
Uy eUpy - eUiy
eUl, &7%Up -+ eUny
Uiz: =
eUl eUby - Uy
It should be noted that
P(k+l) = XtuP]/gH_l = X/e 7A Z + Ml,uP = Aim _S_/s:P,('f) + MSUIP;IE() = 3@/}:7

N N N
j=1, j#i j=1, j#i j=1, i

where = represents the replacement. Without loss of generality, the following condition is assumed for
CLALEs (17).

Assumption 5. A;1,..., 4,5, i=1,...,N are stable.
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The algorithm (18) for solving CLALEs (17) is given as follows:
N
XU+ AX 46 Y (X0, + OTX )+ U, =0, i=1,...,N, n=0,1,..., (18)
=1 g '
where
x% =0 i=1,...,N.

It should be noted that the numerical algorithm (18) can be carried out independently for each solution.
The following theorem indicates the convergence of algorithm (18).

Theorem 3. Under Assumption S, there exists the small constant & such that for all ¢ € (0,6), the fixed point
algorithm (18) converges to an exact solution X;, with a linear convergence.

Proof. The CLALEs (17) can be changed as follows.

vecX (1';“) 0 &, - Dy |vecX 5’;’ vecU |,
vecX ZH) &, 0 - Dy ||vecX g’;) vecU»,
P10] A I I ] R (19)
Vec)é AR b, P - 0 ;/ec x ) vecU
where
A(g) :=block diag[A;, Ay, -+ Ay.], Ap =A@, +1,® AL,
and

D, =D R, +1,2 ..
Since Assumption 5 holds, for sufficient small ¢ there exists [4(g)]"' because

lim A(e) = block diag[A; A, --- Ay], (20)

e—+0

where A; := A;|.—o.
Therefore, it is easy to verify that there exists the small constant ¢ such that for all ¢ € (0,4):

0 ¢25: QN&:

- dsh: 0 qst
Aue|| L ] < e1)

¢1s QZG 0

Finally, using the fixed point theorem, it can be shown that the algorithm (18) attains the linear
convergence. [

When each algebraic Lyapunov equation (ALE) (18) is solved, the dimension of the workspace as
ni= Zﬁvzln,- larger than the dimensions #; is needed. Thus, in order to reduce the dimension of the workspace,
a new algorithm for solving the ALE (18) which is based on the alternating direction implicit (ADI) method
[13,14] is established. Let us consider the following ALE (22), in a general form of the ALE (18).

XY, + WX, + U, =0. (22)

In particular, the following special matrices Z,, ¥, and %, which are related to the CLALEs (17) are consid-
ered because the other case i =2,..., N can be changed into the similar form by using the similarity transfor-
mation 7 ;, where

Zo=7 ' X'V, W=7 4,7,
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N
U, = 9’;1 [8 Z (Xj(-g)d)jg + d’chj(Z)> + U |7,
J=1, j#i
[0 I, 0
block diag(1...1) : :
g_i = In,- e 0 e 0 y
: : block diag(1...1)
| 0 e 0 ... I, |
[ 2 e - X
% S%Tz 83{22 e 83{2N %11 Slal’]f
e : : : T s&‘”le e |
L]y ey o ey
[ Y &P - VP
v 8‘1]21 lpgz S'PZN ?/11 gqllf
B S [8lpfl ¥y }7
Le¥Pyv1 Py - P
[ Uy Uy - Uy
” 8%—{2 8%22 E%ZN %11 SOZ/M
g, — =
e : : : T ewy, suy |
L, UL, - Uy

In order to guarantee the existence of the solution and the convergence of the algorithm, another assumption
is needed.

Assumption 6. ¥ii,..., ¥ yy are stable.
As a result, the ALE (22) can be changed as follows by partitioning.

TP+ PHa -+ (20 + VRET, ) + 20 =0, (23a)
LW+ WA+ (A0 + WA )+ =0, (23b)
%'ll'ljlf—l—,%‘lf'{’fﬁ—llf—lrll%ﬁlf—}-g'f/}‘l%f—l—%lf:o, (230)

Firstly, using the implicit function, the asymptotic structure of the ALE (23) is established.

Lemma 3. Under Assumption 6, the ALE (23) has unique solutions X\, X1, and X ; such that these matrices
possess a power series expansion at ¢ = 0. That is,

o= N, A= ey, ap=> ey (24)
m=0 m=0 m=0

Proof. It can be done by applying the implicit function theorem to the partitioned ALE (23). To do so, it is
enough to show that the corresponding Jacobian is nonsingular at ¢ = 0. Since the detailed proof is the same as
the proof that is given by [8], it is omitted. [

Secondly, the methodology for solving the ALE (23) for the matrix solutions 21, 1, and %, is given.
Substituting the matrices 21, Z'1, and %, into the ALEs (23) and equating successively coefficients of equal
powers of ¢, the following linear equations are obtained.
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27w+ At + e + L =0, (25a)

gﬂ’”*z W+ Pt T T 2t = o, (25b)

5{ (m+2) le + ,P g{ (m+2) + %IT+2 q’lf + ,PT g{ (m+1) _ O, (25C)
where

20w, + E['1T15{<1?) + U =0, %}O>Tf + T;g{f(fp) +%; =0,
%(l(i)qllf+%§2?'Pf+'PITI&‘”(I(;-)—F”ZJUZO?

) =0, aVw, v a2yt + w2 =o,
A+ VLA + VR =0,

It should be noted that the successive approximations (25) are independent of the small parameter &. More-
over, the approach used in this paper is quite different because the proposed successive approximations
(25) are based on not the existing algorithm [9] but Maclaurin series expansions. Thus, the desired solutions
with any approximation are obtained by solving the linear equations directly.

Let us consider the following Sylvester’s equations (26), in a general form of the ALEs (25b) and (25c¢)

AY + YB = C, (26)

where the matrices 4 € R”?, B€ R?? and C € R”? are given, and the solution matrix Y € R”“ is to be
determined.

The ADI iterative method [13,14] for the solution of (26) proceeds by strictly alternating between the solu-
tion of the two equations

(A —=01111p)Y2r1 = Yo (=B — 014111,) + C, (27a)
Yoroo(—B — 151ly) = (A — tp11,) Yo — C, (27b)
for/=0,1,2,... Here Yj is a given initial approximate solution, and the J; and t; are real orAcomplex param-
eters chosen so that the computed approximate solutions Y; converge rapidly to the solution Y of the Sylvester
equation (26) as / increases.
If the matrices 4 and B are dense, then the direct solution method by Golub et al. [15] can be used. This
method determines the real Schur factorization of 4 and brings B into Hessenberg form by orthogonal sim-

ilarity transformation [14]. However, when the matrices 4(= ‘PfT) and B(=Y,) that appear in (25b) are large
and sparse, iterative solution technique has to be employed. In fact, it is clear that

Wy oo Wy Yy o 0
Ye=| ¢+ - =1 ] (E=+40)
ePys - Waw 0 - Y
are large and sparse for sufficiently small ¢. Thus, since the ADI iterative method is an attractive technique in
this case, such method will be used.

6. Computational example

In order to demonstrate the efficiency of the proposed algorithm, a computational example is given. The
system matrices are given as follows:

0 1 —0266 —0.009
275 —278 —136 —0.037
S )| 0 0 1

—4.95 0 —55.5 —-0.039
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r0.0024 0 —-0.087 0.002
—0.185 0 1.11 —0.011
8A12: 3
0 0 0 0
L 0.222 0 8&.17 0.004
r0.073 0 -0.25 0.003
-046 0 2.8 —0.02
8A13: )
0 0 0 0
L0924 0 17.5 0.02
r0.021 0 0.121  0.003
—-1.1 0 -1.62 -0.015
edy = )
0 0 0 0
L -243 0 137 —-0.034
—0.21 1 —1.6 —0.005
-19 —-18 93 —0.12
Azzz )
0 0 0 1
-3.1 0 -56 0.032
r0.06 0 046 0.002
-1 0 149 -0.04
edy = )
0O 0 0 0
L0.12 0 29.8 —0.028
r—0.002 0 0.83 0
—-6.78 0 -—10.1 0.09
8143] - ’
0 0 0 0
L —1.24 0 0498 -0.017
r0.011 0 0.22 0
-2.1 0 1.7 -0.123
Ay = )
0 0 0 0
L—0.07 0 6.383 —=0.011
r—0.197 1 —1.2 —-0.003
-54.5 =20 70.1 -2.37
A33: )
0 0 0 1
L —34 0 -21.0 -0.017
0 r o0 0
B — 36.1 B _ 78.9 B 1000 0
11 — O ) 22 — O ) 33 — O 9 ij )
L 0 L 0 0
ro.l 0 0 T 0 0 0
o 0 0 £ 01 0 O
e 00 o1 "® 00 01
L 0 0 0.1 0 0 0.1
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Table 1
Error per iterations
%% (1.0e — 01)|| %% (1.0e — 02)]| 9% (1.0e — 03)|| %% (1.0e — 04)]|
0 3.5262 3.5262¢—01 3.5262¢—02 3.5262¢—03
1 6.1345¢—01 4.8088e—03 4.8160e—05 4.8188e—07
2 3.0517e—02 2.2293e—06 2.2402¢—10 2.5366e—12
3 1.8473e—05 3.3376e—11 1.0869e—12
4 2.1005e—11
0 0 0 O
£ 0 0 0 O E =0, i4]
33 = ij = l
01 0 0 01| “TT% TS
0 0 0 0.1

v, =diag(l 2 2 U,

V1 = block diag(V; Iy w'ly),
V, = block diag(,u‘114 Vi w'Ly),
Vs =block diag(n'ls p'ly V),
0, = block diag(0.5/, ngg),

0, = block diag(Oy4xs 0.514 Oyvs),
0O, = block diag(Os.s 0.574),
Riy=Rp=Ry3=1, Rip=R;3=02,
Ryy = Ry = 0.3, Ry = Rsy = 0.1.

The small parameters are chosen as ¢ = 0.01 and u = 0.005. It should be noted that the algorithm (11a) con-
verges to the exact solution with accuracy of ||%%)(g)|| < 1.0e—10 after three iterations, where

H{é e)| = Z H% ( e s 2; P, )H (28)

In order to verify the exactitude of the solution, the remainder per iteration by substituting P,(f) into the
CSARE:s (6) is computed. In Table 1, the results of the error ||%*) ()| per iterations are given for several val-
ues ¢ and u = 0.5¢. As a result, it can be seen that the algorithm (11a) has the quadratic convergence.

7. Conclusions

In this paper, a new algorithm for solving the CSARESs for weakly coupled large-scale systems has been
proposed. Comparing with the existing result [8,9], the considered equation has the sign-indefinite quadratic
term. It is noteworthy that although the proposed design method is based on the Newton’s method, the con-
vergence rate has been newly proved as a quadratic convergence. Moreover, the local uniqueness of the con-
vergence solutions for the CSAREs have been proved for the first time by using the Newton—-Kantorovich
theorem. As another important feature, in order to overcome the computation of large- and sparse-matrix,
the fixed point algorithm and the ADI method have been combined. As a result, both fast convergence and
a reduced-order calculation are attained. Finally, the computational example has shown the excellent results.
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