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Abstract

In this paper, we consider the linear quadratic optimal control problem for multiparameter singularly perturbed systems in which N
lower-level fast subsystems are interconnected through a higher-level slow subsystem. Di6erent from the existing methods, a new method
is developed to design a near-optimal controller which does not depend on the unknown small parameters. It is shown that the resulting
controller in fact achieves an O(‖�‖2) approximation to the optimal cost of the original optimal control problem.
? 2003 Published by Elsevier Ltd.
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1. Introduction

The deterministic and stochastic multimodeling stability,
control, <ltering and dynamic games have been investigated
extensively by several researchers (see e.g., Khalil, 1979,
1980, 1981; Khalil & Kokotovi>c, 1978, 1979a, b; ?Ozg?uner,
1979; Salman, Lee, & Boustany, 1990; Coumarbatch &
Gaji>c, 2000a, b; Gaji>c, 1988; Gaji>c & Khalil, 1986; Wang,
Paul, & Wu, 1994). In order to obtain the optimal solution
to the multimodeling problems, we must solve the multi-
parameter algebraic Riccati equation (MARE), which is
parameterized by the small positive same order parame-
ters �j; j = 1; : : : ; N . Various reliable approaches for solv-
ing the MARE have been well documented in literatures
(see e.g., Coumarbatch & Gaji>c, 2000a, b; Mukaidani,
Xu, & Mizukami, 2002). However, a limitation of these
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approaches is that the small parameters are assumed to be
known. Thus, it is not applicable to a large class of prob-
lems where the parameters represent small unknown pertur-
bations whose values are not known exactly. On the other
hand, although it is well known that a popular approach to
deal with the multiparameter singularly perturbed systems
is the two-time-scale design method (see e.g., Kokotovi>c,
Khalil, & O’Reilly, 1986; Wang et al., 1994), the existing
controller only achieves O(‖�‖) (where ‖�‖ denotes the
norm of the vector [�1 · · · �N ]) approximation of the optimal
cost.
In this paper, we study the linear quadratic optimal con-

trol problem for nonstandard multiparameter singularly
perturbed systems (MSPS). The considered MSPS is more
general compared with Mukaidani and Mizukami (2001)
and is based on the speci<c structure of the lower-level
multi-fast subsystems and a higher-level slow subsys-
tem ( ?Ozg?uner, 1979). We <rst investigate the unique and
bounded solution of the MARE and establish its asymptotic
structure. Using the asymptotic structure, a new near-optimal
controller which does not depend on the values of the small
parameters is obtained. It is newly shown that the resulting
controller achieves O(‖�‖2) approximation of the optimal
cost. As another important feature, we prove that the new
near-optimal controller is equivalent to the existing one in
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the case of the standard and the nonstandard MSPS. We
claim that the proposed controller includes the composite
near-optimal controller (Khalil & Kokotovi>c, 1979a) as a
special case since the proposed controller can be constructed
even if the fast state matrices are singular. Moreover, we
also claim that the near-optimal controller via the descrip-
tor variable approach (Wang et al., 1994) is equivalent to
the proposed controller under certain conditions. Therefore,
we emphasize that the composite controller obtained by
decomposing the full systems and the approximation con-
troller obtained by eliminating �j of the full controller are
identical.
Notation: The superscript T denotes matrix transpose.

det L denotes the determinant of square matrix L. In de-
notes the n × n identity matrix. ‖ · ‖ denotes its Euclidean
norm for a matrix. block-diag denotes the block diago-
nal matrix. vecM denotes the column vector of the ma-
trix M (Magnus & Neudecker, 1999). ⊗ denotes the Kro-
necker product. Ulm denotes a permutation matrix in the
Kronecker matrix sense (Magnus & Neudecker, 1999) such
that Ulm vecM = vecMT; M ∈Rl×m. E[ · ] denotes the
expection operator.

2. Multiparameter singularly perturbed systems

We consider a speci<c structure of N -lower-level
multi-fast subsystems interconnected through the dynam-
ics of a higher-level slow subsystem (See e.g., ?Ozg?uner,
1979).

ẋ0(t) = A00x0(t) +
N∑
j=1

A0jxj(t)

+
N∑
j=1

B0juj(t); x0(0) = x00 ; (1a)

�jẋj(t) = Aj0x0(t) + Ajjxj(t) + Bjjuj(t);

xj(0) = x0j ; j = 1; 2; : : : ; N; (1b)

y0(t) = C00x0(t); (1c)

yj(t) = Cj0x0(t) + Cjjxj(t); j = 1; 2; : : : ; N; (1d)

where xj ∈Rnj ; j = 0; 1; : : : ; N are the state vectors,
uj ∈Rmj ; j = 1; 2; : : : ; N are the control inputs, yj ∈Rlj ;
j = 0; 1; : : : ; N are the outputs. We assume that the ra-
tios of the small positive parameter �j ¿ 0; j = 1; 2; : : : ; N
are bounded by some positive constants kij, Rkij (see e.g.,
Khalil, 1979, 1980, 1981; Khalil & Kokotovi>c, 1978,
1979a, b),

0¡kij6 �ij ≡ �j
�i
6 Rkij ¡∞: (2)

Note that one of the fast state matrices Ajj; j = 1; 2; : : : ; N
may be singular. The performance criterion is given by

J =
1
2

∫ ∞

0


yT(t)y(t) + N∑

j=1

uTj (t)Rjuj(t)


 dt

=
1
2

∫ ∞

0


xT(t)Qx(t) + N∑

j=1

uTj (t)Rjuj(t)


 dt; (3)

where

y(t)T := [y0(t)T y1(t)T · · · yN (t)T]T ∈R Rl;

Rl :=
N∑
j=0

lj;

x(t)T := [x0(t)T x1(t)T · · · xN (t)T]T ∈R Rn;

Rn :=
N∑
j=0

nj;

Q :=

[
Q00 Q0f

QT0f Qf

]
; Q00 :=

N∑
j=0

CTj0Cj0;

Q0f := [Q01 · · · Q0N ] = [CT10C11 · · · CTN0CNN ];
Qf := block-diag(Q11 · · · QNN )

= block-diag(CT11C11 · · · CTNNCNN ):

Let the optimal control for the regulator problem (1) and
(3) be

uopt(t) =Koptx(t) = [u1opt(t)T · · · uNopt(t)T]T

=−R−1BTe Pex(t); (4)

where Pe satis<es the MARE

PeAe + ATe Pe − PeSePe + Q = 0 (5)

with

$e := block-diag(�1In1 · · · �N InN );

Ae :=

[
A00 A0f

$−1
e Af0 $−1

e Af

]
;

A0f := [A01 · · · A0N ]; Af0 := [AT10 · · · ATN0]T;
Af := block-diag(A11 · · · ANN );

Se := BeR−1BTe =

[
S00 S0f$−1

e

$−1
e ST0f $−1

e Sf$−1
e

]
;
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S00 := B0R−1BT0 =
N∑
j=1

B0jR−1
j BT0j;

S0f := B0R−1BTf = [S01 · · · S0N ]

=
[
B01R−1

1 BT11 · · · B0NR−1
N BTNN

]
;

Sf := BfR−1BTf = block-diag(S11 · · · SNN )

= block-diag(B11R−1
1 BT11 · · · BNNR−1

N BTNN );

Be :=

[
B0

$−1
e Bf

]
; B0 := [B01 · · · B0N ];

Bf := block-diag(B11 · · · BNN );

R := block-diag(R1 · · · RN ):
Since the matrices Ae and Be contain the term of �−1j ,

a solution Pe of the MARE (5), if it exists, must contain
terms of �j. Taking this fact into consideration, we look for
a solution Pe of the MARE (5) with the structure

Pe :=

[
P00 PTf0$e

$ePf0 $ePf

]
; P00 = PT00;

Pf0 :=



P10

...

PN0


 ;

Pf :=


P11 �12PT21 �13PT31 · · · �1NPTN1

P21 P22 �23PT32 · · · �2NPTN2
...

...
...

. . .
...

P(N−1)1 P(N−1)2 P(N−1)3 · · · �(N−1)NPTN (N−1)

PN1 PN2 PN3 · · · PNN



;

$ePf = PTf$e:

In the following analysis, we need some assumptions.
Speci<cally, in order to guarantee the existence of the
reduced-order algebraic Riccati equation (ARE) and its
standard stabilizability and the detectability conditions when
‖�‖ :=

√
�21 + �

2
2 + · · ·+ �2N → +0, Assumptions 2 and 3

are needed (Mukaidani, 2001). These assumptions play an
important role in proving Lemma 6 which will be given
later.

Assumption 1. The triples (Ajj; Bjj; Cjj); j = 1; 2; : : : ; N
are stabilizable and detectable.

Assumption 2.

rank

[
sIn0 − A00 −A0f B0

−Af0 −Af Bf

]
= Rn; (6a)

rank

[
sIn0 − AT00 −ATf0 CT0

−AT0f −ATf CTf

]
= Rn; (6b)

where

C0 :=




C00

C10

...

CN0



; Cf :=




0 0 0 · · · 0

C11 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · CNN



;

with ∀s∈C, Re[s]¿ 0.

Assumption 3. The Hamiltonian matrices

Tjj :=

[
Ajj −Sjj
−Qjj −ATjj

]
; j = 1; 2; : : : ; N

are nonsingular.

Before investigating the optimal control problem, we in-
vestigate the asymptotic structure of the MARE (5). Let us
introduce the scaling matrices 'e := block-diag(In0 $e).
In order to avoid the ill-conditioned caused by the large
parameter �−1j which is included in the MARE (5), we
introduce the following useful lemma.

Lemma 4. The MARE (5) is equivalent to the follow-
ing generalized multiparameter algebraic Riccati equation
(GMARE) (7)

G(P) = PTA+ ATP − PTSP + Q = 0; (7)

where

A :=

[
A00 A0f

Af0 Af

]
; S :=

[
S00 S0f

ST0f Sf

]
;

P :=

[
P00 PTf0$e

Pf0 Pf

]
:

Proof. Firstly, by direct calculation we verify that Pe='eP.
Secondly, it is easy to verify that A = 'eAe, S = 'eSe'e.
Hence,

ATP = ATe 'e'
−1
e Pe = ATe Pe; P

TSP

= Pe'−1
e 'eSe'e'−1

e Pe = PeSePe:

By using the similar calculation, we can immediately rewrite
(5) as (7).
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The GMARE (7) can be partitioned into

f1 = PT00A00 + A
T
00P00 + P

T
f0Af0 + A

T
f0Pf0 − PT00S00P00

−PTf0SfPf0 − PT00S0fPf0

−PTf0ST0fP00 + Q00 = 0; (8a)

f2 = AT00P
T
f0$e + ATf0Pf + P

T
00A0f + P

T
f0Af

−PT00S00PTf0$e − PTf0S
T
0fP

T
f0$e

−PT00S0fPf − PTf0SfPf + Q0f = 0; (8b)

f3 = PTfAf + A
T
fPf +$ePf0A0f + AT0fP

T
f0$e − PTfSfPf

−PTfST0fPTf0$e −$ePf0S0fPf

−$ePf0S00PTf0$e + Qf = 0: (8c)

It is assumed that the limit of �ij exists as �i and �j tend to
zero (see e.g., Khalil, 1979, 1980, 1981; Khalil &Kokotovi>c,
1978, 1979a, b), that is

R�ij = lim
�j→+0
�i→+0

�ij: (9)

Let RP00, RPf0 and RPf be the limiting solutions of the above
equation (8) as �j → +0; j = 1; : : : ; N , then we obtain the
following equations:

RPT00A00 + A
T
00
RP00 + RPTf0Af0 + A

T
f0
RPf0 − RPT00S00 RP00

− RPTf0Sf RPf0 − RPT00S0f RPf0

− RPTf0S
T
0f
RP00 + Q00 = 0; (10a)

ATf0 RPf + RPT00A0f + RPTf0Af − RPT00S0f RPf

− RPTf0Sf RPf + Q0f = 0; (10b)

RPTfAf + A
T
f
RPf − RPTfSf RPf + Qf = 0; (10c)

where

RPf :=


RP11 R�12 RPT21 R�13 RPT31 · · · R�1N RPTN1
RP21 RP22 R�23 RPT32 · · · R�2N RPTN2
...

...
...

. . .
...

RP(N−1)1 RP(N−1)2 RP(N−1)3 · · · R�(N−1)N RPTN (N−1)
RPN1 RPN2 RPN3 · · · RPNN



;

RPjj = RPTjj; j = 0; 1; 2; : : : ; N: (11)

Note that the ARE (10c) admits an asymmetric solution.
However, it can be seen that the ARE (10c) admits at least
a symmetric positive semide<nite stabilizing solution as
follows.

Theorem 5. Under Assumption 1, the ARE (10c) admits a
unique symmetric positive semide:nite stabilizing solution
RPf which can be written as

RP∗
f := block-diag( RP

∗
11 · · · RP∗

NN ); (12)

where RP∗
jj is a unique symmetric positive semide:nite sta-

bilizing solution for the following AREs, respectively,

RP∗
jjAjj + A

T
jj
RP∗
jj − RP∗

jjSjj RP
∗
jj + Qjj = 0; j = 1; 2; : : : ; N:

Proof. Substituting (12) into the ARE (10c) as RP∗
f → RPf,

it is easy to verify that RP∗
fAf + ATf RP

∗
f − RP∗

fSf RP
∗
f + Qf =

0. Furthermore, it can be seen that RP∗
f = RP∗T

f ¿ 0 and the
following matrix Af−Sf RP∗

f is stable because RP
∗
jj is a unique

symmetric positive semide<nite stabilizing solution under
Assumption 1.

Af − Sf RP∗
f

=block-diag(A11 − S11 RP∗
11 · · · ANN − SNN RP∗

NN ):

Consequently, there exists a unique solution of the ARE
(10c) and its solution is (12) itself.

Assumption 1 ensures that Ajj−Sjj RP∗
jj; j=1; 2; : : : ; N are

nonsingular. Substituting the solution of (10c) into (10b)
and substituting RP∗

f0 into (10a) and making some lengthy
calculations (the detail is omitted for brevity), we obtain the
following 0-order equations (13)

RP∗
00A+AT RP∗

00 − RP∗
00S RP∗

00 + Q= 0; (13a)

RP∗
f0 =−NT2 + NT1 RP∗

00;⇔ RP∗T
j0

=−[ RP∗
00D0j + (A

T
j0
RP∗
jj + Q0j)]D

−1
jj

=
[
RP∗
jj −Inj

]
T−1
jj Tj0

[
In0
RP∗
00

]
; (13b)

RP∗
fAf + A

T
f
RP∗
f − RP∗

fSf RP
∗
f + Qf = 0;

⇔ RP∗
jjAjj + A

T
jj
RP∗
jj − RP∗

jjSjj RP
∗
jj + Qjj = 0; (13c)

where

A := A00 + N1Af0 + S0fNT2 + N1SfN
T
2 ;

S := S00 + N1ST0f + S0fN
T
1 + N1SfN

T
1 ;

Q := Q00 − N2Af0 − ATf0N
T
2 − N2SfNT2 ;
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NT1 :=− RA−T
f
RAT0f = [− D01D−1

11 · · · − D0ND−1
NN ]

T

= [N11 · · · N1N ]T;

NT2 := RA−T
f
RQT0f = [ RQ01D11 · · · RQ0NDNN ]T

= [N21 · · · N2N ]T;

RA0f := A0f − S0f RP∗
f = [D01 · · · D0N ];

RAf := Af − Sf RP∗
f = block-diag(D11 · · · DNN );

RQ0f := Q0f + ATf0 RP
∗
f = [ RQ01 · · · RQ0N ];

D0j := A0j − S0j RP∗
jj; Djj := Ajj − Sjj RP∗

jj;

RQ0j := Q0j + ATj0 RP
∗
jj; j = 1; 2; : : : ; N:

In the following we established the relation between the
GMARE (7) and the 0-order equations (13). Before doing
that, we give the results for the AREs (13).

Lemma 6. Under Assumptions 1–3, the following results
hold:

(i) The matrices A; S and Q do not depend on RP∗
jj;

j = 1; 2; : : : ; N . That is, following formulations are
satis:ed:[

A −S

−Q −AT

]
= T00 −

N∑
j=1

T0jT−1
jj Tj0; (14)

where

T00 :=

[
A00 −S00
−Q00 −AT00

]
; T0j :=

[
A0j −S0j
−Q0j −ATj0

]
;

Tj0 :=

[
Aj0 −ST0j
−QT0j −AT0j

]
; j = 1; 2; : : : ; N:

(ii) There exist a matrix B := [B01 +N11B11 · · · B0N +
N1NBNN ]∈Rn0× Rm, Rm :=

∑N
j=1 mj and amatrixC with

the same dimension as C0 such that S = BR−1BT,
Q = CTC. Moreover, the triple (A; B; C) is stabi-
lizable and detectable.

Proof. Since the proof can be performed by using the dual
argument in Mukaidani (2003), it is omitted.

Taking into account the fact that (A; B; C) is stabilizable
and detectable, the ARE (13a) admits a unique stabilizing
positive semide<nite symmetric solution, denoted by RP∗

00,
andA−S RP∗

00 is stable.

The limiting behavior of Pe as the parameter ‖�‖ → +0
is described by the following theorem.

Theorem 7. Under Assumptions 1–3, there exists a small
)∗ such that for all ‖�‖∈ (0; )∗) the MARE (5) admits
a symmetric positive semide:nite stabilizing solution Pe
which can be written as

Pe ='e

[ RP∗
00 + O(‖�‖) [ RP∗

f0 + O(‖�‖)]T$e

RP∗
f0 + O(‖�‖) RP∗

f + O(‖�‖)

]

=

[ RP∗
00 + O(‖�‖) [ RP∗

f0 + O(‖�‖)]T$e

$e[ RP∗
f0 + O(‖�‖)] $e[ RP∗

f + O(‖�‖)]

]
: (15)

In order to prove Theorem 7, we need the following useful
lemma (Mukaidani & Mizukami, 2000).

Lemma 8. Let us consider the linear time-invariant
MSPS

ż1(t) = [F11 + O(‖�‖)]z1(t) + [F12 + O(‖�‖)]z2(t);

z1(0) = z01 ; (16a)

$eż2(t) = [F21 + O(‖�‖)]z1(t) + [F22 + O(‖�‖)]z2(t);

z2(0) = z02 ; (16b)

where ‖�‖ is a small positive parameter, zj ∈Rlj ; j = 1; 2
are the state vectors. All matrices above are of appropriate
dimensions.
If F22 and F0 = F11 − F12F−1

22 F21 are stable, then there
exists a small perturbation parameter R||�||¿ 0 such that
for all ‖�‖∈ (0; R||�||] system (16) is asymptotically stable.

Proof. Since the proof can be performed by using the sim-
ilar technique in Mukaidani and Mizukami (2000), it is
omitted.

Using the Lemma 8, let us prove Theorem 7.

Proof. We apply the implicit function theorem (Gaji>c,
1988) to (8). To do so, it is enough to show that the cor-
responding Jacobian is nonsingular at ‖�‖ = 0. It can be
shown, after some algebra, that the Jacobian of (8) in the
limit as ‖�‖ → 0 is given by

J=∇F=
@vec(f1; f2; f3)
@vec(P00; Pf0; Pf)T

∣∣∣∣
‖�‖=0; P00= RP∗

00 ; Pf0= RP
∗
f0 ; Pf= RP

∗
f

=



J00 J01 0

J10 J11 J12

0 0 J22


 ; (17)
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where

J00 = In0 ⊗ RAT00 + RAT00 ⊗ In0 ;

J01 = (In0 ⊗ RATf0)Un0n̂ + RATf0 ⊗ In0 ;

J10 = RAT0f ⊗ In0 = ( RA
T
0f ⊗ In0 )Un0n0 ;

J11 = RATf ⊗ In0 ; J22 = In̂ ⊗ RATf + RATf ⊗ In̂;

RA00 = A00 − S00 RP∗
00 − S0f RP∗

f0;

RAf0 = Af0 − ST0f RP
∗
00 − Sf RP∗

f0;

RA0 = RA00 − RA0f RA−1
f
RAf0:

The Jacobian (17) can be expressed as det J=det J22·det J11·
det[In0 ⊗ RAT0 + RAT0 ⊗ In0 ], where RA0 ≡ RA00 − RA0f RA−1

f
RAf0.

Obviously, Jjj, j= 1; 2 are nonsingular because the matrix
RAf = Af − Sf RP∗

f is stable under Assumption 1. After some
straightforward but tedious algebra, we see that A − S
RP∗
00 = RA00 − RA0f RA−1

f
RAf0 = RA0. Therefore, the matrix RA0 is

also stable if Assumption 2 holds. Thus, det J �= 0, i.e., J
is nonsingular at ‖�‖= 0. The conclusion of Theorem 7 is
obtained directly by using the implicit function theorem.
The remainder of the proof is to show that Pe is the posi-

tive semide<nite stabilizing solution. Firstly, from (15), we
obtain

Ae − SePe = '−1
e

([
RA00 RA0f

RAf0 RAf

]
+ O(‖�‖)

)
:

The matrices RAf and RA0 are stable since Assumptions 1 and
2 hold. Therefore, if parameter ‖�‖ is very small, Ae−SePe
is stable by applying the Lemma 8. Finally, the property
Pe¿ 0 follows now since the stabilizing solution of (5) is
always positive semide<nite. See more detail in Mukaidani
(2003).

3. Near-optimal control for the nonstandard MSPS

The required solution of the MARE (5) exists under
Assumptions 1–3. Our attention is focused on the speci<c
linear state feedback controller which does not depend on
the values of the small parameters. Such a linear state feed-
back controller is obtained by eliminating O(‖�‖) item of
the linear state feedback controller (4). If ‖�‖ is very small,
it is obvious that the linear state feedback controller (4) can
be approximated as

uapp(t) = [u1app(t)T · · · uNapp(t)T]T =−R−1BTPappx(t)

=−R−1BT
[ RP∗

00 0

RP∗
f0

RP∗
f

]
x(t); (18)

where B= 'eBe.

Even if our controller designing process is quite di6erent
from the composite controller designing process (Khalil &
Kokotovi>c, 1979a; Wang et al., 1994; Xu, Mukaidani, &
Mizukami, 1997). We can show that the resulting con-
troller (18) is the same as the existing one. Firstly, we
show that controller (18) is equivalent to the near-optimal
controller proposed in Wang et al. (1994) under certain
conditions.
According to Wang et al. (1994), the near-optimal control

is given by

udes(t) =−R−1BTYx(t); (19)

where

Y TA+ ATY − Y TSY + Q = 0; Y =

[
Y0 0

Yf0 Yf

]
;

Y0 = Y T0 : (20)

Note that the matrix Y in (20) is not unique. However, if
Yf is chosen as RP∗

f, the following result holds.

Lemma 9. Under Assumptions 1–3, if Yf is chosen as RP∗
f,

there exists a unique stabilizing solution Y which satisfy
the GMARE (20). Such a solution is given by Y = Papp.
Furthermore, controller (19) is equivalent to the near-optimal
controller (18).

Proof. Under Assumptions 1 and 3, there exists a unique
stabilizing solution P∗

f of the ARE (13c). Then it is shown
that the GMARE (20) are equivalent to the AREs (13) un-
der Yf=P∗

f. Thus, there exists the solution Y ≡ Papp. More-
over, if Yf is chosen as RP∗

f, the matrix Y is unique. Under
Assumption 2, there exists a unique stabilizing solution RP∗

00
of the ARE (13a). Taking into consideration the fact that
RAf = Af − SfYf = Af − Sf RP∗

f and RA0 =A−SY00 =A−
S RP∗

00 are stable, the matrix A − SY = A − SPapp is also
stable. Therefore, the matrix Y is the stabilizing solution.
For the rest of the proof of Lemma 9, it is easy to verify
that controller (19) is equivalent to controller (18) because
of Y = Papp.

Using the result of Lemma 9, we will give an impor-
tant interpretation. Based on the optimal controller (4), we
can change the form as uapp(t)= lim‖�‖→+0 uopt(t)=udes(t)
when Yf = RP∗

f. Thus, we claim that the composite con-
troller obtained by decomposing the full systems and the
approximation controller obtained by eliminating �j of the
full controller are identical. Moreover, the similar results for
the standard MSPS will be shown in the next section for a
special case.
Secondly, we establish stability properties of the

closed-loop system. Substituting uapp(t) into MSPS (1a)
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and (1b), we have

ẋ = '−1
e

([
A00 A0f

Af0 Af

]
− BR−1BT

[ RP∗
00 0

RP∗
f0

RP∗
f

])

x = '−1
e

[
RA00 RA0f

RAf0 RAf

]
x = (Ae − SePappe)x: (21)

Lemma 10. Under Assumptions 1–3, there exists a small
)̂ such that for all ‖�‖∈ (0; )̂); )̂6 )∗ the closed-system
(21) is asymptotically stable.

Proof. The matrices RAf and RA0 are stable since Assump-
tions 1 and 2 hold. Therefore, by direct applying Theorem
1 in Khalil and Kokotovi>c (1979a, b), we have obtained the
required result.

When ‖�‖ is suTciently small, we know from Theorem 7
that the resulting controller (18) will be close to the optimal
controller (4). In an optimization problem it is of interest to
check whether the resulting value of the cost function will be
near to its optimal value. The optimal value Jopt is obtained
with controller (4) which optimizes the cost for the actual
system (1).

Theorem 11. Under Assumptions 1–3, the use of the
approximation controller (18) results in Japp satisfying

Japp = Jopt + O(‖�‖2); (22)

where Jopt = 1
2 x(0)

TPex(0).

Before proving this theorem, we introduce the fol-
lowing useful lemma (Mukaidani et al., 2001; Mukaidani,
2003).

Lemma 12. Consider the iterative algorithm which is
based on the Kleinman algorithm

P(i+1)T(A− SP(i)) + (A− SP(i))TP(i+1)

+P(i)TSP(i) + Q = 0;

P(0) = Papp; i = 0; 1; 2; 3; : : : (23)

with

P(i) =


 P(i)00 P(i)Tf0 $e

P(i)f0 P(i)f


 : (24)

Under Assumptions 1–3, there exists a small R) such that
for all ‖�‖∈ (0; R)); R)6 )∗ the iterative algorithm (23)
converges to the exact solution of Pe='eP=PT'e with the
rate of quadratic convergence, where P(i)e ='eP(i)=P(i)T'e
is the positive semide:nite solution. That is, the following

condition is satis:ed:

‖P(i) − P‖= O(‖�‖2i); i = 0; 1; 2; : : : : (25)

Now, let us prove Theorem 11.

Proof. When uapp is used, the value of the performance
index is

Japp = 1
2 x(0)

TWex(0); (26)

where We is a positive semide<nite solution of the multipa-
rameter algebraic Lyapunov equation (MALE)

We(Ae − SePappe) + (Ae − SePappe)TWe

+PappeSePappe + Q = 0; (27)

where Pappe = 'ePapp. Subtracting (5) from (27) we <nd
that Ve =We − Pe satis<es the following MALE:

Ve(Ae − SePappe) + (Ae − SePappe)TVe

+(Pe − Pappe)Se(Pe − Pappe) = 0: (28)

Similarly, subtracting (5) from (23) we also get the MALE

(P(i+1)e − Pe)(Ae − SeP(i)e ) + (Ae − SeP(i)e )
T(P(i+1)e − Pe)

+ (Pe − P(i)e )Se(Pe − P(i)e ) = 0; (29)

where P(i)e = 'eP(i). When i = 0, taking P
(0)
e = Pappe into

account we have

(P(1)e − Pe)(Ae − SePappe) + (Ae − SePappe)T(P(1)e − Pe)

+ (Pe − Pappe)Se(Pe − Pappe) = 0:

Therefore, it is easy to verify that Ve = P(1)e − Pe because
Ae − SePappe is stable from Lemma 10. Using Lemma 12
we obtain that ‖Ve‖= ‖We −Pe‖6 ‖P(1)−P‖=O(‖�‖2).
Hence Ve =We − Pe = O(‖�‖2), which implies (22).

Consequently, the resulting controller (18) achieves
O(‖�‖2) approximation of the optimal cost compared with
the existing controller (Khalil & Kokotovi>c, 1979a; Wang
et al., 1994) in case where the fast subsystems have the
special form.
So far, for the multiparameter optimal control problem, it

is merely shown that all the near-optimal controls, without
the knowledge of the small parameter vector �, achieve an
O(‖�‖) approximation of the optimal performance value
(Khalil & Kokotovi>c, 1979a; Wang et al., 1994). In the
rest of this section, we give the reason why the resulting
controller (18) achieves a better performance.
We assume that there exists a strong interconnection

among the fast state variables. That is, the matrices Af,
Sf and Qf are the nonblock-diagonal matrix. Further-
more, instead of Assumption 1 we assume that the triples
(Af;

√
Sf;

√
Qf) are stabilizable and detectable. By

following the similar steps in the proof of Theorem 7, it is
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also shown that the solution Pe of the MARE (5) can be
written as

Pe ='eP

=

[
RP00 + O(‖�‖) [ RPf0 + O(‖�‖)]T$e

$e[ RPf0 + O(‖�‖)] $e[ RPf + O(‖�‖)]

]
; (30)

where the matrices RP00, RPf0 and RPf satisfy equation (10).
It is very important to note that if we <nd the matrix

which satisfy the GARE (10c), the following controller will
achieve the O(‖�‖2) approximation of the optimal cost
because of ‖ RKapp−Kopt‖6 ‖R−1 [ BT0 BTf

] ‖ · ‖ RP−P‖=
O(‖�‖), where
Ru app(t) = RKappx(t)

=−R−1 [ BT0 BTf
] [ RP00 0

RPf0 RPf

]
x(t): (31)

However, we cannot solve the asymmetric GARE (10c)
without the knowledge of the small perturbation parameters
�j (Khalil & Kokotovi>c, 1979a). Moreover, although the de-
scriptor variable approach is applicable, it is also hard to
solve the GMARE (20) which has a form (11) from various
solutions. On the other hand, when the fast subsystems have
the special form (1b), it is possible to obtain the solution of
the GARE (10c) without the information of the small pa-
rameters. Therefore, the resulting controller (18) achieves
O(‖�‖2) approximation. By similar reason, we can obtain
the near-optimal controller which admit the O(‖�‖2) ap-
proximation via the descriptor variable approach for a spe-
cial case of the fast subsystems.

4. Near-optimal control for the standard MSPS

In this section, we will show that the near-optimal con-
troller (18) is equivalent to the existing composite optimal
controller ( ?Ozg?uner, 1979) for the standard MSPS. We as-
sume that all of the fast state matrices Ajj; j = 1; 2; : : : ;
N of (1b) are nonsingular. According to ?Ozg?uner (1979),
the near-optimal closed-loop control is given by

ujcom(t) =−[(Imj − R−1
j BTjjXjjA

−1
jj Bjj)R̃

−1
j (D̃Tj C̃j0 + B̃

T
0jX00)

+R−1
j BTjjXjjA

−1
jj Aj0]x0(t)

−R−1
j BTjjXjjxj(t); j = 1; 2; : : : ; N; (32)

where B̃0j = B0j − A0jA−1
jj Bjj; C̃j0 = Cj0 − CjjA−1

jj Aj0;
R̃j = Rj + D̃Tj D̃j; D̃j =−CjjA−1

jj Bjj.
In the above, X00 is the unique stabilizing positive

semide<nite symmetric solution of the following ARE:

X00(Ar − BrR−1
r DTr Cr) + (Ar − BrR−1

r DTr Cr)
TX00

−X00BrR−1
r BTr X00 + C

T
r (I Rl − DrR−1

r DTr )Cr = 0; (33)

where

Rr = R+ DTr Dr; Ar = A00 −
N∑
j=1

A0jA−1
jj Aj0;

Br = B0 − A0fA−1
f Bf

= [B01 − A01A−1
11 B11 · · · B0N − A0NA−1

NNBNN ];

Cr =C0 − CfA−1
f Af0

= [CT00(C10−C11A−1
11 A10)

T · · · (CN0−CNNA−1
NNAN0)

T]T;

Dr =−CfA−1
f Bf =−




0 · · · 0

C11A−1
11 B11 · · · 0

...
. . .

...

0 · · · CNNA−1
NNBNN



:

Xjj; j = 1; 2; : : : ; N are the unique stabilizing positive
semide<nite solution of the following AREs:

XjjAjj + ATjjXjj − XjjSjjXjj + Qjj = 0: (34)

It is well known from Kokotovi>c et al. (1986) that controller
(32) is identical with the following controller:

ujcom(t) =−R−1
j BTj0X00x0(t)− R−1

j BTjjXj0x0(t)

−R−1
j BTjjXjjxj(t); (35)

where Xj0; j = 1; 2; : : : ; N are

X Tj0 = [X00(S0jXjj − A0j)

− (ATj0Xjj + Q0j)](Ajj − SjjXjj)−1: (36)

Furthermore, the composite optimal controller ucom(t) =
[u1com(t)T · · · uNcom(t)T]T can be rewritten as the follow-
ing composite controller:

ucom(t)

= − R−1BT




X00 0 0 · · · 0

X10 X11 0 · · · 0

...
...

...
. . .

...

XN0 0 0 · · · XNN



x(t): (37)

The following theorem gives a relation between the proposed
controller (18) and the composite optimal controller (37).

Theorem 13. Under Assumptions 1–3, the following
identities

Xjj = RP∗
jj; Xj0 = RP∗

j0; X00 = RP∗
00; j = 1; 2; : : : ; N (38)

hold. Hence, the resulting near-optimal controller (18) is
the same as the composite optimal controller (37).
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Proof. For the proof, see Appendix A.

From Theorem 13, we claim that the new near-optimal
controller includes the existing composite optimal controller
(37) as a special case because our controller can be con-
structed even if one of the fast state matrices Ajj is singular
and the small positive parameters have di6erent values.

5. Numerical example

In order to demonstrate the eTciency of our proposed
controller, we have run a numerical example.
Consider the following optimal control problem:

ẋ0(t) =

[
0 1

−1 −2

]
x0(t) +

[
0

2

]
x1(t) +

[
0

3

]
x2(t)

+
2∑
j=1

[
0

1

]
uj(t); x0(0) = x00 ; (39a)

�1ẋ1(t) =
[
1 0:2

]
x0(t) + u1(t); x1(0) = x01 ; (39b)

�2ẋ2(t) =
[
1 0:3

]
x0(t) + u2(t); x2(0) = x02 (39c)

with a performance index

J=
1
2

∫ ∞

0


xT0 (t)x0(t)+2 2∑

j=1

{xTj (t)xj(t)+uTj (t)uj(t)}

 dt:
(40)

Note that the above system (39) is the nonstandard MSPS
because of A11 = A22 = 0.
Referring the design procedure, the near-optimal

control is

uapp(t)

=

[−1:5295 −5:2582× 10−1 −1:0000 0

−1:7943 −7:8872× 10−1 0 −1:0000

]
x(t):

(41)

Now, letting �1 = �2 = 0:1, the optimal feedback control is

uopt(t)

=


−1:4430 −5:4031×10−1 −1:0644 −1:0940×10−1

−1:6360 −7:5160×10−1 −8:8270×10−2 −1:1514


x(t):

(42)

We evaluate the costs using the near-optimal controller
(41). We assume that the initial conditions are zero
mean independent random vector with covariance matrix
E[x(0)x(0)T] = I4. The average values of the performance
index are E[Japp] = 1:7297, E[Jopt] = 1:6964. Hence, the
loss of performance Japp is less than 1.9630% compared

Table 1

�1 �2 E[Japp] E[Jopt] 2

10−1 10−1 1:7297 1:6964 3:3291
10−1 5× 10−2 1:6241 1:6061 3:6085
10−2 10−2 1:4098 1:4094 4:6778
10−2 5× 10−3 1:3992 1:3990 4:6297
10−3 10−3 1:3779 1:3779 4:8666
10−3 5× 10−4 1:3768 1:3768 4:7574
10−4 10−4 1:3747 1:3747 4:8862

with Jopt. The values of the cost functional for various �1,
�2 are given in Table 1, where

2=
E[Japp]− E[Jopt]

‖�‖2 =
E[Japp]− E[Jopt]

�1�2
:

It is easy to verify that Japp = Jopt + O(‖�‖2) because of
2¡∞.

6. Conclusion

In this paper, we have studied the optimal control prob-
lem associated with the MSPS. The main contribution of
this paper is to propose the new designing method of the
�-independent controller. Note that our designing method
is quite di6erent from the existing methods such as the
two-time-scale design method and the descriptor variable
approach. Furthermore, we have proven that the resulting
controller achieves O(‖�‖2) approximation of the optimal
cost compared with the existing result for a special case
of the fast subsystems. Finally, we have proved that the
composite controller obtained by decomposing the full sys-
tems and the approximation controller obtained by eliminat-
ing �j of the full controller are identical under the certain
condition.

Appendix A. Proof of Theorem 13

Proof. First, comparing (34) with (13c) Xjj = RP∗
jj; j =

1; 2; : : : ; N yields directly. Second, comparing (36) with
(13b) and noting that Xjj = RP∗

jj, we have the conclusion
that Xj0 = RP∗

j0; j = 1; 2; : : : ; N if X00 = RP∗
00. Therefore, the

remainder of the proof is to show that X00 = RP∗
00. In order to

do that, we only need to show that the ARE (33) and (13a)
are the same equations. Before showing these relations, let
us de<ne the following matrices (Kokotovi>c et al., 1986,
pp. 115)

H = In̂ + block-diag (R−1
1 BT11 RP

∗
11D

−1
11 B11

· · · R−1
N BTNN RP

∗
NND

−1
NNBNN ): (A.1)
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Then,

H−1 = In̂ − block-diag (R−1
1 BT11 RP

∗
11A

−1
11 B11

· · · R−1
N BTNN RP

∗
NNA

−1
NNBNN ): (A.2)

Thus, using (A.2) and the ARE (13c) we have

H−TRH−1 = R+ DTr Dr

= Rr ¿ 0⇔ HR−1HT = R−1
r : (A.3)

Let us further introduce six useful identities.

A−1
jj + A

−1
jj Sjj RP

∗
jjD

−1
jj = D

−1
jj ; (A.4a)

A−1
jj + D

−1
jj Sjj RP

∗
jjA

−1
jj = D

−1
jj ; (A.4b)

Inj + Sjj RP
∗
jjD

−1
jj = AjjD

−1
jj ; (A.4c)

Inj + RP∗
jjSjjD

−T
jj = ATjjD

−T
jj ; (A.4d)

QT0j − QjjA−1
jj Aj0 = RQT0j + D

T
jj
RP∗
jjA

−1
jj Aj0; (A.4e)

− D0j + N1jSjj RP∗
jj = N1jAjj; j = 1; 2; : : : ; N: (A.4f)

Then, we obtain

−BrR−1
r DTr

=[S01 − A01A−1
11 S11 S02 − A02A−1

22 S22 · · ·
×S0N − A0NA−1

NNSNN ]block-diag(D
−T
11 C

T
11

+ RP∗
11D

−1
11 S11D

−T
11 C

T
11 · · · D−T

NN C
T
NN

+ RP∗
NND

−1
NNSNND

−T
NN C

T
NN ): (A.5)

Hence, we have (A.4e), (A.4f) and (A.5)

Ar − BrR−1
r DTr Cr

=A00 −
N∑
j=1

A0jA−1
jj Aj0

+
N∑
j=1

(S0j + N1jSjj)D−T
jj ( RQ

T
0j + D

T
jj
RP∗
jjA

−1
jj Aj0)

=A00 + N1Af0 + S0fNT2 + N1SfN
T
2 =A: (A.6)

Now, considering (A.4a), we have

BrH = B0 + [N11B11 · · · N1NBNN ] =B: (A.7)

Hence, using fact that (A.7), we have

BrR−1
r BTr = BrHR

−1HTBTr =BR−1BT =S: (A.8)

Finally, using the identities of (A.8) it is straightforward but
tedious to verify that

DrR−1
r DTr = block-diag (C11D

−1
11 S11D

−T
11 C

T
11

· · · CNND−1
NNSNND

−T
NN C

T
NN ): (A.9)

Moreover, using (13c), we get

CTr Cr =Q00 −
N∑
j=1

( RQ0jA−1
jj Aj0 + A

T
j0A

−T
jj
RQT0j)

+
N∑
j=1

ATj0A
−T
jj
RP∗
jjSjj RP

∗
jjA

−1
jj Aj0: (A.10)

Since −Qjj = ATjj RP∗
jj + RP∗

jjAjj − RP∗
jjSjj RP

∗
jj; j=1; 2; : : : ; N , it

follows that

CTr Cr − CTr DrR
−1
r DTr Cr

=Q00 −
N∑
j=1

( RQ0jA−1
jj Aj0 + A

T
j0A

−T
jj
RQT0j

+ RQ0jD−1
jj Aj0 + A

T
j0D

−T
jj
RQT0j − RQ0jA−1

jj Aj0

−ATj0A−T
jj
RQT0j + RQ0jD−1

jj SjjD
−T
jj
RQT0j) = Q: (A.11)

In consequence, we have X00 = RP∗
00, hence, Xj0 = RP∗

j0;
j=1; 2; : : : ; N . The proof of Theorem 13 is completed.
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