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Abstract

In this paper, we show that the Kleinman algorithm can be used well to solve the algebraic Riccati equation (ARE) of singularly
perturbed systems, where the quadratic term of the ARE may be inde1nite. The quadratic convergence property of the Kleinman
algorithm is proved by using the Newton–Kantorovich theorem when the initial condition is chosen appropriately. In addition, the
numerical method to solve the generalized algebraic Lyapunov equation (GALE) appearing in the Kleinman algorithm is given.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many feedback control problems of singularly per-
turbed systems have been investigated extensively (see,
e.g., Kokotovi:c, Khalil, & O’Reilly, 1999; Gaji:c & Lim,
2001; Gaji:c, Petkovski, & Shen, 1990). In order to ob-
tain the controller, we must solve the following algebraic
Riccati equation (ARE) (1) with small positive constant
parameter �¿ 0.

AT
� P� + P�A� − P�S�P� +Q=0; (1)

where

�¿ 0; P� =

[
P11 �PT

21

�P21 �P22

]
∈Rn×n; n= n1 + n2;

A� =

[
A11 A12

�−1A21 �−1A22

]
∈Rn×n;

� This paper was not presented at any IFAC meeting. This paper
was recommended for publication in revised form by Associate Editor
Rick Middleton under the direction of Editor Paul Van den Hof.
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S� = ST
� =

[
S11 �−1S12

�−1ST
12 �−2S22

]
∈Rn×n;

Q=QT =

[
Q11 Q12

QT
12 Q22

]
∈Rn×n;

P11 =PT
11; A11; S11 = ST

11; Q11 =QT
11 ∈Rn1×n1 ;

P22 =PT
22; A22; S22 = ST

22; Q22 =QT
22 ∈Rn2×n2 :

No assumption is made on the de1niteness of S�. It is well
known that the ARE (1) occurs in theH∞ control problem
(Zhou, 1998), the robust stabilizing problem (Petersen &
McFarlane, 1994) and so on. Note that it is very diHcult
to solve directly the singularly perturbed ARE due to
high dimension and numerical stiIness (Kokotovi:c et al.,
1999; Gaji:c et al., 1990).
The recursive algorithm for various control problems

of singularly perturbed systems have been developed in
many literatures (see, e.g., Gaji:c et al., 1990; Mukaidani,
Xu, & Mizukami, 1999). It is important to point out that
the recursive algorithm based on the 1xed point algo-
rithm is very useful because of the reduced-order calcu-
lation corresponding to the slow and fast systems and
that in such a case a parallel processing can be used.
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However, the recursive approach has property of linear
convergence. On the other hand, the exact slow–fast de-
composition method for solving the ARE of singularly
perturbed systems has been proposed (see, e.g., Gaji:c &
Lim, 2001; Fridman, 1996). However, in order to obtain
the exact solution, one needs the same workspace as the
full-order ARE for calculating the inverse matrix.
In this paper, we show that the Kleinman algorithm

(Kleinman, 1968) based on the Newton method can be
used well to solve the ARE of singularly perturbed sys-
tems. The idea of using the Newton method for solving
the ARE of singularly perturbed systems originated in
Rutkowski and Gaji:c (1993). However, the presented al-
gorithm in the work of Rutkowski and Gaji:c (1993) still
involves the 1xed point algorithm, while our new iterative
algorithm does not include any other iterative method.
Thus, we can get the desired solution directly, owing to
its quadratic speed of convergence.
Firstly, we de1ne zero-order equations regarding the

ARE (1). Now, let us de1ne the following matrices:

T1 =

[
A11 −S11

−Q11 −AT
11

]
; T2 =

[
A12 −S12

−Q12 −AT
21

]
;

T3 =

[
A21 −ST

12

−QT
12 −AT

12

]
; T4 =

[
A22 −S22

−Q22 −AT
22

]
:

We shall make the following basic assumption without
loss of generality (Gaji:c & Lim, 2001; Fridman, 1996):

Assumption 1. The Hamiltonian matrix T4 is nonsingu-
lar.

Substituting P� into (1) and letting �=0, we obtain the
following zero-order equations

AT
0
LP11 + LP11A0 − LP11S0 LP11 +Q0 = 0; (2a)

AT
22
LP22 + LP22A22 − LP22S22 LP22 +Q22 = 0; (2b)

where LP11 and LP22 are zero-order solutions of the ARE
(1) and

T0 =T1 − T2T−1
4 T3 =

[
A0 −S0

−Q0 −AT
0

]
:

Remark 2. The matrices A0; S0 and Q0 do not depend
on LP22 since their matrices can be computed by using
Tm; m=1; : : : ; 4 which is independent of LP22 (see, e.g.,
Tan, Leung, & Tu, 1998).

Let us now assume that

Assumption 3. The AREs (2a) and (2b) have the posi-
tive semide1nite stabilizing solutions.

Thematrix A22−S22 LP22 for the ARE (2b) is nonsingular
because of the Assumption 3. Then we have

LP21 =− N T
2 + N T

1
LP11; (2c)

where LP21 is also zero-order solution of the ARE (1) and

N T
2 =�−T

4 qT12; N T
1 =−�−T

4 �T
2 ;

�1 =A11 − S11 LP11 − S12 LP21;

�3 =A21 − ST
12
LP11 − S22 LP21;

�2 =A12 − S12 LP22; �4 =A22 − S22 LP22;

�0 =�1 −�2�−1
4 �3; q12 =Q12 + AT

21
LP22:

The following Lemma was shown by Mukaidani, Xu,
and Mizukami (1999).

Lemma 4. Under the assumptions 1 and 3; if the AREs
(2a) and (2b) have the positive semide8nite stabilizing
solutions; then there exists small L�¿ 0 such that for all
�∈ (0; L�); the ARE (1) admits a positive semide8nite
solution; which can be written as

P� =


 LP11 +O(�) � LP

T
21 +O(�2)

� LP21 +O(�2) � LP22 +O(�2)


 : (3)

2. The new iterative algorithm

We propose the following algorithm based on the
Kleinman algorithm for solving the ARE (1):

(A− SP(i))TP(i+1) + P(i+1)T(A− SP(i))

+P(i)TSP(i) +Q=0; i=0; 1; 2; : : : ; (4a)

with the initial condition obtained from

P(0) =


 LP11 � LP

T
21

LP21 LP22


 ; (4b)

where A=��A�, S=��S���,

P(i) =

[
P(i)
11 �P(i)T

21

P(i)
21 P(i)

22

]
;

�� =

[
In1 0

0 �In2

]
;

and LP11, LP21, LP22 are de1ned by Eq. (2).
In order to avoid the ill-condition caused by �−1, the

resulting Algorithm (4a) will be used as the asymmet-
ric matrices P(i). It is worth pointing out that P(i) is not
symmetric, but P(i)

� =��P(i) =P(i)T�� is.
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Remark 5. By directly applying the Kleinman algorithm
to the ARE (1), we get

(A� − S�P(i)
� )TP(i+1)

� + P(i+1)T
� (A� − S�P(i)

� )

+P(i)T
� S�P(i)

� +Q=0; i=0; 1; 2; : : : ;

with the initial condition obtained from

P(0)
� =


 LP11 � LP

T
21

� LP21 � LP22


 :

Fortunately, using the scaling A� =�−1
� A, S� =�−1

� S�−1
�

and P(i)
� =��P(i), we can change the above standard form

into the asymmetric form (4a). However, it is important
to note that we cannot apply the ordinary approach such
as Hessenberg–Schur methods (Golub, Nash, & Loan,
1979) to the Algorithm (4a).

We now give the basic quadratic convergence theorem
for the Algorithm (4a).

Theorem 6. De8ne the following generalized algebraic
Riccati equation (GARE)

ATP + PTA− PTSP +Q=0; (5a)

��P=PT��: (5b)

Under assumptions 1 and 3; if the AREs (2a) and
(2b) have the positive semide8nite stabilizing solutions;
then the iterative Algorithm (4a) converges to the exact
solution P∗ of the GARE (5a) with the rate of quadratic
convergence. Then the unique solution P∗ of the GARE
(5a) is in the neighborhood of the initial condition P(0);
i.e.

‖P(i) − P∗‖6 O(�2
i
)

2i L�L
; i=1; 2; : : : ; (6a)

‖P(0) − P∗‖6 1
L�L

[1−
√
1− 2 L�]; (6b)

where

F(P)=ATP + PTA− PTSP +Q;

L=2‖S‖¡∞; L�= ‖[∇F(P(0))]−1‖;
L�= L� · ‖F(P(0))‖; L�= L� L�L;

∇F =
@ vecF

@(vecP)T
; P=P∗=

[
P∗
11 �P∗T

21

P∗
21 P∗

22

]
(7)

and vec denotes an ordered stack of the columns of its
matrix (Magnus & Neudecker, 1999). Moreover; let
P(∞)
11 ; P(∞)

21 and P(∞)
22 be the limit points of the iterative

Algorithm (4a). As a results we have

ATP(∞) + P(∞)TA− P(∞)TSP(∞) +Q=0; (8)

where

P∗=P(∞) =

[
P(∞)
11 �P(∞)T

21

P(∞)
21 P(∞)

22

]
:

Proof. The proof is given directly by applying the
Newton–Kantorovich theorem (Ortega, 1990) for the
GARE (5a). Taking the partial derivative of the function
F(P) with respect to P yields

∇F(P)= (A− SP)T ⊗ In + In ⊗ (A− SP)T; (9)

where ⊗ denotes Kronecker product (Magnus &
Neudecker, 1999). It is obvious that ∇F(P) is continu-
ous at for all P. Thus, it is obtained immediately from
the above equation that

‖∇F(P1)−∇F(P2)‖6L‖P1 − P2‖: (10)

Moreover, using the fact that

∇F(P(0)) =

[
�1 �2 +O(�)

�3 �4 +O(�)

]T

⊗ In

+In ⊗
[
�1 �2 +O(�)

�3 �4 +O(�)

]T

(11)

it follows that ∇F(P(0)) is nonsingular because �4

and �0 are stable (Kokotovi:c et al., 1999; Gaji:c
et al., 1990). Therefore, there exists L� such that
‖[∇F(P(0))]−1‖ ≡ L�. On the other hand, since
F(P(0))=O(�), there exists L� such that, ‖[∇F(P(0))]−1‖·
‖F(P(0))‖=O(�) ≡ L�. Thus, there exists L� such that
L� ≡ L� L�L¡ 2−1 because of L�=O(�). Now, let us de1ne

t∗ ≡ 1
L�L

[1−
√
1− 2 L�]

=
1

2‖S‖ · ‖[∇F(P(0))]−1‖ [1−
√
1− 2 L�]: (12)

Using, Newton–Kantorovich theorem, we can show that
P∗ is the unique solution in the subset S ≡ {P: ‖P(0) −
P‖6 t∗}. Moreover, using Newton–Kantorovich theo-
rem, the error estimate is given by

‖P(i) − P∗‖6 (2 L�)2
i

2i L�L
; i=1; 2; : : : : (13)

Substituting 2 L�=O(�) into (13), we have (6a). Further-
more, substituting P∗ into P of the subset S, we can also
get (6b). Therefore, (6) holds for the small �.
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In the rest of this section, we explain the method for
solving the generalized algebraic Lyapunov equation
(GALE) (4a). So far, there is little argument as to the
numerical method for solving the GALE. Firstly, we
convert (4a) into the following form:

UP=− Q; (14)

where U is N ×N; (N = n(n+1)=2) matrix, P and Q are
N column vectors given by

P=
[p11

11 p11
12 · · · p11

1n1 p21
11 · · · p21

1n2 p11
22 · · · p11

2n1 p21
21 · · ·

p21
2n2 · · · p11

n1n1 p21
n11 · · · p21

n1n2 · · · p22
11 p22

12 · · · p22
1n2

p22
22 · · · p22

2n2 · · · p22
(n2−1)(n2−1) p22

(n2−1)n2 p22
n2n2 ]

T

Q= [q11 q12 · · · q1n q22 q23 · · · q2n

· · · q(n−1)(n−1) q(n−1)n · · · qnn]
T

and since P(i)
11 =P(i)T

11 , P(i)
22 =P(i)T

22 ,

P(i+1)

=

[
P(i+1)
11 �P(i+1)T

21

P(i+1)
21 P(i+1)

22

]

=




p11
11 p11

12 · · · p11
1n1 �p21

11 �p21
12 · · · �p21

1n2

· p11
22 · · · p11

2n1 �p21
21 �p21

22 · · · �p21
2n2

...
...

. . .
...

...
...

. . .
...

· · · · · p11
n1n1 �p21

n11 �p21
n11 · · · �p21

n1n2

· · · · · · p22
11 p22

12 · · · p22
1n2

· · · · · · · p22
22 · · · p22

2n2

...
...

. . .
...

...
...

. . .
...

· · · · · · · · · · · p22
n2n2




;

P(i)TSP(i) +Q=




q11 q12 q13 · · · q1n

· q22 q23 · · · q2n

· · q33 · · · q3n
...

...
...

. . .
...

· · · · · · qnn



:

In this paper, we have improved a procedure which is
given in Bingulac (1970) for obtaining the matrix U. Us-
ing the similar technique, the algorithm has as a starting
point the computation of the matrix U, where the result-
ing algorithm requires an auxiliary n × n matrix L with
integer entries.

Construction of matrixU is done through the following
steps:
Step 1: Construct the n× n matrix L, given by

L=


1 2 3 4 · · · n− 1 n

2 n+ 1 n+ 2 n+ 3 · · · 2n− 2 2n− 1

3 n+ 2 2n 2n+ 1 · · · 3n− 4 3n− 3

4 n+ 3 2n+ 1 3n− 2 · · · 4n− 7 4n− 6

...
...

...
...

. . .
...

...

n− 1 2n− 2 3n− 4 4n− 7 · · · N − 2 N − 1

n 2n− 1 3n− 3 4n− 6 · · · N − 1 N




:

Step 2: Let us de1ne

A− SP(i) =




a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann



:

Construct the N × N matrix V = {vi′j′} with vi′j′ = al′k′

where the indices i′ and j′, i′; j′=1; 2; 3; : : : ; N are
given by the following elements of the auxiliary
matrix L:

i′=Lk′h′ ; j′=Ll′h′ ; k ′; l′; h′=1; 2; 3; : : : ; n:

Moreover, if 16f′6 n1; n1 + 16 g′6 n and the
columns of V correspond to the number of matrix
L= {lf′g′}, thenmultiply the � on the am′n′ ; (16m′6 n1;
16 n′6 n) in the matrix V .

Step 3: The required matrix U is obtained by mul-
tiplying by 2 all the elements of V whose row indices
correspond to diagonal elements of the matrix L, that is,
1; n+ 1; 2n; 3n− 2; : : : ; N − 2; and N .
We now summarize a perturbation analysis of the

GALE (4a). Letting �=0 and using Kronecker products,
the GALE (4a) can be written as

V



vec LP

(i+1)
11

vec LP
(i+1)
21

vec LP
(i+1)
22


=



vec LQ11

vec LQ
T
12

vec LQ22


 ;

[
�1 �2

�3 �4

]
=A− S LP

(i)
;


 LQ11

LQ12

LQ
T
12

LQ22


= LP

(i)T
S LP

(i)
+Q;
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LP
(i)
=


 LP

(i)
11 0

LP
(i)
21

LP
(i)
22


 ;

V=



(In1 ⊗�T

1 )Un1n1 +�T
1 ⊗ In1 (In1 ⊗�T

3 )Un1n2 +�T
3 ⊗ In1 0

(In1 ⊗�T
2 )Un1n1 (In1 ⊗�T

4 )Un1n2 �T
3 ⊗ In2

0 0 (In2 ⊗�T
4 )Un2n2 +�T

4 ⊗ In2


 :

where Un1n1 denotes a permutation matrix in Kronecker
matrix sense (Magnus & Neudecker, 1999) and vec LP

(i+1)
lm

denotes an ordered stack of the columns of P(i+1)
lm when

�=0. It can be shown, after some algebra, that the deter-
minant of V is expressed as

detV= det [(In2 ⊗�T
4 )Un2n2 +�T

4 ⊗ In2 ]

· det(In1 ⊗�T
4 )

· det[(In1 ⊗�T
0 )Un1n1 +�T

0 ⊗ In1 ]:

Obviously, �4 and �0 are nonsingular matrices. Thus,
there exists V−1. Therefore, the condition number
(Ortega, 1990) of V, that is, K(V)= ‖V‖ · ‖V−1‖ is
given by K(V)=O(1). Since K(V) is not large, the
matrix V + O(�) is well-conditioned for small �. It is
very important to note that by compressing the same
rows and columns the matrix V+ O(�) can be changed
as U. Consequently, in words the perturbation theorem
says that small changes in V i.e., U can induce a small
relative error in P(i+1) for the GALE (4a).
In iterative calculations, where the solution of (14)

and construction of the matrix U are in an iterative loop,
the presented method is more suitable from computing
time point of view. Moreover, since the matrix U is
compressed into the matrix V + O(�), the matrix U
is well-conditioned for the small parameter �. That is,
well-conditioning of Eq. (14) is preserved. Therefore, the
algorithm of Bingulac (1970) is most suitable for solv-
ing the GALE (4a). On the other hand, for Eq. (14), we
can exactly get the required solution by using Gaussian
elimination with partial pivoting which is most favorably
computed in term of a system of linear equations and
has been investigated extensively in many literature (see,
e.g., Ortega, 1990).
We must solve Eq. (14) with the dimension N larger

than n1 or n2 in comparison with the exact decompo-
sition technique (Gaji:c & Lim, 2001; Fridman, 1996).
In order to reduce the dimension of the workspace,
there exists an algorithm for solving the GALE which
is based on the generalized Schur method (KRagstrSom
& Westin, 1989; Mukaidani, Xu, & Mizukami, 2000).
The reader is referred to above references regarding the
algorithm.

3. Conclusions

In this paper, we have discussed the iterative method
for solving the ARE with an inde1nite quadratic term of

the singularly perturbed control systems. The main result
of this paper is the proof of the quadratic convergence
property for the Kleinman algorithm. The proof has been
done by using the Newton–Kantorovich theorem dif-
ferent from the successive approximation method. Con-
sequently, we need no assumption for the de1niteness
regarding the quadratic term. Based on the classical
numerical approach, we have also presented the nu-
merical method for solving the GALE appearing in the
Kleinman algorithm. It can be therefore applied to a con-
trol law synthesis involving a solution of an ARE such
as the H2 and H∞ control problem (Zhou, 1998) and the
guaranteed cost control problem (Petersen & McFarlane,
1994).
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