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Abstract

The guaranteed cost control problem for multimodeling systems with norm bounded uncertainty is investigated. The main contribution
in this paper is that a new-independent controller is derived by solving the reduced-order slow and fast algebraic Riccati equations
(AREs) whose dimension is smaller than the dimension of full-order multiparameter algebraic Riccati equation (MARE). It is shown that
if these AREs have a positive definite stabilizing solution then the closed-loop system is quadratically stable and has the cost bound.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction systems (MSPS) and the singularly perturbed systems (SPS)
are the two-time-scale design method (see &balil &
When several small singular perturbation parameters of Kokotovi¢, 1978, 1979Khalil, 1979 Wang et al., 199%
the same order of magnitude are present in the dynamicWhen ¢; is very small or unknown, the previously used
model of a physical system, the control problem is usu- technique is very efficient. However, as long as the stabiliz-
ally approached as single parameter perturbation problemsing problems of the uncertain SPS and MSPS are consid-
Although this is done by scaling the coefficients, these ered, the assumption that the fast state uncertain matrices
parameters are often not known exactly. Thus, it is not ap- A;;+AA;;(r) are Hurwitz is needed (see e.Gorless et al.,
plicable to a wider class of problems for such casba(il 1993. Particularly, in order to decompose the SPS, further
and Kokotov€, 1979. One solution to this problem is the assumptions for the uncertaintids ;; () have been needed
so-called multimodeling systems approach. The control (Corless et al., 1993
problem of the multimodeling systems has been widely Inorderto construct the controller, the solution of the mul-
studied during the past few decades (see &balil & tiparameter algebraic Riccati equation (MARE) is needed.
Kokotovi¢, 1978, 1979 Khalil, 1979; Coumarbatch and Although various reliable approaches for solving the MARE
Gajic, 2000; Gajt’and Khalil, 1986; Ga{i, 1988; Mukaidani have been established (see e@aumarbatch and Gaji’
et al., 2002b Mukaidani et al., 2002a A popular ap- 2000 Mukaidani et al., 2002a,)ba limitation of these ap-
proach to deal with the multiparameter singularly perturbed proaches is that the small parameters are assumed to be
known. In practice, the small perturbation parametgrare
S often not known. Thus, it is not applicable to a large class
" This paper was not presented at any IFAC meeting. This paper was of hrophlems where the parameters represent small unknown
recommended for publication in revised form by Associate Editor Zhihua .
Qu under the direction of Editor H.K. Khalil. pertgrbatlons whose values are not known exactly.
* Corresponding author. Tel.: +8182 424 7155; fax: +81 82424 7155. Itis well-known that the guaranteed cost control approach
E-mail addressmukaida@hiroshima-u.ac.jp (Petersen and McFarlane, 19%hich satisfies not only the
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robust stability, but also an adequate level of performance iswhereu ;(t) € R™/, j =1,..., N are the control input.
very useful. This approach has the advantage of providing Moreover, F;;(1) e Rki*si are Lebesgue measurable ma-
an upper bound on a given performance index. Although trix of uncertain parameters satisfyir@jTj(r)Fjj(t)glxj.
there exist various studies of the guaranteed cost-controlAll the matrices are the constant matrices of appropriate di-

problem of the SPS (see e.dukaidani and Mizukami, mensions. The partitioned matrices are:
2000; Mukaidani and Xu, 2004nd reference therein), these
approaches need information of the small parameters  II. := block diag(e1/,; -+ enlny),
It should be noted that the stabilization problem and the
guaranteed cost control problem of the MSPS with uncertain A — Aoo Aos
parameters in cases, where the small parameters are not ©~ | II,*A;0 IT;1A; |’
known exactly have not been investigated so far. Aof i=[Ao1 --- Aonl,
In this paper, the guaranteed cost control problem of the Aroi= (AT .. AT T
MSPS is newly investigated. Firstly, the bounded solution */°" 10 NOT
of the MARE with an indefinite sign quadratic term and Af = block diag (A1 -~ Ayw),

its asymptotic structure are established. Secondly, using the ~

asymptotic structure, a new guaranteed cost controller which g, .— HEOB } ., Bo:=[Boi --- Bonl,
does not depend on the values of the small parameters L e B
is obtained. Therefore, even though the small perturbation By := block diag(B11 -+  Byw),
parameters; are unknown, the proposed controller can be )
constructed. As another significant feature, the new method — Do Do := [D o Doyl
of calculation for the guaranteed cost is proposed to obtain ¢~ | II;1D, | 70 = H0 N
the e-independent controller. In particular, since the pro- Dy :=block diag(D11 -~ Dyw),
pos_ed me_thod is based on the reduced-orderAIgebraic RiC-F(t) .— block diag (Fi1(t) --- Fyn (),
cati equations (ARESs) with the smaller state dimension, the
amount of computation required to get thendependent T T T

. . . E,:=[E E.rl, Ei :=I[E -~ E ,
controller becomes small in contrast with the case of solving -—[blao K d’.‘f : a0 = [Eaz0 anol
the full-order MARE. Eqf :=Dlock diag(Ea1r -+ Eann),

E, :=Dblock diag (Ep11 -+ EpnN)-

Notation. The superscript T denotes matrix transpose.
det L denotes the determinant of the square mairix,
denotes the x p identity matrix.block diag denotes the
block diagonal matrix. vetf denotes the column vector of
the matrixM (Magnus and Neudecker, 199% denotes

We assume that the ratios of the small positive parameter
¢; are bounded by some positive constaqtsandk;; (see
e.g.,Khalil & Kokotovitc, 1978, 1979Khalil, 1979,

Kronecker productl/,, denotes a permutation matrix in O <ij <%j <kij <o, (2)
Kronecker matrix senseMagnus and Neudecker, 1999 where
such thatU,, vecM = vecM', M € RP*4. E[-] denotes
the expectation. £
p Ujj = —j (3)
l
2. Problem statement Associated with system (1) is the cost function
. . 0o
Consider the uncertain MSPS g = /(; T (1) Ox () + u" (t)Ru(t)] dt, 4)

X(t) =[Ae + Do F(t) Eqlx(2) + [Be + D F (1) Eplu(t), (1) . i . .
whereQ andR are the positive definite symmetric matrices.

wheree;, j=1,..., N are the small positive parameters,
Definition 1. A control lawu(r) = Kx(¢) is said to define
x(®)=[xg® xj@ - xy®O" €R", a quadratic guaranteed cost control with the associated cost
v matrix X, > 0 for the MSPS (1) and the cost function (4) if
n = Z n;,
i=0

wherex;(r) € R", j =0,..., N are the state vectors.

%xT(r)xexm +xT(O[Q + KTRKx(1)<0 (5)

for all nonzerax(r) and all uncertain matrix (z).

N
w(t) :=[ul(®) - ul@) eR™, m:= Z m;, The following result is already known iMoheimani and
i—1 Petersen (1996)



Lemma 2. Consider the closed-loop uncertain MSPH
with robust control lawu(t) = Kx(¢). Suppose there ex-
ist a symmetric positive-definite matrix > 0 and a posi-
tive scalar parameter such that for all uncertain matrices
F;;(t), the following MARE satisfies
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P, A, + Al P, +uP,D,DIP, + i *ETE + 0 =0,

where
A, =A.+ B.K, E:=E,+EyK,
0:= 0+ K'RK,
Qoo Qor
0:= |: T >0, Qor:=1[0n
QOf Qy /
Qr = block diag (Q11 ONN),
R := block diag (R11 Ryn) >0,
Poo foHe _ pT
Pe [H Pfo HePf‘ . POO—P00>O,
M,Py=PiIl,, Pfo:= [P Pyol',
P11 OtlzPérl 0613P:;,r1 AIN P;l
Py P 3P, oan Py
Py .=
Py1  Pn2 Py3 Py

Then the control law (1) = K x (¢) is said to be the quadratic
guaranteed cost control with the cost matiy.

The following result is well-knownRetersen and McFar-

lane, 19

Lemma 3. Assume that there exists a matrix X such that
Xezx;r = @, X > 0is a symmetric positive definite matrix.

).

QOonl,

Then the closed-loop uncertain MSE$ with a linear state
feedback control law8) is the guaranteed cost control

u(t) = Kexax (1) = =2 VBT X + EJ E,1x(1). (8)

Moreover the corresponding value of the cost functi@t)
satisfies the following inequalit{®):

I <xT(0)P,Xx(0). 9)
The objective of this paper is to design andependent

guaranteed cost control law(t) = Kappx (¢) for the uncertain
MSPS (1).

3. Asymptotic structure for the GMARE

In this section, the existence condition and the asymptotic
structure of the GMARE (7) are studied. The partitioned
matrices are:

Of:|
f

[89]

Z:=A-BAE] a:[“m
f0

[89]

- ~15TE
Eoo := Aoo — BoZ "Ej, Eqo,

Eor == Aor — Bo?/?_lEZEaf =[Z01 -+ Zownl
Ero=Ap0o— By R EJEco=1[E]g --- Exol",

Epi=Ap— By E) Eqs
=block diag(Z11 -+ Enwn),
S:=vwDD" —B# 'BT) = [590 Sof} :

Soo := V(DoD(—)r — Bo%_lBg),

. " . T 1T
Assume also that there exists the positive scalar parameterSos := V(DoDy — BoZ "By) =[So1 --- Sonl,

v such that for all uncertain matrice#’;;(¢), the follow-
ing generalized multiparameter algebraic Riccati equation

(GMARB satisfies

X"(A-B#E[E,) +(A—BAE[E)"X
+vX (DD —
+vE] (15 -

whereA := ®;'A,, B := &,;'B,, D := &;'D,,

—— I”O
e - 0

N

=D s

i=1

B# 'BTXx
Ey 2 E})E,+ Q =0,

D

T T
Xnol's

O‘lNX;\—/l
O52NXL2

T
X: [X X } Xoo= Xgo> 0,
Xr
X =X}He, Xfo_[xlo
Xy
X1 ow2Xh, 013X3
X1 Xa2  o23X,
Xn1  XN2 Xn3

XNN

= o

Sf=v(DyD} — By A *BJ)
=block diag(S11 -+  Sywn),

- - Woo Wor
W =v1E] (s — Ey 2 1E;)Ea+Q=|: 00 0f:|,

W(-)rf Wy
= v 1EN(I; — Ey# *E])Ea0 + Qoo,
Woo := v " E oI5 bR "EL)Eq0 00

Woy = v Ejo(Is — Ey R *E})Eay + Qoy

=[Wor --- Wonl],
Wf =V lE (I‘—Ebj 1E},)Eaf+Qf
= block dlag (W11 -+ Wpynw).

In order to guarantee the existence of the solution of the
GMARE (7), without loss of generality, it is assumed that
the limit of o;; exists ase; ande¢; tend to zero (see e.g.,
Khalil & Kokotovit, 1978, 1979Khalil, 1979. That is, the
small singular perturbation parameters have the same order
of magnitude and

5(,']' = gliﬂlo Olij- (10)

gi—+0
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It should be noted that the limit in Eqg. (10) may not exist at
all without the above assumption.

Let Xoo, X0 and X s be the limiting solutions of the
above GMARE (7) ag; — +0, j=1,..., N. Then we
get the following parameter independent AREs:

Koo/ + AT X0+ Xos Xgo+ W =0, (11a)
X0 =X} — I,1T;;' Tjo Ing (11b)
Jjo Jji Jj X* !
X% Ej+ E X + X35 X5 + Wi =0, (11c)
where
o/ S
[ W &]T] = Too — Z To;T;; Tjo,
j=1
5 Soo Eoj So;
Too=[ 00 H}, T0'=[ =T |-
—Woo  —Zqo P LW —Ef
- T —_
=0 Soi .. S
Tjo [ T JT] Tjj :[ V. AT
—Wo;  —Zo; —Wij —Zjj
12)

Now, let us define the admissible design parametBem (
and Basar, 1993

vei=minfvg, ..., vpd, wherevy, := sup[v|v € Afj}
and Ay, {0<v| The AREs X;;Z;; +u X +

X;;S;iXjj + W;; =0 have a positive definite stab|I|Z|ng
solution, respectively, j=1,..., N.

Using the similar technique used Byiukaidani et al.
(2003) it is easy to verify that if we select a parameter
O<p<py:=minfug, ..., 1} then the solutiorX ; has
the following form

X% := block diag (X7, Xan)-
Moreover, the following set is defineB&n and Basar, 1993

vy = supv|v € A}, whereAd; := {0<v| The ARE
(11a) has a positive definite stabilizing solution

As a result, for every & v <v=min{v,, vr}, the AREs
(11a) and (11c) have the positive definite stabilizing solu-
tions. Hence, the limiting behavior df, as the parameter

lle|l == ,/sl =+ - +eN — 40 is described by the follow-

ing lemma.

(13)

Lemma 4. Assume that there exists a positive scalae
min{vs, v} such that for all0 < v < v, the AREg11a)and
(11c) have the positive definite stabilizing solutions. Then
there exists a smab™ such that for all||¢|| € (0, ¢*), for
anyv(<v) the GMARK7) admits the solution X which can
be written as

[2&+0ww)[2

X70+0(|I8II)
X, =,X >0,

%+0mﬂﬂﬂ1
Xy + 00l

X% =1[Xig ol

(14)
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Using the Newton—Kantorovich theorer®rtega, 199D
instead of the implicit function theorem, it is also possi-
ble to show the asymptotic structure of the solution for the
GMARE (7) which is given by (14). It should be noted that
the solutionP}; of the ARE (11c) exists for all & v < vy,
by using the result oPetersen and McFarlane (1999n
the other hand, it is shown that the ARE (11a) admits a so-
lution for all 0< v < v by exploiting the following lemma
and the similar technique used Hetersen and McFarlane
(1994) Since this lemma can be proved by combining the
techniques that have been establishe@ém and Vreugden-
hil (1988) andTakaba et al. (1995}t is omitted.

Lemma 5. LetA € R™", §=5T>0¢€ R™" and Q =
0" € R™" n:=ng+n,i:= Y~ n be given as the
matrices. Furthermoreassume that

= [Py O
P=|5" 5|,
[Pfo Pf}
Poo= PJy>0 e R0, pr= }3} >0 e R™ " is a solution
satisfying the GMAREPTA + ATP + PTSP + Q = 0. If

Q < 0, then there exists a solutloh such thatd P < d)oP
and PTA+ ATP + PTSP + 0 =0, where

D IAOO 0 D DT noxn
P=] ~ ~ |, Pgo= Pyn>0 e R"0*"0,
|:Pf0 Pf 00 00

Br=FT>0e R i = [(’;O g} .

Similarly, assume thaP is a solution satisfying the GMARE
PTA+ ATP + PTSP + 0 =0.1f 0<8<S, then there
exists a solutior? such thatboP < doP andPTA+AT P+
PTSP+Q=0.

4. An approximate guaranteed cost controller

We now give the new design approach for the construction
of the guaranteed cost controller. The nevindependent
guaranteed cost controller can be obtained by solving
reduced-order slow and fast AREs (11). Td&iandependent
guaranteed cost controller is obtained by neglecting the term
of O(|le]|) of the guaranteed cost controller (8). || is
very small, it is obvious that the guaranteed cost controller
(8) can be approximated as

Uexa(t)
= Kexax (1) = —2 VBT X + E] E,)x (1)
X uapp(t) = Kappr (1)

=—2"1(v[B] Bl X3 O + EJE, ) x(0).
- M R I

(15)

The main result of this paper is as follows.
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Theorem 6.If we select a parameterO<v <V
min{vs, v}, then there exists a smab<go such that
for all |le|] € (0, o), the uncertain closed-loop MSPS is
quadratically stable and cog#) has the upper bound via
the e-independent controlle¢15). That is the approximate
controller (15) is the guaranteed cost controller

Proof. Using the result of Lemma 2, it is enough to show
that the GMARE (16) has the positive definite symmetric
solution®, P asA + BK app— A, E, + EpKapp— E and

Q + KjppRK app— 0.

PT(A+ BKapp + (A+ BKapp) ' P+ APTDD'P
+ 27 HE + EbKapp)T(Ea + EpKapp

+ K;—ppRKapp"‘ Q = O (16)

The proof of the existence & is obtained by the implicit
function theorem Gajic, 1989. To do so, it is enough to
show that the corresponding Jacobian is nonsingular|et

1059

(11a) has the positive definite stabilizing solution is satisfied.
Thus, detd # 0, i.e.,J is nonsingular atje|| = 0. The
asymptotic structure oP, is obtained directly by using the
implicit function theorem. Hence, it is easy to establish that

. [{?gﬁ Ol [Xjo+ 0(||s||>]THe}
X+ 0dlel) X5+ 0(lel)

= P =XlI=0(el) & [IP.— Xcll=0(el), (19)

under 4 = v because the zeroth-order solutions of the
GMARE (16) are equal to the zeroth-order solutions of
the GMARE (7). The remainder of the proof is to show
that P, := &, P is the positive definite stabilizing solution.
Applying the Schur complement to the mati#x, we get

P i=®,P>0 & Xio+ O(lel)>0,

X5o— X50I[X% + O(leD]™ X% + O(llel)) > 0. (20)

Taking into consideration the fact that the solutidfjg, X’
are the positive definite and, = O(||¢]|), we haveP, >0

0. It can be shown, after some algebra, that the Jacobianfor sufficiently small|e||. Thus, the proof of Theorem 6 is

matrix of the GMARE (16) in the limit agle|| — O is
given by

J=VFlje=0, Poo=X3. Pro=K50. Py=X

Joo Joz O
=|Jiwo Juu J1z |,

0 0 Jx

*
¥

17)

where

Joo = Iny ® Oly+ O ® Iy,

Jo1= (ny ® OF)Ungis + O ® Ing,

310=00; ® Ing = (O & Ing)Ungno

=0} @y =0 +0;I;

Boo= Ego + Soo)_(éo + Sof)_(}kco,

Oor =Eor + SOf)-(}kc, Or=Er0+ ng}_(éo—i- Sf)_(j?o,
@f=:f+Sf)_(7~,

O r = block diag (H11 Hyn),

N
L T LY noe— .
Hj; ._HH+S”XJ-J-, n.—E nj.

i=1

Jacobian (17) can be expressed as

detd = detdpy - detdys - defil,, ® O + O ® 1,1,  (18)
where O = @ — Oo;O ;'O ro. Obviously, J;;,
Jj =1,2 are nonsingular because the maty = =, +
SfX’;. = block diag (H11 Hypy) is stable. After

completed. OJ

It should be noted that the zeroth-order solutiorPadre
the same as the zeroth-order solutionXof

Remark 7. It has been shown frofetersen and McFarlane
(1994)that the GMARE (7) has a positive definite solution
for eachv in the interval (0, v). Moreover, it is known
that Trace®,. X is a convex function of over (0, v). This
convexity can be exploited to design the guaranteed cost
controllers which minimizes the value of the guaranteed cost
for the closed-loop uncertain MSPS.

Remark 8. Using the Newton—Kantorovich theorem
(Ortega, 199)) it can be shown that there exists a small
o(< min{c*, 6}) such that for all|s|| € (0, 6), the
MAREs (7) and (16) have the positive definite solutions in
the meaning of the sufficient condition. Since this proof can
be done by using the similar technique Mukaidani and
Mizukami (2000) it is omitted.

Using the useful result for the asymptotic structure (19)
of the GMARE (16), we show how to select a parameter
which is addressed in the guaranteed cost control problem.
According to the existing result®étersen and McFarlane,
1994, we need to solve the full-order GMARE (16) to cal-
culate the bound of the cost0)" P,x(0) = x(0)' &, Px(0)
for every O< v < v. However, since the numerical stiffness
and the high-dimension arise and there is no informa-
tion of the small parameters;, it is impossible to solve
the GMARE (16) directly. So far, the problem of how
to calculate the approximate cost bound has never been

some straightforward but tedious algebra, we see thatstudied. Motivated by these reasons, we will propose the

of + 5”)_(&,: Ooo—Ooy @}l@fo= ®op. Therefore, the ma-

new approximate method of calculation for the cost bound

trix O is also stable because the assumption that the AREDbriefly.
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If ||¢|l is very small, then the guaranteed co€d) " P,x(0) Consequently, solving the proposed above optimization
can be written as (21) because the zeroth-order solutions ofproblem allows us to determine the near-optimal cost bound
the GMARE (16) are equal to the zeroth-order solutions of O(J|¢]||) close to the optimal guaranteed cost performance.

the GMARE (7):

x(0)T P.x(0) = x(0) T X,x(0) + O(|lel])

= x0(0)X00x0(0) + O(ll« ). (21)

Thus, in order to calculate the bound of the cost, our new

idea is to use only the solutiokgg of the reduced-order
ARE (11a). That is, we can neglect th@(]e||) term of
cost (21) if||e]| is sufficiently small. Therefore, the amount
of the computation required to get tkeindependent con-

troller becomes small compared with the case of solving the

full-order GMARE (7) because the approximate cost can

be computed by the small dimension which is the same as
the slow subsystems. Moreover, we do not need the knowl-

edge of the parametees for calculating the guaranteed
cost.

5. Numerical example

In order to demonstrate the efficiency of the proposed
algorithm, we have run a simple example. Let us consider
the R-L—C electric network irFig. 1 In this networkL and
R are the inductance and the resistance, respectively. The
capacitances are denoted @y, j =1, ..., 9. Suppose that
C; is avery small positive parameter, thatG§=¢;. I := xg
denotes the electric current in the inductari¢e;= x;, j=
., 9 denote the voltage across capacitanCgs= ¢},
respectively. Moreover; :=u;, j=1,...,9 denote the
applied voltages, that is, the control inputs. The nominal
values of the element are definedlas= 100 mH andR =
10Q. It should be noted that;, j=1,..., 9 are sufficiently
small but these values are unknown.

We suppose that the variation of the resistaRégwithin

Remark 9. It can be noted that the cost bound (21) depends 1o, of the nominal value taking the saturation into account.

on the initial conditionx (0). To remove this dependence on
x(0), we assume that(0) is a zero mean random variable
satisfying E[x(0)xT(0)] = I,. In this case, it is interesting
to point out that the guaranteed cost becomes

x(0)T P,x(0) = Trace P, = Trace Xoo + O(|¢])). (22)
Finally, we give an algorithm for the guaranteed cost con-
trol problem of the uncertain MSPS.

Stepl: Search the minimum parameter=min{vy, ...,
vy} such that the reduced-order AREELc) have the pos-
itive definite stabilizing solutioiX ;; by using the bisection
method. Ifv, is less than some prescribed computational
accuracy then stop and declare that the guaranteed cost
control fails. Otherwisgproceed to Steg.

Step2: Using the relation(12), search the minimum pa-
rameterv, (<vy) such that the reduced-order ARELa)has
the positive definite stabilizing solutidfpyg by means of the
bisection method. If is less than some prescribed compu-
tational accuracythen stop and declare that the guaranteed
cost control fails. Otherwiseproceed to Stef.

Step3: Choose any parameter such thatO<v<v =
min{vs, vy} and calculate<Z, ¥ and ¥~ of (12) via the
matricesToo, To;, Tjo andT;;, j=1,...,N.

Step4: Compute the positive definite stabilizing solution
Xoo and calculate the approximate guaranteed cost

f(v) = TraceXoo, (23)
where we have neglected the tethi| ¢||) of the cost(21).
Step5: Find av =" that minimizesf (v) forall 0 <v < V.
Step6: For the obtainedv = ¥, design thes-independent
controller (15).

Therefore, we assume that the considered uncertainty is rep-
resented in the following inequality:

1 1
—=———=0. . A

R =105 5,0 0.0955+ 0.0045x Ag(1),
0<dr()<10, [|4r(1]|<1.0.

Then the system matrices are given below:

Ao =[0], AOj =[-10], Aj0=[l],
Aj; =10.0955, Bo; =[0], Bj; =[-0.0955,
DOj = [0], D” = [000457 EajO = [0]’
Eqjj = Epjj=[1, Qo=1I1, Qj;=I1],
Rjj=[1, Fjj)=4r®, j=1....9,
Ei:=u R E =, R Eo :=Ug R
SUaT
C1 Cp f—--mmmm- Co
Vi = X Vo 1= X% Vg = Xg
I =X
_
L

Fig. 1. R-L—C electric network.
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uexa(t) = Kexax(t)

[—6.0526e— 3 25847 86966e— 6 12578e—5 16130e—5 19375e—5 22344e—5 25065e—5 27563e—5 2986le— 57
—5.7927e— 3 4.3483e— 6 25847 12518e— 5 1.6169e—5 19530e—5 22620e—5 25462e—5 28080e—5 30494e-5
—5.5412e— 3 4.1928e— 6 83452e— 6 25847 15988e— 5 19417e—5 22590e—5 25524e—5 28236e—5 30747e—5
—5.3021e— 3 4.0324e— 6 80846e—6 1.1991e—5 25847 19144e— 5 22366e—5 2536le—5 28144e—5 30729-5

= | —5.0768e— 3 3875le— 6 7.8120e—6 11650e—5 15315e—5 25847 22017e—5 25049e—5 27879e—5 30519e-5
—4.8657e— 3 37241e— 6 75400e—6 11295e—5 1.4910e—5 18347e—5 25847 24639e— 5 27498e—5 30175e-5
—4.6684e— 3 35807e— 6 7.2749e—6 10939e—5 14492e—5 17892e—5 21119e-5 25847 27039e—5 29739%9e-5
—4.4841e— 3 34453e— 6 7.0199e—6 1.0589e-5 1.4072e—5 17424e—5 20623e—5 23659e-5 25847 29240e— 5

| —4.3121e— 3 33179e—6 6.7765e—6 10249e—5 13657e—5 16955e—5 20117e—5 23130e—5 25991e-5 25847

-x(1) (2451)

Uapp(t) GMARE approach, there exist the important features, in
= Kappr (1) which the LMI control design methodology is a simpler
—51217e—3 25847 - -- 0 structure and is easier to be implemented. However, to get
= : : : x(t). (24b) the new analytic sufficient condition, a new convex opti-
—51217e—3 0 ... 25847 mization algorithm, which is based on the LMI should be
developed by avoiding the difficulty of the large dimension
For every boundary value ©v<v = min{vy, v} = and the numerical stiffness due to the small parameters
4.4938e+ 2, the AREs (11a) and (11c) have the positive This problem will be addressed in future investigations. Fi-
definite stabilizing solution, wherey, = 4.4938e+ 2, j = nally, it may be possible to design the output feedback if
1,...,9 andv, = 4.4938e+ 2. It is easy to verify that the  the considered MSPS is limite&galil, 1981). Particularly,
approximate minimum bound of cost (23) f$7) = 2.8411 in case where the small parameters are known, we can con-
when 7 = 2.8050e+ 1. On the other hand, the exact cost struct the output feedback controller by combining the ex-
bound min f(v*) =2.8540 is obtained for* =2.8050e+ 1 isting results floheimani and Petersen, 1996ith Gaji¢ et
whene := 1.0000e— 5, ..., g9 := 9.0000e— 5. Thus, for al. (1989) Such a problem is more realistic than the state
the tested example, our searching algorithm is quite good. feedback case. Since the analysis and the construction can
Now, we choose as= 7 = 2.8050e+ 1 < v to design the be done by using the straightforward extension of these ex-
e-independent controller. The exact guaranteed cost controlisting results, it is omitted.
(8) unden*=2.8050et1 and the proposed approximate one
(15) are given in (24a) and (24b). It is worth pointing out that
the proposed guaranteed cost controller can be constructed\cknowledgements
without any information for the small parameters. Moreover,
the required work space as the dimension is small compared The author would like to thank Dr. K. Takaba for his
with the dimension of the full-order system. In this example, helpful comments for Lemma 5. He would also like to thank
the dimension for Ca|cu|ation iS one Sma”er than ten. the Associate Editor and the anonymous reviewers for their
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