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Abstract

In this paper, we study the linear quadratic Nash games
for infinite horizon singularly perturbed systems. In
order to solve the problem, we must solve a pair of
cross–coupled algebraic Riccati equations with a small
positive parameter ε. As a matter of fact, we pro-
pose a new algorithm, which combines Lyapunov it-
erations and the generalized Lyapunov equation direct
method, to solve the cross–coupled algebraic Riccati
equations. The new algorithm ensures that the solu-
tion of the cross–coupled algebraic Riccati equations
converges to a positive semidefinite stabilizing solution.
Furthermore, in order to solve the cross–coupled alge-
braic Riccati equations, we propose a new Riccati it-
erations method different from existing method. As
another important feature of this paper, our method is
applicable to both standard and nonstandard singularly
perturbed systems.

1 Introduction

The properties of closed–loop Nash games have been in-
tensively studied in many papers [1]–[4]. For example,
Starr and Ho [1] obtained the closed–loop perfect–state
linear Nash equilibrium strategies for a class of ana-
lytic differential games. In [2], a state feedback mixed
H2/H∞ control problem has been formulated as dy-
namic Nash games. In general, note that the cross–
coupled algebraic Riccati equations play an important
role in problems of the differential Nash Games (see,
e.g., [3, 4]). It is well known that in order to obtain the
Nash equilibrium strategies, we must solve the cross–
coupled algebraic Riccati equations. Li and Gajíc [3]
proposed an algorithm, called the Lyapunov iterations,
to solve the linear quadratic Nash games. Freiling et
al. [4] found the solutions to the cross–coupled alge-
braic Riccati equations of the mixed H2/H∞ type by
using the Riccati iterations based on the coupled alge-
braic Riccati equations.

Linear time–invariant models of many physical systems
contain slow and fast modes. Linear quadratic Nash
games for such models, that is, singularly perturbed
systems have been studied by using composite con-
troller design [5, 6]. However, the composite Nash equi-
librium solution achieves only a performance which is
O(ε) close to the full–order performance.

In recent years, the recursive algorithm for various con-
trol problems of not only singularly perturbed but also
weakly coupled systems have been developed in many
literatures (see, e.g., [7]–[9]). It has been shown that
the recursive algorithm are very effective to solve the
algebraic Riccati equations when the system matrices
are functions of a small perturbation parameter ε. So
far, dynamic Nash games of the weakly coupled systems
have been studied in Gajíc et al. [7] and Gajíc and Shen
[8] by means of the recursive algorithm. However, the
recursive algorithm for solving the cross–coupled alge-
braic Riccati equations corresponding to the dynamic
Nash games of the singularly perturbed systems have
not been investigated.

In this paper, we study the linear quadratic Nash games
for infinite horizon singularly perturbed systems from a
viewpoint of solving the cross–coupled algebraic Riccati
equations. We apply the Lyapunov iterations to solve
the cross–coupled algebraic Riccati equations. How-
ever, since the singularly perturbed systems contain a
small positive perturbation parameter ε, it is difficult
to solve the Lyapunov equations corresponding to the
Lyapunov iterations. Therefore, we propose a new al-
gorithm, which combines the Lyapunov iterations and
the generalized Lyapunov equation, to solve the cross–
coupled algebraic Riccati equations. Using the new
composite algorithm, we will overcome many difficulties
in computing caused by high dimensions and numerical
stiffness in the Lyapunov iteration method. Thus, since
our new method is not based on the singular perturba-
tion method [10], full–order Nash equilibrium solution
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achieves a performance which is more close to the exact
performance in comparison with Khalil and Kokotovic
[5] and Xu et al. [6]. It is worth to note that the numer-
ical approach to solve the linear quadratic Nash games
for singularly perturbed systems have never been stud-
ied. Furthermore, in order to solve the cross–coupled
algebraic Riccati equations, we propose a new Riccati
iterations method different from existing method [4].
Since the proposed algorithm is based on the separated
algebraic Riccati equation, we expect that the conver-
gence is more fast in comparison with Freiling et al. [4].
As another important feature of this paper, we do not
assume that A22 is non-singular. Therefore, our new
algorithm is applicable to both standard and nonstan-
dard singularly perturbed systems.

Notation: The notations used in this paper are fairly
standard. The superscript T denotes matrix transpose.
In denotes the n× n identity matrix. || · || denotes its
Euclidean norm for a matrix. CSM denotes the column
vector of M . |M | denotes the determinant of the square
matrix M .

2 Problem Formulation

Consider a linear time–invariant singularly perturbed
system

ẋ = A11x+ A12z+ B11u1 +B12u2, x(0) = x0, (1a)

εż = A21x +A22z +B21u1 +B22u2, z(0) = z0, (1b)

with a quadratic cost function

Ji(ui, uj ) =
1
2

∫ ∞

0

(yT Qiy + uT
i Riiui + uT

j Rijuj )dt,(2)

(i, j = 1, 2, i �= j),

where

y(t) =
[
x(t)
z(t)

]
, Qi =

[
Qi11 Qi12

QT
i12 Qi22

]
≥ 0,

Rii > 0, Rij ≥ 0

and ε is a small positive parameter, x(t) ∈ Rn1 , z(t) ∈
Rn2 and y(t) ∈ Rn, (n = n1 + n2) are states, ui(t) ∈
Rmi , (i = 1, 2) is the control input. All matrices
above are of appropriate dimensions. The system (1)
is said to be in the standard form if the matrix A22

is nonsingular. Otherwise, it is called the nonstandard
singularly perturbed systems [10].

Let us introduce the partitioned matrices

Aε =
[

A11 A12

ε−1A21 ε−1A22

]
, A =

[
A11 A12

A21 A22

]
,

Biε =
[

B1i

ε−1B2i

]
, Bi =

[
B1i

B2i

]
,

Siε = BiεR
−1
ii BT

iε, Gjε = BjεR
−1
jj RijR

−1
jj B

T
jε,

Si = BiR
−1
ii BT

i =
[
S11i S12i

ST
12i S22i

]
,

Gj = BjR
−1
jj RijR

−1
jj B

T
j =

[
G11j G12j

GT
12j G22j

]
,

(i, j = 1, 2, i �= j).

We now consider the linear quadratic Nash games for
infinite horizon singularly perturbed systems (1) under
the following basic assumption [7, 8].
Assumption 1 The triplet (Aε, B1ε,

√
Q1) and

(Aε, B2ε,
√
Q2) are stabilizable and detectable for all

ε ∈ (0, ε∗] (ε∗ > 0).
Assumption 2 The triplet (A22, B21,

√
Q122) and

(A22, B22,
√
Q222) are stabilizable and detectable.

These conditions are quite natural since at least one
control agent has to be able to control and observe un-
stable modes. The purpose is to find a linear feedback
controller (u∗

1, u
∗
2) such that

Ji(u∗
i , u

∗
j ) ≤ Ji(ui , u

∗
j ). (i, j = 1, 2, i �= j) (3)

The Nash inequality shows that u∗i (t) regulates the
state to zero with minimum output energy. The fol-
lowing lemma is already known [1].

Lemma 1 Under Assumptions 1 and 2, there exists an
admissible controller such that (3) hold iff the fol lowing
full–order cross–coupled algebraic Riccati equations

AT
ε Xε +XεAε +Q1 −XεS1εXε −XεS2εYε

− YεS2εXε + YεG2εYε = 0, (4a)
AT

ε Yε + YεAε +Q2 − YεS2εYε − YεS1εXε

− XεS1εYε +XεG1εXε = 0, (4b)

have stabilizing solutions Xε ≥ 0 and Yε ≥ 0 where

Xε =
[

X11 εXT
21

εX21 εX22

]
, Yε =

[
Y11 εY T

21

εY21 εY22

]
.

Then, the closed–loop Nash equilibrium solution to the
full–order problem is given by

u∗
1(t) = −R−1

11 B
T
1εXεy(t), (5a)

u∗2(t) = −R−1
22 B

T
2εYεy(t). (5b)

However, it is difficult to solve the cross–coupled alge-
braic Riccati equations (4a) and (4b) because of the
different magnitudes of their coefficients caused by the
small perturbed parameter ε and high dimensions.

3 The Cross–Coupled Generalized Algebraic
Riccati Equations

To obtain the solutions of the cross–coupled algebraic
Riccati equations (4a) and (4b), we first define

Πε =
[
In1 0
0 εIn2

]
.

Then, we introduce the following useful lemma.
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Lemma 2 The cross–coupled algebraic Riccati equa-
tions (4a) and (4b) are equivalent to the following
cross–coupled generalized algebraic Riccati equations
(6a) and (6b) respectively.

(A− S1X − S2Y )TX + XT (A− S1X − S2Y )
+Q1 +XT S1X + Y TG2Y = 0, (6a)

(A− S1X − S2Y )TY + Y T (A− S1X − S2Y )
+Q2 + Y TS2Y +XT G1X = 0, (6b)

where

Xε = ΠεX = XTΠε, Yε = ΠεY = Y T Πε,

X =
[
X11 εXT

21

X21 X22

]
, Y =

[
Y11 εY T

21

Y21 Y22

]
.

Proof: The proof is identical to the proof of Lemma
3 in Mukaidani [11].

In Li and Gajíc [3], the Lyapunov iterations for solving
cross–coupled algebraic Riccati equations of the linear
quadratic Nash differential games have been presented.
In this paper, we give the Lyapunov iterations to solve
the cross–coupled algebraic Riccati equations. An al-
gorithm for the numerical solutions of (6) is defined as
follows [3].

(A− S1X
(n) − S2Y

(n))TX(n+1)

+X(n+1)T(A− S1X
(n) − S2Y

(n))
+Q1 +X(n)TS1X

(n) + Y (n)TG2Y
(n) = 0, (7a)

(A− S1X
(n) − S2Y

(n))TY (n+1)

+Y (n+1)T (A− S1X
(n) − S2Y

(n))
+Q2 +X(n)TG1X

(n) + Y (n)TS2Y
(n) = 0, (7b)

where n = 0, 1, 2, 3, · · · and the initial conditions
X (0) and Y (0) are obtained as solutions of the following
auxiliary algebraic Riccati equations (8)

AT X(0) +X(0)TA +Q1 −X(0)TS1X
(0) = 0, (8a)

(A− S1X
(0))TY (0) + Y (0)T(A− S1X

(0)) +Q2

+X(0)TG1X
(0) − Y (0)TS2Y

(0) = 0, (8b)

where

X(n) =

[
X

(n)
11 εX

(n)T
21

X
(n)
21 X

(n)
22

]
,

Y (n) =

[
Y (n)

11 εY (n)T
21

Y
(n)
21 Y

(n)
22

]
,

X(n)
ε = ΠεX

(n) , Y (n)
ε = ΠεY

(n).

We note that the unique positive semidefinite stabiliz-
ing solution of (8) exist under Assumptions 1 and 2
[3, 7]–[9].

4 The New Algorithm on the Basis of the
Generalized Lyapunov Equation

In this section, we will derive the new algorithm for
solving the generalized Lyapunov equation. We first
introduce the notation

A− S1X
(n) − S2Y

(n) = Ā(n) =

[
Ā

(n)
11 Ā

(n)
12

Ā(n)
21 Ā(n)

22

]
,

Q1 +X(n)T S1X
(n) + Y (n)TG2Y

(n)

= Q̄(n) =

[
Q̄

(n)
11 Q̄

(n)
12

Q̄
(n)T
12 Q̄

(n)
22

]
,

Q2 +X(n)T G1X
(n) + Y (n)T S2Y

(n)

= Q̂(n) =

[
Q̂

(n)
11 Q̂

(n)
12

Q̂
(n)T
12 Q̂

(n)
22

]
.

The following set of equation (9) can be produced by
substituting above relation into (7).

Ā(n)TX(n+1) + X(n+1)TĀ(n) + Q̄(n) = 0, (9a)

Ā(n)TY (n+1) + Y (n+1)T Ā(n) + Q̂(n) = 0. (9b)

The algorithm (9) is the generalized Lyapunov iter-
ations. The proof for the convergence has been given
in [3]. Thus, we can obtain the solution of the cross–
coupled algebraic Riccati equations by performing Lya-
punov iterations (9) directly. However, the Lyapunov
iterations (9) contain the small positive parameter ε
for the singularly perturbed system. To remedy this,
we propose a new method to find the solution to the
generalized Lyapunov iterations (9). The method stud-
ied here is a variant of the classical numerical approach
to Lyapunov equation, the essentials of which date back
to at least Bingulac in 1970 [9].

Since the equation (9a) and (9b) are identical, we ex-
plain the method for solving the generalized Lyapunov
equation (9a) only. Firstly, we consider the simultane-
ous linear equation (10) by rearranging the generalized
Lyapunov equation (9a)

[In ⊗ Ā(n)T ] ·CS [X (n+1)] + [Ā(n)T ⊗ In] ·CS [X(n+1)T ]
+CS [Q̄(n) ] = 0. (10)

The Kronecker product method [9] on the basis of
(10) is very simple and elegant. However, for large
n = n1 + n2, the difficulty in solving n2 linear equa-
tions make it impractical. Furthermore, it is difficult
to solve the equation (10) because CS[X (n+1)] contain
a small positive perturbation parameter ε. In order
to reduce the number of the linear equations (10), the
property of the matrix X(n+1) can be exploited. It can
be readily seen that since the matrix Q̄(n) is symmet-
ric, the unknown values of the matrix X (n+1) are only
n(n + 1)/2. Hence we convert (10) into the following
form

UX = −Q, (11)
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where U is n(n + 1)/2 × n(n + 1)/2 matrix, X and Q
are n(n + 1)/2 column vectors given by

X =
[
x11
11 · ·· x11

1n1 x21
11 · · · x21

1n2

x11
22 · · · x11

n1n1

x21
n11 · · · x21

n1n2 x22
11 x22

12 · · · x22
1n2

· · · x22
(n2−1)(n2−1) x22

(n2−1)n2
x22

n2n2

]T

Q =
[
q11 q12 · · · q1n q22 q23 · · · q2n

· · · q(n−1)(n−1) q(n−1)n qnn

]T

and since X(n)
11 = X

(n)T
11 , X(n)

22 = X
(n)T
22 ,

X(n+1) =

[
X

(n)
11 εX

(n)T
21

X
(n)
21 X

(n)
22

]

=




x11
11 · · · x11

1n1
εx21

11 · · · εx21
1n2

...
. . .

...
...

. . .
...

· · · · x11
n1n1 εx21

n11 · · · εx21
n1n2

· · · · · x22
11 · · · x22

1n2
...

. . .
...

...
. . .

...
· · · · · · · · · x22

n2n2



,

Q̄(n) =




q11 q12 q13 · · · q1n

· q22 q23 · · · q2n

...
...

...
. . .

...
· · · · · · qnn


 .

In this paper, we have improved a procedure, which is
given in Bingulac [12] for obtaining the matrix U. Simi-
lar to the previous procedure (see [9, 12]), the algorithm
in order to compute U requires an auxiliary n× n ma-
trix L with integer entries. Construction of matrix U is
done through the following steps.

Step 1. Construct the n× n matrix L, given by

L =




1 2 3 · · · n
2 n + 1 n + 2 · · · 2n − 1
3 n + 2 2n · · · 3n − 3
...

...
...

. . .
...

n− 1 2n− 2 3n− 4 · · · N − 1
n 2n− 1 3n− 3 · · · N




where N = n(n + 1)/2.
Step 2. Let us define

Ā(n) =




a11 a12 · · · a1n

a31 a32 · · · a3n

...
...

. . .
...

an1 an2 · · · ann


 .

Construct the N × N matrix V = {vi′j′ } with
vi′j′ = al′k′ where the indices i′ and j ′ (i′, j′ =
1, 2, 3,. . . , N ) are given by the following elements
of the auxiliary matrix L:

i′ = Lk′h′ , j′ = Ll′h′, k ′, l′, h′ = 1, . . . , n.

Moreover, if 1 ≤ f ′ ≤ n1, n1 + 1 ≤ g′ ≤ n and the
columns of V correspond to the number of matrix
L = {lf′g′}, then multiply the ε on the am′n′, (1 ≤
m′ ≤ n1, 1 ≤ n′ ≤ n) in the matrix V .

Step 3. The required matrix U is obtained by multi-
plying by 2 all the elements of V whose row indices
correspond to diagonal elements of the matrix L,
that is, 1, n + 1, 2n, 3n − 2, . .. , N − 2 and N .

An algorithm which solves the cross–coupled algebraic
Riccati equation (6) with small positive parameter ε is
as follows.

Step 1. Solve the algebraic Riccati equations (8)
by using the recursive technique proposed by
Mukaidani et al. [11]. Starting with the initial
matrices of X(0) and Y (0).

Step 2. Calculate Ā(n) , Q̄(n) and Q̂(n) of relation (9).
Step 3. Compute the solutions X(n+1) and Y (n+1) of

the generalized Lyapunov equation (9) by using
equation (11).

Step 4.
If min{||F1(X

(n)
ε , Y

(n)
ε )||, ||F2(X

(n)
ε , Y

(n)
ε )||} <

O(εM ) for a given integer M > 0, go to Step 5.
Otherwise, increment n → n + 1 and go to Step 2.
Here F1(·) and F2(·) are defined by equations (18)
after.

Step 5. Calculate u∗
1(t) = −R−1

11 B
T
1εXεy(t), u∗

2(t) =
−R−1

22 B
T
2εYεy(t).

5 The New Algorithm on the Basis of the
Generalized Riccati Equation

In the previous section we have derived the algorithm
for solving the cross–coupled algebraic Riccati equa-
tions based on the Lyapunov iteration. Here we pro-
pose the following new algorithm based on the Riccati
iterations different from Freiling et al. [4].

(A− S2Y
(n))TX(n+1) + X(n+1)T(A− S2Y

(n)) +Q1

−X(n+1)TS1X
(n+1) + Y (n)TG2Y

(n) = 0, (12a)
(A− S1X

(n+1))TY (n+1) + Y (n+1)T(A− S1X
(n+1))

+Q2 − Y (n+1)TS2Y
(n+1)

+X(n+1)TG1X
(n+1) = 0, (12b)

where n = 0, 1, 2, 3, · · · and the initial condition
Y (0) is to take the stabilizing solution of the standard
algebraic Riccati equation

AT
ε Y

(0)
ε + Y (0)

ε Aε +Q2 − Y (0)
ε S2εY

(0)
ε = 0. (12c)

The considered algorithm (12) is original. In this
paper we derive the algorithm by using successive ap-
proximation.

Firstly, we take any stabilizing linear control law u
(0)
2 =

−R−1
22 B2εY

(0)
ε y(t), where Y

(0)
ε is the positive semidefi-

nite stabilizing solution for auxiliary generalized alge-
braic Riccati equation (12c). Then, let us consider a
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following minimization problem.

ẏ = (Aε − S2εY
(0)
ε )y +B1εu1, (13a)

minJ (0)
u =

1
2

∫ ∞

0

[yT (Q1 + Y (0)
ε G2Y

(0)
ε )y

+ uT
1 R11u1]dt. (13b)

By using the results of the standardLinear Quadratic
Regulator (LQR) problem (see, e.g., [10]), we have
u

(1)
1 (t) = −R−1

11 B1εX
(1)
ε y(t) where

(A− S2Y
(0))T X(1) +X(1)T(A− S2Y

(0))
−X(1)TS1X

(1) + Y (0)TG2Y
(0) +Q1 = 0. (14)

Similarly, performing previous operations for the sec-
ond control agent, let us consider a similar minimiza-
tion problem.

ẏ = (Aε − S1εX
(1)
ε )y +B2εu2, (15a)

min J (0)
u =

1
2

∫ ∞

0

[yT (Q2 +X(1)
ε G1X

(1)
ε )y

+ uT
2 R22u2]dt. (15b)

By using the similar steps in LQR problem (13), we
get u

(1)
2 (t) = −R−1

22 B2εY
(1)
ε y(t) where

(A− S1X
(1))TY (1) + Y (1)T(A− S1X

(1))
− Y (1)TS2Y

(1)T + X(1)TG1X
(1) + Q2 = 0. (16)

By repeating steps 1 and 2 now with u
(1)
1 (t) and u

(1)
2 (t)

we get u(2)
1 (t) and u(2)

2 (t) as well as X(2)
ε and Y (2)

ε . Con-
tinuing the same procedure, we get the sequences of the
solution matrices. Thus, we can get the algorithm (12).

This algorithm is based on the Riccati iterations. Even
though it looks like this algorithm has the form of Freil-
ing [4], it is quite easy to show that this is not same al-
gorithm. Note that Freiling’s algorithm need the initial
conditions X

(0)
ε and Y

(0)
ε . On the other hand, we need

only Y
(0)
ε . Furthermore, for obtaining the Y

(n+1)
ε , the

Riccati equation (12b) does not need the solutions X(n)
ε

and Y (n)
ε . Therefore, we expect that the convergence

is more fast in comparison with Freiling et al. [4]. In
order to show the effectiveness of the Riccati iterations
algorithm, numerical example is discussed in the next
section.

6 Numerical Example

In order to demonstrate the efficiency of the proposed
algorithm, we have run a simple numerical example.
Matrices A, B1 and B2 are chosen randomly. These
matrices are given by

A11 =
[

0 0.4
0 0

]
, A12 =

[
0 0

0.345 0

]
,

A21 =
[

0 −0.524
0 0

]
, A22 =

[
0 0.262
0 −1

]
,

B11 =
[

0
0

]
, B21 =

[
0
1

]
,

B12 =
[

0
0

]
, B22 =

[
0.2
1

]
.

and a quadratic cost function

J1 =
1
2

∫ ∞

0

(yT Q1y + u2
1 + 2u2

2)dt, (17a)

J2 =
1
2

∫ ∞

0

(yT Q2y + 2u2
1 + u2

2)dt (17b)

where Q1 = diag{1, 0, 1, 0}, Q2 = diag{0, 0, 1, 1}.

Since |A22| = 0, the system (1) is a nonstandard sin-
gularly perturbed system. Thus, it is obvious that the
existing method [5] to find the suboptimal solution is
not valid for this example. However, it is solvable by
using the method of this paper. Moreover, we can get
the full–order Nash equilibrium solution which is more
close to the exact performance different from existing
methods [6]. We show the obtained results for small
parameter ε = 0.0001. Firstly, we give the 0–order so-
lutions of the algebraic Riccati equations (8) in Table
1. Secondly, it can be seen that the solutions of the
Lyapunov iterations (7) converge to the solutions with
accuracy of O(10−12) after 44 Lyapunov iterations. In
order to verify the exactitude of the solution, we calcu-
late the remainder by substitutingX(44) and Y (44) into
the cross–coupled generalized algebraic Riccati equa-
tions (6a) and (6b) respectively.

||F1(X(44), Y (44))|| = 5.13 × 10−13,

||F2(X(44), Y (44))|| = 1.24 × 10−14

where the errors F1(X, Y ) and F2(X, Y ) are defined
as follows

AT X +XTA + Q1 −XT S1X −XT S2Y

− Y T S2X + Y TG2Y ≡ F1(X, Y ), (18a)
AT Y + Y T A +Q2 − Y T S2Y − Y T S1X

−X TS1Y +XTG1X ≡ F2(X, Y ). (18b)

Therefore, the numerical example illustrates the effec-
tiveness of the proposed algorithm since the solutions
X

(n)
ε = ΠεX(n) and Y

(n)
ε = ΠεY (n) converge to the

exact solutions Xε = ΠεX and Yε = ΠεY which are
defined by (4a) and (4b). Indeed, we can obtain the so-
lution of the cross–coupled algebraic Riccati equations
(4a) and (4b) even though A22 is singular.

In order to compare with the Lyapunov iterations (7),
we have also run the new Riccati iterations algorithm
(12) under the same accuracy, that is, O(10−12). As a
result, the new algorithms (12) converged to the same
solutions X(44)

ε and Y
(44)
ε after 23 Riccati iterations. It

is interesting to point out that same accuracy is ob-
tained after about half number of iterations by using
the new algorithm (12) based on the Riccati iterations.
Therefore, we got good convergence.
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Table 1. Initial conditions for the algorithm (7).

X(0) =




6.28449323 2.89877152 4.71190863 × 10−4 9.99999950 × 10−4

2.89877152 7.28636943 2.21089120 × 10−4 4.47571105 × 10−6

4.71190863 2.21089120 4.71226223 1.00007622
9.99999950 4.47571105 × 10−2 1.00007622 2.34520123 × 10−1


 ,

Y (0) =




5.15115389 1.30681124 3.84208016 × 10−4 3.61568014 × 10−5

1.30681124 7.76793757 9.84286146 × 10−5 −4.78419976 × 10−6

3.84208016 9.84286146 × 10−1 4.92716548 4.58164327 × 10−1

3.61568014 × 10−1 −4.78419976 × 10−2 4.58164327 × 10−1 4.34631603 × 10−1


 .

Table 2. Simulation result for ε = 1.0 × 10−4.

X(44) =




5.3735083498 3.6423573798 3.3845648024 × 10−4 5.2601715885 × 10−5

3.6423573798 7.0025729735 2.7060454965 × 10−4 4.8753202671 × 10−6

3.3845648024 2.7060454965 3.2957866169 7.5313947531 × 10−1

5.2601715885 × 10−1 4.8753202671 × 10−2 7.5313947531 × 10−1 2.3376743602 × 10−1


 ,

Y (44) =




2.5279245581 8.5751736777 × 10−1 1.9861004245 × 10−4 1.9388912118 × 10−5

8.5751736777 × 10−1 6.3314203609 6.5949921391 × 10−5 −5.8790738357 × 10−6

1.9861004245 6.5949921391 × 10−1 4.1834728413 4.0064281626 × 10−1

1.9388912118 × 10−1 −5.8790738357 × 10−2 4.0064281626 × 10−1 4.2941503846 × 10−1


 .

7 Conclusions

We have developed an algorithm for solving the cross–
coupled algebraic Riccati equations with a small posi-
tive parameter ε for the linear quadratic Nash games.
So far, the recursive algorithm for solving the cross–
coupled algebraic Riccati equations regarding the dy-
namic Nash games of the singularly perturbed systems
had not been investigated. However, we derived the
new algorithm to solve the cross–coupled algebraic Ric-
cati equations with a small positive parameter ε by
combining the Lyapunov iterations and the general-
ized Lyapunov equation technique. By using the new
algorithm, we overcame the computational difficulties
caused by high dimensions and numerical stiffness in
the Lyapunov iterations method. Moreover, in order
to solve the cross–coupled algebraic Riccati equations,
we proposed a new Riccati iterations method differ-
ent from existing method by Freiling et al. [4]. Since
the proposed algorithm is based on the separated al-
gebraic Riccati equation, we expect that the conver-
gence is more fast in comparison with the existing al-
gorithm. In addition, our new results are applicable to
both standard and nonstandard singularly perturbed
systems and include the existing methods as a special
case.
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