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Abstract
This paper deals with the H2 guaranteed cost control
problem for a singularly perturbed norm–bounded un-
certain system. This is an extension of the work by
Garcia et al. in the sense that the state matrix and
input matrix are allowed to be uncertain and the state
matrix A22 for the fast subsystem may be singular.
Firstly, we construct a high–order accurate controller
which is based on the exact decomposition technique.
Secondly, we propose an ε–independent controller by
solving the reduced–order algebraic Riccati equation
without knowledge of the parameter ε.

1 Problem Formulation
Consider the following linear singularly perturbed un-
certain systems

ẋ1 = (A11 + D1FEa1)x1 + (A12 + D1FEa2)x2

+G1w + (B1 + D1FEb)u, (1a)
εẋ2 = (A21 + D2FEa1)x1 + (A22 + D2FEa2)x2

+G2w + (B2 + D2FEb)u, (1b)
z = C11x1 + C12x2 + D12u, (1c)

where ε is a small positive parameter, x1 ∈ Rn1 and
x2 ∈ Rn2 are state vectors, u ∈ Rm is the control input,
w ∈ Rl is the exogenous disturbance, z ∈ Rp is the
controlled output, F ∈ Rk×j is the uncertainty matrix
of norm bounded such that F TF ≤ Ij . Moreover, all
matrices above are of appropriate dimensions.

Let us introduce the partitioned matrices

Aε =
[

A11 A12

ε−1A21 ε−1A22

]
, Bε =

[
B1

ε−1B2

]
,

Gε =
[

G1

ε−1G2

]
, C1 =

[
C11 C12

]
,

Dε =
[

D1

ε−1D2

]
, Ea =

[
Ea1 Ea2

]
.

Now, let us consider the H2 guaranteed cost control
problem of such singularly perturbed uncertain systems
(1) by using linear state feedback controller under the
following basic assumption [1].

Assumption 1 1) The pair (Aε, Bε) is stabilizable
for ε ∈ (0, ε∗] (ε∗ > 0). 2) The pair (A22, B2) is
stabilizable. 3) CT D12 = O, DT

12D12 > O.

With (1) we associate the algebraic Riccati equation
(ARE) [3]

[Aε − BεR̄ET
b Ea]T Pε + Pε[Aε − BεR̄ET

b Ea]
+µPεDεD

T
ε Pε − µPεBεR̄BT

ε Pε

+
1
µ

ET
a [Ij − EbR̄ET

b ]Ea + R1 = 0, (2)

for the matrix function

Pε = Pε(µ) =
[

P11(ε, µ) εP21(ε, µ)T

εP21(ε, µ) εP22(ε, µ)

]
,

where µ is positive scalar and R1 = CT
1 C1, R2 =

DT
12D12 > 0 and R̄ = (µR2 + ET

b Eb)−1. For each
ε, a controller that guarantees the quadratically stable
for all F : F T F ≤ Ij exists if and only if there exist
µ > 0 and (2) has a positive definite solution [3]. If
such conditions are met, a controller is determined by
the formula

u = K(µ)x = −R̄[µBT
ε Pε(µ) + ET

b Ea]x. (3)

For such a controller, taking K(µ) = −R̄[µBT
ε Pε(µ) +

ET
b Ea] and letting Π = C1+D12K, the transfer matrix

from w to z is expressed by

T (s) = Π(sIn − Aε − DεF {Ea + EbK(µ)}
−BεK(µ))−1 ·Gε. (4)

Then the H2 guaranteed cost control problem for sin-
gularly perturbed uncertain systems is given below.

Find K(µ) = K(µ∗) and determine ρ as small as pos-
sible such that

||T (s)||2 ≤ ρ (5)

where

||T (s)||22 = Trace[GT
ε Lo(F )Gε],

[Aε + DεF (Ea + EbK) + BεK]T Lo(F )
+Lo(F )[Aε + DεF (Ea + EbK) + BεK] + HT H = 0.
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By using a similar technique in [1], we can easily prove
the following result.

Theorem 1 Suppose that the assumption 1 are satis-
fied. Then we have

Lo(F ) ≤ Pε. (6)

Consequently, the best H2 guaranteed cost ρ is given
by

ρ = min
µ

√
Trace[GT

ε Pε(µ)Gε], (7a)

µ∗ = arg min
µ

√
Trace[GT

ε Pε(µ)Gε]. (7b)

Moreover, the controller is defined by K(µ) =
K(µ∗) = −(µ∗R2 + ET

b Eb)−1[µBT
ε Pε(µ∗) + ET

b Ea].

Now, let us define the following matrices

Aµ = A − BR̄ET
b Ea =

[
Aµ

11 Aµ
12

Aµ
21 Aµ

22

]
,

Sµ = µ(BR̄BT − DDT ) =
[

Sµ
11 Sµ

12

SµT
12 Sµ

22

]
,

Qµ =
1
µ

ET
a [Ij − EbR̄ET

b ]Ea + R1 =
[

Qµ
11 Qµ

12

QµT
12 Qµ

22

]
.

Substituting Pε into the ARE (2) and setting ε = 0,
we obtain the zeroth order equations

P̄ T
11A

µ
0 + AµT

0 P̄11 − P̄ T
11S

µ
0 P̄11 + Qµ

0 = 0, (8a)
P̄21 = −NT

2 + NT
1 P̄11, (8b)

AµT
22 P̄22 + P̄ T

22A
µ
22 − P̄ T

22S
µ
22P̄22 + Qµ

22 = 0, (8c)

where

Aµ
0 = Aµ

11 + N1A
µ
21 + Sµ

12N
T
2 + N1S

µ
22N

T
2 ,

Sµ
0 = Sµ

11 + N1S
Tµ
12 + Sµ

12N
T
1 + N1S

µ
22N

T
1 ,

Qµ
0 = Qµ

11 − N2A
µ
21 − AµT

21 NT
2 − N2S

µ
22N

T
2 ,

NT
2 = Λ−T

4 Q̂T
12, NT

1 = −Λ−T
4 ΛT

2 ,

Λ2 = Aµ
12 − Sµ

12P̄22, Λ4 = Aµ
22 − Sµ

22P̄22,

Q̂12 = Q12 + AµT
21 P̄22.

Lemma 1 If the AREs (8) have the unique positive
definite stabilizing solution, then there exists small ε̄ >
0 such that for all ε ∈ (0, ε̄), the ARE (2) admits a
positive definite solution.

2 The Exact Decomposition Technique
The exact slow–fast decomposition method for solving
the ARE of singularly perturbed systems has been pro-
posed [2]. An algorithm which solves the ARE (2) with
small positive parameter ε is as follows.

Step 1. Using the matrices Ti, i = 1, 2, 3, 4, solve
the following equations (9a) and (9b) for L = L(ε)
and H = H(ε), respectively.

T4L − T3 − εL(T1 − T2L) = 0, (9a)
−H(T4 + εLT2) + T2 + ε(T1 − T2L)H = 0, (9b)

where

T1 =
[

Aµ
11 −Sµ

11

−Qµ
11 −AµT

11

]
, T2 =

[
Aµ

12 −Sµ
12

−Qµ
12 −AµT

21

]
,

T3 =
[

Aµ
21 −SµT

12

−QµT
12 −AµT

12

]
, T4 =

[
Aµ

22 −Sµ
22

−Qµ
22 −AµT

22

]
.

Step 2. Calculate the coefficients Ωi, ai, bi, i =
1, 2, 3, 4 from (10).

Ω =
[

Ω1 Ω2

Ω3 Ω4

]
=




In1 0 0 0
0 0 In2 0
0 In1 0 0
0 0 0 εIn2




·
[

I2n1 εH
−L I2n2 − εLH

]
·




In1 0 0 0
0 0 In1 0
0 In2 0 0
0 0 0 In2


 ,

(10)[
a1 a2

a3 a4

]
= T1 − T2L,

[
b1 b2

b3 b4

]
= T4 + εLT2.

Step 3. Solve the following equations (11a) and (11b)
for P1 and P2, respectively.

P1a1 − a4P1 − a3 + P1a2P1 = 0, (11a)
P2b1 − b4P2 − b3 + P2b2P2 = 0. (11b)

Step 4. Using the coefficients Ωi obtained in Step 2
and the following formula (12), we calculate the
required solution Pε of the ARE (2).

Pε =
(

Ω3 + Ω4

[
P1 0
0 P2

])

·
(

Ω1 + Ω2

[
P1 0
0 P2

])−1

(12)

In order to solve the equation (11), the following Lya-
punov iterations (13a) and (13b) with P

(0)
1 = P̄11 and

P
(0)
2 = P̄22 is proposed in [2].

P
(i+1)
1 (a1 + a2P

(i)
1 ) − (a4 − P

(i)
1 a2)P

(i+1)
1

= a3 + P
(i)
1 a2P

(i)
1 , i = 0, 1, 2, · · · , (13a)

P
(i+1)
2 (b1 + b2P

(i)
2 ) − (b4 − P

(i)
2 b2)P

(i+1)
2

= b3 + P
(i)
2 b2P

(i)
2 , i = 0, 1, 2, · · · . (13b)

However, the uniqueness of the solutions and the
quadratic convergence property of the algorithm (13)
have not been established so far in the previous lit-
erature. Therefore, we newly show that there exist
the unique solutions to the reduced–order pure–slow
and pure–fast AREs and that the iterative algorithm
is quadratic convergence. We now are in a position to
state our main result.

Theorem 2 Under the assumption 1, if the AREs (8a)
and (8c) have the positive semidefinite stabilizing so-
lutions, then the iterative algorithms (13a) and (13b)
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converge to the exact solution with the rate of quadratic
convergence. In this case, there exist the unique solu-
tions of the equation (11a) and (11b) in neighborhood
of the initial conditions, respectively. That is,

||P (i)
1 − P1|| = O(ε2i

), i = 0, 1, 2, · · · , (14a)

||P (i)
2 − P2|| = O(ε2i

), i = 0, 1, 2, · · · . (14b)

Proof: The proof is given directly by applying the
Newton–Kantorovich theorem [4] for the AREs (11).
The proof is omitted due to the page limitation.

3 ε–independent Controller
In this section, a new method of calculation for the H2

norm is proposed. It is worth pointing out that the
small parameter ε is unknown. It is easy to show that
the H2 norm is mainly determined by the O(ε−1) due
to

Trace[GT
ε Pε(µ)Gε] = Trace[GT

1 P11(µ)G1

+2GT
2 P21(µ)G1 + ε−1GT

2 P22(µ)G2].(15)

In order to avoid O(ε−1), we introduce the scaling pa-
rameter:

G2 = εδḠ2, δ >
1
2
, (16)

where Ḡ2 is constant matrices.

In this case the H2 norm as well as the proposed guar-
anteed cost is finite when the parameter ε tends to zero.
The idea behind inserting the εδ factor multiplying the
exogenous disturbance term in the state equation for
the variable x2 is to make this meaningful physical fast
variable for control purpose. If this factor is dropped
from the equation (1b), the fast variable controller can
not be employed meaningfully because the H2 norm
tends to infinity.

We show that an ε–independent stabilizing controller
can be obtained by solving the reduced–order slow and
fast AREs (8). The ε–independent linear state feed-
back controller are obtained by neglecting O(ε)–term
of the linear state feedback controller (3). If the pa-
rameter ε is very small, it is obvious that the linear
state feedback controller (3) can be approximated as

u ≈ uapp = −R̄

{
µ

([
BT

1 P̄11 + BT
2 P̄21 BT

2 P̄22

]

+DT
12C1

)
+ ET

b Ea

}
x. (17)

Theorem 3 If the AREs (8) have the unique posi-
tive definite stabilizing solution, then there exists small
ε̂ > 0 such that for all ε ∈ (0, ε̂), the uncertain linear
singularly perturbed system (1) is quadratically stable
via the ε–independent linear state feedback controller
(17).

In the rest of this section, we show how to select the
parameter µ which is included in the controller (17). If
ε is very small, then the guaranteed cost can be changed
as follows

Trace[GT
ε Pε(µ)Gε] = Trace[GT

1 P11(µ)G1

+2εδḠT
2 P21(µ)G1 + ε2δ−1ḠT

2 P22(µ)Ḡ2]
≈ Trace[GT

1 P̄11(µ)G1],

where 2δ − 1 > 0.

Our new idea is to use only the matrix P̄11 for the
above cost. As a result, the ε–independent controller
(17) does not require knowing the value of the small
parameter ε because we can determine the parameter
µ without information of the small parameter. More-
over, the amount of the computation required to get the
ε–independent controller becomes extremely small for
problems with small state dimension in contrast with
the case of solving the full–order ARE (2).

Finally, we give an algorithm for the H2 guaranteed
cost control problem of singularly perturbed system
without information of ε.
Step 1. Firstly, starting for any small µ, calculate

Ti, i = 1, 2, 3, 4.
Step 2. Search the minimum parameter µ̄ such that

the reduced–order AREs (8) have positive definite
stabilizing solution P̄11 and P̄22 respectively by us-
ing the bisection method.

Step 3. Choose µ such that 0 < µ < µ̄ and compute
the positive definite stabilizing solution P̄11.

Step 4. Calculate the approximate guaranteed cost
f(µ) = Trace[GT

1 P̄11(µ)G1].
Step 5. Find a µ = µ̂ that minimizes f(µ) for all 0 <

µ < µ̄.
Step 6. For the obtained µ = µ̂, design the ε–

independent controller (17).
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