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Abstract
In this paper, the numerical design of a Nash equi-
librium for infinite horizon multiparameter singularly
perturbed systems (MSPS) is analyzed. A new algo-
rithm which is based on the Newton’s method for solv-
ing the generalized cross–coupled multiparameter al-
gebraic Riccati equations (GCMARE) is proposed. It
is proven that the proposed algorithm guarantees the
quadratic convergence. As a result, it is shown the pro-
posed algorithm succeed in improving the convergence
rate dramatically compared with the existing results.

1 Introduction

The linear quadratic Nash games have been investi-
gated extensively by several researchers [1]–[3]. In
order to obtain the Nash equilibrium strategies, we
must solve the cross–coupled algebraic Riccati equa-
tions (CARE). In [2], an algorithm called the Lyapunov
iterations for solving the CARE has been proposed.
However, there are no results for the convergence rate
of the Lyapunov iterations. Furthermore, it is easy to
verify that the convergence speed is very slow when we
run the numerical example. In order to improve the
convergence rate of the Lyapunov iterations, the Ric-
cati iterations which is based on the algebraic Riccati
equation (ARE) have been proposed [8]. On the other
hand, the Riccati iterations which is different from the
previous algorithm [8] have been derived in [3]. How-
ever, the convergence property of these Riccati itera-
tions were not proved exactly.

Multimodeling stability, control and filtering problems
have been investigated extensively (see e.g., [4]–[6]).
The multimodeling problems arise in large–scale dy-
namic systems. Linear quadratic Nash games for the
multiparameter singularly perturbed systems (MSPS)
have been studied by using composite controller design
[4]. When the parameters represent the small unknown
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perturbations whose values are not known exactly, the
composite design is very useful. However, there exist
two drawbacks for the composite design. Firstly, the
composite Nash equilibrium solution achieves only a
performance which is O(||µ||) (where ||µ|| denotes the
norm of the vector µ := [ε1 ε2]) close to the full–
order performance. Secondly, since the closed–loop
solution of the reduced Nash games depends on the
path along ε1/ε2 as ||µ|| → 0, we cannot expect that
the closed–loop solution of the full problem converges
to the closed–loop solution of the reduced problem [5].
Therefore, in order to avoid the dependance of the path
along ε1/ε2, as long as the small perturbation parame-
ters εj are known, much effort should be made towards
finding the exact strategies which guarantees the Nash
equilibrium without the ill–conditioning.

In this paper, we study the linear quadratic Nash games
for infinite horizon MSPS from a viewpoint of solving
the CARE. The main contribution of this paper is to
propose a new iterative algorithm for solving the GC-
MARE. Since the new algorithm is based on the New-
ton’s method, the new algorithm achieves a quadratic
convergence property. Using the new algorithm, we will
improve the convergence speed compared with the pre-
vious results [3, 8]. The idea that the Newton’s method
is applied to the CARE has no novelty. However, it is
worth pointing out that even if there exists the fact that
the Newton’s method has been applied to the CARE
without the perturbation parameters, for the MSPS the
proof of the quadratic convergence property of the re-
sulting algorithm by means of the Newton–Kantorovich
theorem has not been studied so far. As another im-
portant features, the strategies ui and uj that are in-
cluded to the cost functions are added compared with
the existing result [5]. Therefore, our results can be
implemented for more realistic systems. Finally, the
simulation results show that the proposed algorithm
succeed in improving the convergence rate dramatically
compared with the existing Lyapunov iterations [2].

Notation: The notations used in this paper are fairly
standard. The superscript T denotes matrix transpose.
In denotes the n × n identity matrix. || · || denotes
its Euclidean norm for a matrix. detM denotes the
determinant of M . Reλ[M ] denotes the real part of
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the eigenvalue of M . vecM denotes an ordered stack of
the columns of M [10]. ⊗ denotes Kronecker product.
Ulm denotes a permutation matrix in Kronecker matrix
sense [10] such that UlmvecM = vecMT , (M ∈ Rl×m).

2 Problem Formulation

A linear time–invariant MSPS is given by

ẋ0(t) = A00x0(t) + A01x1(t) + A02x2(t)
+B01u1(t) + B02u2(t), (1a)

ε1ẋ1(t) = A10x0(t) + A11x1(t) + B11u1(t), (1b)
ε2ẋ2(t) = A20x0(t) + A22x2(t) + B22u2(t), (1c)

xj(0) = x0
j , j = 0, 1, 2,

with the quadratic cost functions

Ji(ui, uj) =
1
2

∫ ∞

0

[yT
i yi + uT

i Riiui + uT
j Rijuj]dt,(2a)

yi(t) = Ci0x0(t) + Ciixi(t) = Cix(t), (2b)

Rii > 0, Rij ≥ 0, x =


 x0

x1

x2


 , i, j = 1, 2, i �= j,

where xj ∈ Rnj , j = 0, 1, 2 are the state vector,
uj ∈ Rmj , j = 1, 2 are the control input. All the ma-
trices are constant matrices of appropriate dimensions.
Note that ui and uj that are the strategies relating to
the cost functions (2a) are included compared with the
existing result [5]. ε1 and ε2 are two small positive sin-
gular parameters of the same order of magnitude such
that

0 < k1 ≤ α ≡ ε1

ε2
≤ k2 < ∞. (3)

Note that the fast state matrices Ajj , j = 1, 2 may be
singular.

Let us introduce the partitioned matrices

Ae = Π−1
e A, B1e = Π−1

e B1, B2e = Π−1
e B2,

Sie = BieR
−1
ii BT

ie = Π−1
e SiΠ−1

e ,

Gje = BjeR
−1
jj RijR

−1
jj BT

je = Π−1
e GjΠ−1

e ,

Qi = CT
i Ci, i, j = 1, 2, i �= j,

Πe =


 In0 0 0

0 ε1In1 0
0 0 ε2In2


 ,

A =


 A00 A01 A02

A10 A11 0
A20 0 A22


 ,

B1 =


 B01

B11

0


 , B2 =


 B02

0
B22


 ,

S1 = B1R
−1
11 BT

1 =


 S001 S011 0

ST
011 S111 0
0 0 0


 ,

S2 = B2R
−1
22 BT

2 =


 S002 0 S022

0 0 0
ST

022 0 S222


 ,

G1 = B1R
−1
11 R21R

−1
11 BT

1 =


 G001 G011 0

GT
011 G111 0
0 0 0


 ,

G2 = B2R
−1
22 R12R

−1
22 BT

2 =


 G002 0 G022

0 0 0
GT

022 0 G222


 ,

Q1 =


 Q001 Q011 0

QT
011 Q111 0
0 0 0


 , Q2 =


 Q002 0 Q022

0 0 0
QT

022 0 Q222


 .

We now consider the linear quadratic Nash games for
infinite horizon MSPS (1) under the following basic as-
sumptions [2].

Assumption 1 There exists an ||µ||∗ > 0 such that
the triplet (Ae, Bje, Cj), j = 1, 2 are stabilizable and
detectable for all ||µ|| ∈ (0, ||µ||∗], where ||µ|| := √

ε1ε2.

Assumption 2 The triplet (Ajj , Bjj , Cjj), j = 1, 2
are stabilizable and detectable.

These conditions are quite natural since at least one
control agent has to be able to control and observe
unstable modes. The purpose is to find a linear Nash
equilibrium strategy (u∗

1, u∗
2) such that

Ji(u∗
i , u∗

j) ≤ Ji(ui, u∗
j ), i, j = 1, 2, i �= j. (4)

The Nash inequality shows that u∗
i regulates the state

to zero with minimum output energy. The following
lemma is already known [1].

Lemma 1 Under Assumptions 1 and 2, there exists a
linear Nash equilibrium strategy such that (4) hold if
the following full–order CARE

AT
e Xe + XeAe + Q1 − XeS1eXe

−XeS2eYe − YeS2eXe + YeG2eYe = 0, (5a)
AT

e Ye + YeAe + Q2 − YeS2eYe

−YeS1eXe − XeS1eYe + XeG1eXe = 0, (5b)

have stabilizing solutions Xe ≥ 0 and Ye ≥ 0 with
Reλ[Ae − S1eXe − S2eYe] < 0 where

Xe =


 X00 ε1X

T
10 ε2X

T
20

ε1X10 ε1X11
√

ε1ε2X
T
21

ε2X20
√

ε1ε2X21 ε2X22


 ,

Ye =


 Y00 ε1Y

T
10 ε2Y

T
20

ε1Y10 ε1Y11
√

ε1ε2Y
T
21

ε2Y20
√

ε1ε2Y21 ε2Y22


 .
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Then, the closed–loop linear Nash equilibrium solutions
to the full–order problem are given by

u∗
1(t) = −R−1

11 BT
1eXex(t), (6a)

u∗
2(t) = −R−1

22 BT
2eYex(t). (6b)

3 Asymptotic Structure

In order to obtain the solutions of the CARE (5), we
introduce the following useful lemma.

Lemma 2 The CARE (5) is equivalent to the follow-
ing GCMARE (7), respectively.

AT X + XT A + Q1 − XT S1X

−XT S2Y − Y T S2X + Y T G2Y = 0, (7a)
AT Y + Y T A + Q2 − Y T S2Y

−Y T S1X − XT S1Y + XT G1X = 0, (7b)

where

Xe = ΠeX = XT Πe, Xii = XT
ii , i = 0, 1, 2,

X =


 X00 ε1X

T
10 ε2X

T
20

X10 X11
√

α
−1

XT
21

X20
√

αX21 X22


 ,

Ye = ΠeY = Y T Πe, Yii = Y T
ii , i = 0, 1, 2,

Y =


 Y00 ε1Y

T
10 ε2Y

T
20

Y10 Y11
√

α
−1

Y T
21

Y20
√

αY21 Y22


 .

Proof: The proof is identical to the proof of Lemma
3 in [8].

After substituting X and Y into the GCMARE (7), we
obtain the following equations as εj → +0, j = 1, 2,
where X̄lm, Ȳlm, lm = 00, 10, 20, 11, 21, 22 are the
0–order solutions of the GCMARE (7).

AT X̄ + X̄T A + Q1 − X̄T S1X̄

−X̄T S2Ȳ − Ȳ T S2X̄ + Ȳ T G2Ȳ = 0, (8a)
AT Ȳ + Ȳ T A + Q2 − Ȳ T S2Ȳ

−Ȳ T S1X̄ − X̄T S1Ȳ + X̄T G1X̄ = 0. (8b)

where

X̄ =


 X̄00 0 0

X̄10 X̄11 0
X̄20 0 X̄22


 , Ȳ =


 Ȳ00 0 0

Ȳ10 Ȳ11 0
Ȳ20 0 Ȳ22


 ,

AT
11X̄11 + X̄11A11 − X̄11S111X̄11 + Q111 = 0,

AT
22Ȳ22 + Ȳ22A22 − Ȳ22S222Ȳ22 + Q222 = 0.

It is well–known that there exist the positive semidef-
inite solution X̄11 and Ȳ22 under Assumption 2. The
following theorem will establish the relation between
the solutions X and Y and the solutions X̄lm and Ȳlm

for the reduced–order equations (8).

Theorem 1 Let us now assume that

det∇F(P̄) �= 0, (9)

where X̄21 = 0, Ȳ21 = 0 and

∇F(P) =
∂vecF(P)
∂(vecP)T

= [(Ã − S̃P −J S̃PJ )T ⊗ IN ]U2N2N

+IN ⊗ (Ã − S̃P − J S̃PJ )T

−[(S̃JP − G̃PJ )T ⊗J ]U2N2N

−J ⊗ (S̃JP − G̃PJ )T , (10)
F(P) := ÃTP + PT Ã + Q̃ −PT S̃P

−JPT S̃JP −PTJ S̃PJ + JPT G̃PJ ,

P̄ :=
[

X̄ 0
0 Ȳ

]
, P =

[
X 0
0 Y

]
, Ã =

[
A 0
0 A

]
,

Q̃ =
[

Q1 0
0 Q2

]
, S̃ =

[
S1 0
0 S2

]
, G̃ =

[
G1 0
0 G2

]
,

J =
[

0 IN

IN 0

]
, N = n0 + n1 + n2.

Under Assumptions 1 and 2, the GCMARE (7) admits
the solutions X and Y such that these matrices possess
a power series expansion at ||µ|| = 0. That is,

X = X̄ + O(||µ||), (11a)
Y = Ȳ + O(||µ||). (11b)

Proof: We apply the implicit function theorem [7] to
the GCMARE (7). To do so, it is enough to show that
the corresponding Jacobian is nonsingular at ||µ|| = 0.
It can be shown, after some algebra, that the Jacobian
of (7) in the limit as ||µ|| → +0 is given by

JP̄ = lim
||µ||→+0

∂vecF(P)
∂(vecP)T

= ∇F(P̄). (12)

Therefore, using the assumption (9), JP̄ is nonsingular
at ||µ|| = 0. The conclusion of Theorem 1 is obtained
directly by using the implicit function theorem.

4 Newton’s method

In order to improve the convergence rate of the Lya-
punov iterations [2], we propose the following new al-
gorithm which is based on the Newton’s method [9].

Φ(n)TP(n+1) + P(n+1)T Φ(n)

−Θ(n)TP(n+1)J − JP(n+1)T Θ(n) + Ξ(n) = 0,(13)
n = 0, 1, · · · ,
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where

Φ(n) := Ã − S̃P(n) −J S̃P(n)J =

[
Φ(n)

1 0
0 Φ(n)

2

]
,

Θ(n) := S̃JP(n) − G̃P(n)J =

[
0 Θ(n)

1

Θ(n)
2 0

]
,

Ξ(n) := Q̃ + P(n)T S̃P(n) + JP(n)T S̃JP(n)

+P(n)TJ S̃P(n)J −JP(n)T G̃P(n)J

=

[
Ξ(n)

1 0
0 Ξ(n)

2

]
,

Φ(n)
i :=


 Φ(n)

00i Φ(n)
01i Φ(n)

02i

Φ(n)
10i Φ(n)

11i µΦ(n)
12i

Φ(n)
20i µΦ(n)

21i Φ(n)
22i


 ,

Θ(n)
i :=


 Θ(n)

00i Θ(n)
01i Θ(n)

02i

Θ(n)
10i Θ(n)

11i µΘ(n)
12i

Θ(n)
20i µΘ(n)

21i Θ(n)
22i


 ,

Ξ(n)
i :=


 Ξ(n)

00i Ξ(n)
01i Ξ(n)

02i

Ξ(n)T
01i Ξ(n)

11i µΞ(n)T
21i

Ξ(n)T
02i µΞ(n)

21i Ξ(n)
22i


 , i = 1, 2,

P(n) =
[

X(n) 0
0 Y (n)

]
,

X(n) =


 X

(n)
00 ε1X

(n)T
10 ε2X

(n)T
20

X
(n)
10 X

(n)
11

√
α
−1

X
(n)T
21

X
(n)
20

√
αX

(n)
21 X

(n)
22


 ,

Y (n) =


 Y

(n)
00 ε1Y

(n)T
10 ε2Y

(n)T
20

Y
(n)
10 Y

(n)
11

√
α
−1

Y
(n)T
21

Y
(n)
20

√
αY

(n)
21 Y

(n)
22


 ,

and the initial condition P(0) has the following form

P(0) =
[

X(0) 0
0 Y (0)

]
,

X(0) =


 X̄00 ε1X̄

T
10 ε2X̄

T
20

X̄10 X̄11 0
X̄20 0 X̄22


 ,

Y (0) =


 Ȳ00 ε1Ȳ

T
10 ε2Ȳ

T
20

Ȳ10 Ȳ11 0
Ȳ20 0 Ȳ22


 .

Note that the considered algorithm (13) is based on
the generalized cross–coupled multiparameter algebraic
Lyapunov equations (GCMALE). The new algorithm
(13) can be constructed setting P(n+1) = P(n) +
∆P(n) and neglecting O(∆P(n)T ∆P(n)) term. New-
ton’s method is well–known and is widely used to find
a solution of the algebraic equations, and its local con-
vergence properties are well understood.

The main result of this section is as follows.

Theorem 2 Under Assumptions 1 and 2, the new it-
erative algorithm (13) converges to the exact solution
P∗ of the GCMARE (7) with rate of the quadratic con-
vergence. Moreover, the unique bounded solution P(n)

of the GCMARE (7) is in the neighborhood of the exact
solution P∗. That is, the following condition is satis-
fied.

||P(n) −P∗|| ≤ O(||µ||2n

), n = 0, 1, · · · , (14)

where

P = P∗ =
[

X∗ 0
0 Y ∗

]
, L := 6||S̃||+ 2||G̃||,

β := ||[∇F (P(0))]−1||, η := β · ||F(P(0))||, θ := βηL.

Proof: The proof is given directly by applying
the Newton–Kantorovich theorem [9] for the GCMARE
(7). Taking the partial derivative of the function F(P)
with respect to P yields (10). It is obvious that ∇F(P)
is continuous at for all P. Thus, it is immediately ob-
tained from the equation (10) that

||∇F (P1) −∇F(P2)|| ≤ L||P1 −P2||. (15)

Moreover, using the fact that

∇F(P(0)) = ∇F(P̄) + O(||µ||), (16)

it follows that ∇F(P(0)) is nonsingular under the con-
dition (9) for sufficiently small ||µ||. Therefore, there
exists β such that β = ||[∇F (P(0))]−1||. On the other
hand, since F(P(0)) = O(||µ||), there exists η such
that η = ||[∇F (P(0))]−1|| · ||F(P(0))|| = O(||µ||). Thus,
there exists θ such that θ = βηL < 2−1 because of
η = O(||µ||). Now, let us define

t∗ ≡ 1
βL [1 −√

1 − 2θ]. (17)

Using the Newton–Kantorovich theorem, we can show
that P∗ is the unique solution in the subset S ≡ { P :
||P(0) − P|| ≤ t∗ }. Moreover, using the Newton–
Kantorovich theorem, the error estimate is given by

||P(n) −P∗|| ≤ (2θ)2
n

2nβL , n = 1, · · · . (18)

Finally, substituting 2θ = O(||µ||) into (18), we have
(14).

Remark 1 It is well–known that the solution of the
GCMARE (7) is not unique and several non–negative
solutions exist. In this paper, it should be pointed out
that if the initial conditions ΠeX

(0) and ΠeY
(0) are

the positive semidefinite solutions the new algorithm
(13) also converge to the positive semidefinite solutions
ΠeX

∗ and ΠeY
∗ respectively compared with the Lya-

punov iterations because of the following inequality.

||P(n) − P∗|| ≤ O(||µ||2n

) ⇔
||X(n) − X∗|| ≤ O(||µ||2n

), ||Y (n) − Y ∗|| ≤ O(||µ||2n

).
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5 High–Oreder Approximate Nash Strategy

In this section, the high–order approximate Nash strat-
egy is given. Such a strategy is obtained by using the
iterative solution (13).

u
(n)
1app(t) = −R−1

11 BT
1 X(n)x(t), n = 0, 1, · · · , (19a)

u
(n)
2app(t) = −R−1

22 BT
2 Y (n)x(t), n = 0, 1, · · · . (19b)

Theorem 3 Let us assume that Reλ[Π−1
e (A −

S1X
(0) − S2Y

(0))] < 0. Under Assumptions 1 and 2,
the high–order approximate strategies (19) result in

J
(n)
iapp = J∗

i + O(||µ||2n

), i = 1, 2, n = 0, 1, · · · , (20)

where J∗
i , i = 1, 2 are the equilibrium optimal values

of the cost functionals, while J
(n)
iapp, i = 1, 2 are the

equilibrium suboptimal ones.

Proof: When u
(n)
iapp is used, the value of the perfor-

mance index is

J
(n)
iapp =

1
2
x(0)T W

(n)
ie x(0), (21)

where W
(n)
ie are the positive semidefinite solutions of

the following multiparameter algebraic Lyapunov equa-
tions (MALE), respectively

(Ae − S1eX
(n)
e − S2eY

(n)
e )T W

(n)
1e

+W
(n)
1e (Ae − S1eX

(n)
e − S2eY

(n)
e ) + Q1

+X(n)
e S1eX

(n)
e + Y (n)

e G2eY
(n)

e = 0, (22a)

(Ae − S1eX
(n)
e − S2eY

(n)
e )T W

(n)
2e

+W
(n)
2e (Ae − S1eX

(n)
e − S2eY

(n)
e ) + Q2

+Y (n)
e S2eY

(n)
e + X(n)

e G1eX
(n)
e = 0. (22b)

Subtracting (5a) from (22a), we find that V
(n)
1e =

W
(n)
1e − Xe satisfies the following MALE

(Ae − S1eX
(n)
e − S2eY

(n)
e )T V

(n)
1e

+V
(n)
1e (Ae − S1eX

(n)
e − S2eY

(n)
e )

+(X(n)
e − Xe)S1e(X(n)

e − Xe)
+YeS2e(X(n)

e − Xe) + (X(n)
e − Xe)S2eYe

+Y (n)
e G2eY

(n)
e − YeG2eYe = 0. (23)

Using the relations X
(n)
e − Xe = O(||µ||2n

) and Y
(n)

e −
Ye = O(||µ||2n

) from (14), we can change the form of
(23) into (24)

(Ae − S1eX
(n)
e − S2eY

(n)
e )T V

(n)
1e

+V
(n)
1e (Ae − S1eX

(n)
e − S2eY

(n)
e ) + O(||µ||2n

) = 0.(24)

It is easy to verify that V
(n)
1e = O(||µ||2n

) because Ae −
S1eX

(n)
e −S2eY

(n)
e = Π−1

e [A−S1X
(0)−S2Y

(0)+O(||µ||)]
is stable for sufficiently small ||µ|| by using the stan-
dard Lyapunov theorem [11]. Consequently, the equal-
ity (20) holds. Since the rest of the proof of Theorem
3 corresponding to the equation V

(n)
2e = W

(n)
2e − Ye =

O(||µ||2n

) is performed by a similar argument, it is omit-
ted.

6 Numerical Example

In order to demonstrate the efficiency of our proposed
algorithm, we have run a simple numerical example.
Let us consider the following MSPS


 ẋ0

ε1ẋ1

ε2ẋ2


 =




0 1 1 0
−1 −2 0 1
2 1 0 0
4 1 0 0





 x0

x1

x2




+




0
0
1
0


u1 +




0
0
0
5


 u2, (25)

with the performance index

J1 =
1
2

∫ ∞

0

(x2
0 + x2

1 + u2
1 + u2

2)dt, (26a)

J2 =
1
2

∫ ∞

0

(x2
0 + 10−1x2

2 + 2u2
1 + 4u2

2)dt.(26b)

The small parameters are chosen as ε1 = ε2 = 10−3.
Since A11 = 0 and A22 = 0, the system is the non-
standard MSPS. Therefore, it should be noted that the
existing technique [5] cannot be applied to the MSPS
(25).

Table 1 shows the results of the error ||F(P(n))|| per
iterations for different εj . It is easy to verify that the
solutions of the GCMARE (7) converge to the exact
solution with accuracy of ||F(P(n))|| < 10−12 after 3 it-
erations. Moreover, it is interested in pointing out that
the result of Table 1 shows that the algorithms (13) are
quadratic convergence. Table 2 shows the results of it-
erations under the same accuracy of ||F(P(n))|| < 10−12

for the Lyapunov iterations [2] versus the new algo-
rithm. It can be seen that the convergence rate of the
resulting algorithm is stable for all εj since the ini-
tial conditions P(0) is quite good. On the other hand,
the Lyapunov iterations converge to the exact solutions
very slowly.
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X = X(3) =




1.3079 2.5264 × 10−1 3.2919 × 10−3 5.8294 × 10−4

2.5264 × 10−1 1.8513 × 10−1 1.2451 × 10−3 3.4574 × 10−4

3.2919 1.2451 1.0033 1.1847 × 10−3

5.8294 × 10−1 3.4574 × 10−1 1.1847 × 10−3 1.6365 × 10−2


 ,

Y = Y (3) =




2.0446 7.1409 × 10−1 7.3002 × 10−3 1.5293 × 10−3

7.1409 × 10−1 4.8507 × 10−1 2.9446 × 10−3 7.6728 × 10−4

7.3002 2.9446 1.0105 3.1413 × 10−3

1.5293 7.6728 × 10−1 3.1413 × 10−3 1.2746 × 10−1


 .

Table 1. ||F(P(n))||
n ε1 = ε2 = 10−1 ε1 = ε2 = 10−2 ε1 = ε2 = 10−3 ε1 = ε2 = 10−4 ε1 = ε2 = 10−5

0 1.7 1.7 × 10−1 1.7 × 10−2 1.7 × 10−3 1.7 × 10−4

1 1.2 1.5 × 10−2 1.5 × 10−4 1.5 × 10−6 1.5 × 10−8

2 8.6 × 10−2 7.0 × 10−5 1.0 × 10−8 1.0 × 10−12 3.7 × 10−14

3 8.3 × 10−4 1.6 × 10−9 7.7 × 10−14 3.8 × 10−14 –
4 1.0 × 10−7 7.8 × 10−14 – – –
5 5.4 × 10−14 – – – –

Table 2.
Number of iterations such that ||F(P(n))|| < 10−12.

ε1 = ε2 Lyapunov iterations Newton’s method
10−1 15 5
10−2 20 4
10−3 20 3
10−4 19 3
10−5 17 2
10−6 15 2
10−7 13 2

7 Conclusions

The linear quadratic Nash games for infinite horizon
MSPS have been studied. The new iterations method
based on the Newton’s method has been proposed.
Moreover it was shown that the resulting algorithm has
the property of the quadratic convergence. Comparing
with Lyapunov iterations [2], even if the singular per-
turbation parameter is extremely small, we have suc-
ceeded in improving the convergence rate dramatically.
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