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Abstract— This paper investigates an application of Neural
Networks (NNs) to the decentralized guaranteed H∞ perfor-
mance for a class of large-scale uncertain nonlinear systems.
In order to guarantee the adequate H∞ performance level
for the nonlinear systems, nonlinear linear matrix inequality
(NLMI) condition is derived. The linear matrix inequality
(LMI) approach instead of the NLMI is used to construct the
decentralized local state feedback controllers with additive gain
perturbation. The novel contribution is that in order to avoid
H∞ performance degradation caused by the uncertainty, NNs
are substituted into the additive gain perturbations. Although
the NNs are included in the large-scale uncertain nonlinear
systems, it is newly shown that the closed-loop system is
internally stable and the adequate H∞ performance bound is
attained. Finally, a numerical example is given to verify the
efficiency.

I. INTRODUCTION

In recent years, the problem of the decentralized robust
control of large-scale uncertain systems has been widely
studied (see, for example, [1] and the references therein).
When controlling such plant, it is desirable that the control
systems guarantee not only a robust stability, but also an
adequate level of performance. One approach to this problem
is the so-called quadratic guaranteed cost control [2]. This
approach has the advantage of providing an upper bound
on a given performance index. Recent advance in theory
of linear matrix inequality (LMI) has allowed a revisiting
of the guaranteed cost control approach [3], [4] for the
large-scale uncertain systems. Particularly, the robust non-
fragile decentralized controller design for uncertain large-
scale interconnected systems with time-delay has been es-
tablished [3], [4]. However, the disturbance inputs have not
been considered in these researches. In fact, in order to attain
the desired performance against the external disturbance,
the consideration of the disturbance inputs is important for
implementing the actual control systems.

The nonlinear H∞ control problem has been considered
extensively [5], [6]. Particularly, L2-gain analysis of non-
linear system has been tackled [5]. On the other hand, the
solutions to the nonlinear H∞ control problems were charac-
terized in terms of the nonlinear matrix inequalities (NLMIs)
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[6]. However, in general, it is very hard to solve Hamilton-
Jacobi inequality or NLMIs for obtaining the controller.
Moreover, although these approaches have the advantage of
providing an controller, the H∞ performance degradation
incurred by the uncertainty has not been considered.

Neural networks (NNs) have been utilized for an intelli-
gent control system because NNs have nonlinear mapping ap-
proximation property. The numerous control methodologies
utilizing NNs have been proposed by combining the modern
control theory. For example, the linear quadratic regulator
(LQR) problem using multiple NNs has been investigated
[7]. However, there is a possibility that NNs may result
in the unstable system because the stability of the closed-
loop system which includes the neurocontroller has not been
considered. It should be noted that the system stability may
destroy when the degree of system nonlinearity is strong [7].
In order to avoid this problem, the stability of the closed-
loop system with the neurocontroller has been considered
[8], [9]. However, since much effort has been made towards
finding the guaranteed cost controller with additive gain
perturbations, the guaranteed H∞ performance bound has
not been discussed.

In this paper, the guaranteed H∞ performance analysis
and control synthesis of the decentralized robust control
for the large-scale uncertain nonlinear systems with the
neurocontroller is discussed. The crucial difference between
the existing results [8], [9] and the proposed method is
that the disturbance input is newly considered. As a result,
the L2-gain condition of the large-scale uncertain nonlinear
systems is satisfied. The novel contributions are as follows.
First, in order to guarantee the adequate H∞ performance
level, NLMI condition is established. Second, a class of the
fixed state feedback controller of the large-scale uncertain
nonlinear systems with the gain perturbations is derived by
means of the LMI. As a result, since the LMI is used
instead of the NLMI, it is easy to obtain the fixed gains.
Finally, in order to compensate for the degradation of the
given disturbance attenuation level caused by the parameter
uncertainties, NNs are used. Although the neurocontrollers
are included in the large-scale uncertain nonlinear systems,
it is newly shown that the robust internal stability of the
closed-loop system and the adequate H∞ performance bound
are both attained. In order to verify the effectiveness of our
design approach, the numerical example is given.

The notations used in this paper are fairly standard. The
superscript T denotes the matrix transpose. In ∈ �n×n

denotes the identity matrices. ||z||2 denotes the square norm
of a vector z ∈ �k . The notation L2(0, T ) will be also used
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for vector-valued function [5].

II. PRELIMINARY

Consider the continuous-time large-scale uncertain nonlin-
ear systems that is a special kind of the multimachine power
systems [1], which consist of N subsystems of the following
form.

ẋi(t) = [Ai + ∆Ai(t)] xi(t) + [Bi + ∆Bi(t)] ui(t)
+ [Gi + ∆Gi(t)] gi(x(t)) + Hidi(t), (1a)

ui(t) = [Ki + ∆Ki(t)]xi(t), (1b)

zi(t) = Cixi(t) + Diui(t), i = 1, ... , N, (1c)

where for the ith subsystem xi ∈ �ni , x(t) :=[
xT

1 (t) · · · xT
N(t)

]T ∈ �n̄ is the state, ui ∈ �mi is
the input, zi ∈ �pi is the controlled output, di ∈ �qi is
the external disturbance, respectively. The matrices Ai, Bi ,
Gi, Hi, Ci and Di are known real constant matrices of
appropriate dimensions that describe the nominal model. Ki

is the fixed gain matrix. ∆Ai(t), ∆Bi(t) and ∆Gi(t) are real
time varying parameter uncertainties. ∆Ki(t) is the additive
gain such as neural inputs. gi(x) ∈ �li is unknown nonlinear
vector functions that represent nonlinearity between the ith
subsystem and the interactions of other subsystems.

The uncertain matrices ∆Ai(t), ∆Bi(t) and ∆Gi(t) and
the additive gain ∆Ki(t) are assumed to be of the following
structure:

[
∆Ai(t) ∆Bi(t)

]
= LiFi(t)

[
EAi EBi

]
, (2a)

∆Gi(t) = LGiFGi(t)EGi , (2b)

∆Ki(t) = LKiNi(t)EKi (2c)

with Fi(t) ∈ �ri×si , FGi(t) ∈ �ti×li and Ni(t) ∈ �vi×wi

are unknown matrix functions with Lebesgue measurable
elements and satisfying

F T
i (t)Fi(t) ≤ Isi , F T

Gi
(t)FGi(t) ≤ Ili , NT

i (t)Ni(t) ≤ Iwi ,

where Li, EAi , EBi , LGi , EGi , LKi and EKi are known
real constant matrices with appropriate dimensions.

It may be noted that the systems (1) include the distur-
bance input compared with the existing results [1]. That is,
the considered systems (1) are an extension of [1]. Without
loss of generality, the following assumptions concerning the
unknown nonlinear vector functions are made [1].

Assumption 1: There exist known constant matrices Wij

such that for all xj ∈ �nj

||gi(x)|| ≤
N∑

j=1

Wij ||xj||, (3)

for all i, j and for all t ≥ 0.

Let us introduce the following partitioned matrices.

u(t) :=

⎡
⎢⎣

u1(t)
...

uN(t)

⎤
⎥⎦ ∈ �m̄, d(t) :=

⎡
⎢⎣

d1(t)
...

dN(t)

⎤
⎥⎦ ∈ �p̄,

z(t) :=

⎡
⎢⎣

z1(t)
...

zN(t)

⎤
⎥⎦ ∈ �q̄, g(x(t)) :=

⎡
⎢⎣

g1(x)
...

gN(x)

⎤
⎥⎦ ∈ �l̄,

A∆ := A + LF (t)EA, B∆ := B + LF (t)EB ,

G∆ := G + LGF G(t)EG, K∆ := K + LKN(t)EK ,

A :=

⎡
⎢⎣

A1 O
. . .

O AN

⎤
⎥⎦ , L :=

⎡
⎢⎣

L1 O
. . .

O LN

⎤
⎥⎦ ,

EA :=

⎡
⎢⎣

EA1 O
. . .

O EAN

⎤
⎥⎦ , B :=

⎡
⎢⎣

B1 O
. . .

O BN

⎤
⎥⎦ ,

EB :=

⎡
⎢⎣

EB1 O
. . .

O EBN

⎤
⎥⎦ , G :=

⎡
⎢⎣

G1 O
. . .

O GN

⎤
⎥⎦ ,

LG :=

⎡
⎢⎣

LG1 O
. . .

O LGN

⎤
⎥⎦ , EG :=

⎡
⎢⎣

EG1 O
. . .

O EGN

⎤
⎥⎦ ,

H :=

⎡
⎢⎣

H1 O
. . .

O HN

⎤
⎥⎦ , C :=

⎡
⎢⎣

C1 O
. . .

O CN

⎤
⎥⎦ ,

D :=

⎡
⎢⎣

D1 O
. . .

O DN

⎤
⎥⎦ , K :=

⎡
⎢⎣

K1 O
. . .

O KN

⎤
⎥⎦ ,

LK :=

⎡
⎢⎣

LK1 O
. . .

O LKN

⎤
⎥⎦ , EK :=

⎡
⎢⎣

EK1 O
. . .

O EKN

⎤
⎥⎦ ,

F (t) :=

⎡
⎢⎣

F1(t) O
. . .

O FN(t)

⎤
⎥⎦ ,

F G(t) :=

⎡
⎢⎣

FG1(t) O
. . .

O FGN (t)

⎤
⎥⎦ ,

N(t) :=

⎡
⎢⎣

N1(t) O
. . .

O NN(t)

⎤
⎥⎦ , n̄ :=

N∑
i=1

ni, m̄ :=
N∑

i=1

mi,

p̄:=
N∑

i=1

pi, q̄ :=
N∑

i=1

qi, l̄i :=
N∑

j=1, j �=i

lj , l̄ :=
N∑

i=1

l̄i.

Using the above notations, the large-scale uncertain nonlinear
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systems (1) can be rewritten as

ẋ(t) = A∆x(t) + B∆u(t) + G∆g(x(t)) + Hd(t),(4a)

u(t) = K∆x(t), (4b)

z(t) = Cx(t) + Du(t). (4c)

It is assumed that the performance of large-scale uncertain
nonlinear systems (4) is measured in term of L2-gain in this
paper.

It will be given the following definition of finite L2-gain
[5].

Definition 1: Let γ ≥ 0. System (4) with initial state
x(0) = 0 is said to have L2-gain less than or equal to γ
if ∫ T

0

||z(t)||2dt ≤ γ2

∫ T

0

||d(t)||2dt, (5)

for all T ≥ 0 and d(t) ∈ L2(0, T ).
The following lemma will play an important role in solving

the nonlinear state feedback H∞ control problem [5].
Lemma 1: Consider the class of nonlinear system given

by (6).

ẋ(t) = f(x) + g(x)d(t) (6a)

z(t) = h(x), f(x0) = 0, h(x0) = 0, (6b)

where x ∈ �n, d ∈ �q, z ∈ �p and g(x) ∈ �n×q .
Let γ > 0. If there exists a smooth solution V ≥ 0 of

Hamilton-Jacobi inequality

∂V

∂x
(x)f(x) +

1
2

1
γ2

∂V

∂x
(x)g(x)gT(x)

∂TV

∂x
(x)

+
1
2
hT(x)h(x) ≤ 0, V (x0) = 0, (7)

then the nonlinear system (6) has L2-gain less than or equal
to γ.

The following theorem indicates the sufficient condition
for existence of the H∞ control synthesis for uncertain
nonlinear systems.

Theorem 1: For a given continuous matrix-valued func-
tion P i(x), suppose that the following nonlinear matrix in-
equality holds for the large-scale uncertain nonlinear systems
(1) [

Φi P i(x)G∆i

GT
∆iP i(x) −Il̄i

]
< 0, i = 1, ... , N, (8)

where

Φi = P i(x) (A∆i+B∆iK∆i)+(A∆i+B∆iK∆i)
T

P i(x)

+
1
γ2

P i(x)HiH
T
i P i(x)

+ (Ci + DiK∆i)
T (Ci + DiK∆i) + Wi,

Wi = N

N∑
j=1

WT
ijWij > 0.

If such condition is met, the large-scale uncertain nonlinear
systems (4) have L2-gain less than or equal to γ.

In order to prove Theorem 1, the following inequality is
needed.

N

N∑
j=1

xT
j WT

ij Wijxj ≥ gT
i gi. (9)

It should be noted that it is easy to verify that the above
inequality holds under Assumption 1. Now, let us prove
Theorem 1.
Proof: Suppose now there exists the positive definite contin-
uous matrix-valued function P (x) such that

∂V (x(t))
∂x(t)

= xT(t)P (x), (10)

where

P (x) =

⎡
⎢⎣

P1(x) O
. . .

O PN(x)

⎤
⎥⎦ ,

Pi(x) > 0, i = 0, ... , N. (11)

Comparing (4) and vector form of (6), it follows that

f(x) = (A∆ + B∆K∆)x(t) + G∆g(x(t)), (12a)

g(x) = H, (12b)

h(x)= (C + DK∆)x(t), (12c)
∂V

∂x
(x)= xT(t)P (x). (12d)

Applying (12) to (7), the following equation holds.

N =
1
2
xT(t)P (x)

[
(A∆ + B∆K∆)x(t) + G∆g(x(t))

]

+
1
2

[
(A∆ + B∆K∆)x(t) + G∆g(x(t))

]T

P (x)x(t)

+
1
2

1
γ2

xT(t)P (x)HHTP (x)x(t)

+
1
2
xT(t) (C + DK∆)T (C + DK∆)x(t).

Moreover, it is easy to verify the following equality.

M=N

N∑
i=1

N∑
j=1

(
xT

j WT
ijWijxj − gT

i gi

)

=xT(t)Wx(t) − gTg ≥ 0.

Adding the above equality to N and using (9), it follows that

N = N +
1
2
(xT(t)Wx(t) − gTg −M)

<
1
2

[
x(t)

g(x(t))

]T [
Φ P (x)G∆

GT
∆P (x) −Il̄

] [
x(t)

g(x(t))

]
,

(13)

where

Φ = P (x) (A∆ + B∆K∆) + (A∆ + B∆K∆)T P (x)

+
1
γ2

P (x)HHTP (x)

+ (C + DK∆)T (C + DK∆) + W .
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Hence, the following nonlinear matrix inequality (14) results
in N < 0. [

Φ P (x)G∆

GT
∆P (x) −Il̄

]
< 0.

Next, the matrix inequality (14) is written by the following
form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 O P1(x)G∆1 O
. . .

. . .
O ΦN O PN(x)G∆N

GT
∆1P1(x) O −Il̄1 O

. . .
. . .

O GT
∆NPN (x) O −Il̄N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (14)

Using Schur complement [10] for the equation (14), it is easy
to verify that the nonlinear matrix inequality (14) holds iff
the following reduced-order nonlinear matrix inequality (15)
holds. [

Φi Pi(x)G∆i

GT
∆iPi(x) −Il̄i

]
< 0, i = 1, ... , N. (15)

Therefore, since the condition (7) holds when the nonlinear
matrix inequalities (8) are satisfied, the considered systems
(4) have L2-gain less than or equal to γ. The proof of
Theorem 1 is completed.

III. LMI CONDITION FOR THE EXISTENCE OF THE

CONTROLLER

In view of the previous section, the guaranteed H∞
performance analysis involve solving the NLMIs (8). This
property also implies that the complicated computational
effort is needed. However, it is well-known that it is very hard
to solve the NLMIs. In this section, the LMI condition will
be established for the guaranteed H∞ performance analysis
and control synthesis instead of the NLMIs.

Theorem 2: Consider the large-scale uncertain nonlinear
systems (1a) and additive gain perturbation (1b). Now sup-
pose that there exist the matrices Xi ∈ �ni×ni , Yi ∈ �mi×ni

and positive constants εi1, εi2 and εiK satisfying the LMI
(16) for all uncertain functions Fi(t) and Fij(t), and the
arbitrary function Ni(t) as the neural input. Then, the fixed
gain matrix Ki = YiX

−1
i attains L2-gain less than or equal

to γ.
Proof: Let us introduce matrices Xi = P−1

i and
Yi = KiP

−1
i . Since Theorem 2 is proved by using the Schur

Complement [10], it is omitted (see, e.g., [9]).

IV. NEURAL NETWORKS FOR ADDITIVE GAIN

PERTURBATION

In general, the existence of the parameter uncertainties
and the gain perturbations yield the performance degradation.
The main purpose of this paper is to improve the degradation
of H∞ performance using NNs. It should be noted that the
proposed neurocontroller regulates its outputs in real-time
under the internal stability guaranteed by the LMI approach.

Uncertain plant

with interconnection

x3 (t)

d1(t)

z1(t)

x1 (t)

Subsystem 1

+

x2 (t)

x3 (t)
Neurocontroller

K1

x1 (t)

x3 (t)

Subsystem 3

+

Uncertain plant

with interconnection

Uncertain plant

with interconnection

x2 (t)

x3 (t)

Neurocontroller

K3

x2 (t)

x1 (t)

x2 (t)

Subsystem 2

+
Fixed gain
       K2

Fixed gain
       K3

Fixed gain
       K1

x1 (t)

Neurocontroller

K2
z2(t)

z3(t)

d2(t)

d3(t)

u3 (t)

u2 (t)

u1 (t)

Decentralized controller

Decentralized controller

Decentralized controller

S

S

S

Fig. 1. Block diagram of proposed system composed of three-dimensional
subsystems

The decentralized neurocontroller for the large-scale un-
certain nonlinear systems is considered. As a specific exam-
ple, the block diagram of the proposed control systems that
have three-dimensional subsystems is given by Fig. 1. Fig.
1 shows that each neurocontroller uses only the state values
of each subsystem as its input. It should be noted that this
example is also used in the next section.

In order to calculate the control signal for the large-
scale uncertain nonlinear systems, the equation (1) should be
described to the discrete-time system. Thus, the continuous-
time dynamics (1) is transformed to the following discrete-
time system.

xi(k + 1) =
[
Āi + ∆Āi(k)

]
xi(k) +

[
B̄i + ∆B̄i(k)

]
ui(k)

+
[
Ḡi + ∆Ḡi(k)

]
gi(x) + H̄idi(k), (16a)

ui(k)= [Ki + ∆Ki(k)]xi(k), (16b)

zi(k)= Cixi(k) + Diui(k), (16c)

where Āi := TcAi+Ini , ∆Āi(k) := Tc∆Ai(k), B̄i := TcBi,
∆B̄i(k) := Tc∆Bi(k), Ḡi := TcGi, ∆Ḡi(k) := Tc∆Gi(k),
H̄i := TcHi and k ≥ 0 is number of step, Tc ∈ � is a
sufficient small sampling period in discrete-time systems.

It should be noted that Euler approximation is used as
a discrete-time approximation to simplify the systems de-
scription. For each subsystem, the NNs should be trained in
real-time so that the norm of the state discrepancy that is
given by

∣∣∣∣xi(k + 1)
∣∣∣∣ between the operating point xi = 0

and the present state value becomes as small as possible at
each step k.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψi Gi Hi ΘT
i ΞT

i 0 XiE
T
Ki

Xi

GT
i −Il̄i 0 0 0 ET

Gi
0 0

HT
i 0 −γ2Iqi 0 0 0 0 0

Θi 0 0 −Ipi + εiKDiLKiL
T
Ki

DT
i εiKDiLKiL

T
Ki

ET
Bi

0 0 0
Ξi 0 0 εiKEBiLKiL

T
Ki

DT
i −εi1Isi + εiKEBiLKiL

T
Ki

ET
Bi

0 0 0
0 EGi 0 0 0 −εi2Is̄i 0 0

EKiXi 0 0 0 0 0 −εiKIvi 0
Xi 0 0 0 0 0 0 −W−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

where Ψi = AiXi + BiYi + (AiXi + BiYi)
T + εi1LiL

T
i + εi2LGiL

T
Gi

+ εiKBiLKiL
T
Ki

BT
i ,

Θi = (CiXi + DiYi) + εiKDiLKiL
T
Ki

BT
i , Ξi = (EAiXi + EBiYi) + εiKEBiLKiL

T
Ki

BT
i , s̄i=

N∑
j=1,j �=i

sij .

Ni(k) of the equation (17) can be expressed as a nonlinear
function of the state xi(k), the weight coefficient wi(k) of
NN and the threshold θi(k) as follows.

Ni(k) = f (xi(k), wi(k), θi(k)) . (17)

For each subsystem, an energy function Ei(k) is defined as
the square norm of the state discrepancy. At each step, the
weight coefficients are modified so as to minimize Ei(k)
given by

Ei(k) :=
1
2
xT

i (k + 1)xi(k + 1) =
1
2

∣∣∣∣xi(k + 1)
∣∣∣∣2. (18)

Ei(k) can be calculated by using the observed state value
xi(k + 1). Therefore, it is not necessary to consider the
behavior of the uncertain matrices Fi(k) and Fij(k). If Ei(k)
can be minimized as small as possible for each subsystem,
the discrepancy

∣∣∣∣xi(k + 1)
∣∣∣∣2 would also be minimized.

In the learning of NN, the modification of weight coeffi-
cient ∆wi(k) is given by

wi(k + 1)= wi(k) − ηi
∂Ei(k)
∂wi(k)

, (19a)

∂Ei(k)
∂wi(k)

=
∂Ei(k)
∂Ni(k)

∂Ni(k)
∂wi(k)

, (19b)

where ηi, i = 1, 2, 3 is the learning ratio. The term
∂Ei(k)
∂Ni(k)

in the equation (19b) can be calculated from the energy
function (18) as follows.

∂Ei(k)
∂Ni(k)

= xi(k+1)[B̄i+TcLiFi(k)EBi ]LKiEKixi(k). (20)

It should be noted that since Fi(k) is the unknown matrix
function, (20) that is used to learn for the NN can not be
calculated. To remove this problem, suppose there exists the
parameter α(k) such that B̄i + TcLiFi(k)EBi ≈ αi(k)B̄i ,
where αi(k) is the matrix value function and its elements
are positive scalar. Then, the above equation (20) can be
rewritten as follows.

∂Ei(k)
∂Ni(k)

≈ α(k)xi(k + 1)B̄iLKiEKixi(k). (21)

However, since there exists the functions αi(k), it is difficult
to decide the learning rule of the NN. Then, the modification

1

s

S

1

h

H

1

t

T

w1
(1, 1)

(k) O1 (k)

Ot (k)

OT (k)

w2
(1, 1)

(k)
U1 (k)

Uh (k)

UH (k)

w1
(s, h)

(k)

input layer output layerhidden layer

w1
(S, H)

(k)

θ1
(S)

(k)

w2
(T, S)

(k)

θ2
(T)

(k)

threshold threshold

w2
(t, s)

(k)

Fig. 2. Structure of the multilayered neural networks.

of the weight coefficient of the equation (19b) is newly
defined as follows.

∆wi(k) ≈ −µixi(k + 1)B̄iLKiEKixi(k)
∂Ni(k)
∂wi(k)

, (22)

where µi := ηiαi(k) is defined as a new learning ratio. εi

is used instead of deciding ηi according to αi(k). On the

other hand,
∂Ni(k)
∂wi(k)

can be calculated using the chain rule

on the NN. As a result, using (20), NN can be trained so as
to decrease the guaranteed H∞ performance on-line.

The utilized NN are of a three-layer feed-forward network
as shown in Fig. 2. A linear function is utilized in the neurons
of the input and the hidden layers, and a sigmoid function
in the output layer. For each subsystem i, inputs and outputs
of each layer can be described as follows.

sy
iq(k) =

⎧⎪⎨
⎪⎩

Uy
i (k) {q = 1(input layer)}

w
(y,z)
i1 (k)oz

i1(k) {q = 2(hidden layer)}
w

(y,z)
i2 (k)oz

i2(k) {q = 3(output layer)}

oy
iq(k) =

⎧⎪⎪⎨
⎪⎪⎩

sy
i1(k) {q = 1(input layer)}

sy
i2(k) + θy

i1(k) {q = 2(hidden layer)}
1−e

(−s
y
i3(k)+θ

y
i2(k))

1+e
(−s

y
i3(k)+θ

y
i2(k))

{q = 3(output layer)}

where sy
iq(k) and oy

iq(k) are the input and output of neuron

y in the qth layer at step k, w
(y,z)
iq (k) indicates the weight
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coefficient from neuron z in the qth layer to neuron y in the
(q+1)th layer, Uy

i (k) is the input of NN, θy
iq(k) is a positive

constant for the threshold of neuron y in the (q +1)th layer.
As the additive gain perturbations defined in the formula
(1b), the outputs of NN are chosen adaptively in the range
of [−1.0, 1.0].

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed
algorithm, a numerical example is given. Consider the in-
terconnected uncertain nonlinear systems (1) composed of
three two-dimensional subsystems. The system matrices and
the nonlinear functions with the uncertainties are given as
follows.

A1 =
[−0.2 1

−1 −0.5

]
, B1 =

[
1
1

]
, L1 =

[
1
1

]
,

EA1 =
[
1 1

]
, EB1 = 1, G1 =

[−0.1 0.05
−0.1 0.09

]
,

LG1 =
[

0.2
0.1

]
, EG1 =

[
0.2 0.2

]
, LK1 =

[
0.8 0.8

]
,

EK1 =
[

1 0
0 1

]
, H1 =

[
1
1

]
, C1 =

[
1 1
0 0

]
, D1 =

[
0
1

]
,

A2 =
[−0.5 −1

2 −1

]
, B2 =

[
1
1

]
, L2 =

[
1
1

]
,

EA2 =
[
1 1

]
, EB2 = 0.7, G2 =

[
0.2 0
0.01 0.03

]
,

LG2 =
[

1
1

]
, EG2 =

[
0.04 0.05

]
, LK2 =

[
0.7 0.7

]
,

EK2 =
[

1 0
0 1

]
, H2 =

[
1
1

]
, C2 =

[
1 1
0 0

]
, D2 =

[
0
1

]
,

A3 =
[−1.8 −1.1

0.63 −1.91

]
, B3 =

[
1
1

]
, L3 =

[
0.8
0.7

]
,

EA3 =
[

0.4 0.7
]
, EB3 = 1, G3 =

[
0.3 −0.1
−0.2 0.1

]
,

LG3 =
[

0.3
0.5

]
, EG3 =

[
0.6 0.01

]
, LK3 =

[
0.6 0.6

]
,

EK3 =
[

1 0
0 1

]
, H3 =

[
1
1

]
, C3 =

[
1 1
0 0

]
, D3 =

[
0
1

]
,

xi(t) =
[

xi1(t)
xi2(t)

]
, Ni(t) =

[
Ni1(t) 0

0 Ni2(t)

]
,

F1(t) = FG2(t) = sin
(

2π

5
t

)
, FG1(t) = F3(t) = 1,

F2(t) = FG3(t) = cos
(

2π

5
t

)
, W11 = W22 = W33 = 1,

W12 = W13 = W21 = W23 = W31 = W32 = 0.5,

gi(x) =
[
Wi1 sin

([
1 0

]
x1

)
+· · ·+ WiN sin

([
1 0

]
xN

)
Wi1 sin

([
0 1

]
x1

)
+· · ·+ WiN sin

([
0 1

]
xN

)
]

,

x1(0) = x2(0) = x3(0) =
[

0 0
]T

.

The unknown functions gi(x) satisfy

||gi(x)|| = Wi1||x1||+ · · ·+ WiN ||xN ||.

The three basic quantities for the subsystem are γ1 =
7.221892, γ2 = 1.733101 and γ3 = 1.665494 re-
spectively. Thus, for every boundary value γ > γ̄ =
max { γ1 , γ2, γ3 } = 7.221892, the reduced-order LMIs
(16) have the solutions.

The disturbance attenuation level is chosen as γ = 10.0.
In this case, the fixed state feedback gain K that is based
on the proposed LMI (16) is given by

K1 =
[−3.5278 −1.6955

]
,

K2 =
[−2.0991 −1.9808

]
,

K3 =
[−1.3974 −1.5805

]
.

In order to compare the obtained result, a different gain is
obtained. The interconnected nonlinear systems that ignore
the uncertainty are given as follows.

˙̃x(t) = Ax̃(t) + Bũ(t) + Gg(x̃(t)) + Hd(t), (23a)

ũ(t) = K̃x̃(t), (23b)

z̃(t) = Cx̃(t) + Dũ(t), (23c)

where

x̃(t) :=

⎡
⎣ x̃1(t)

x̃2(t)
x̃3(t)

⎤
⎦ ∈ �n̄, ũ(t) :=

⎡
⎣ ũ1(t)

ũ2(t)
ũ3(t)

⎤
⎦ ∈ �m̄,

z̃(t) :=

⎡
⎣ z̃1(t)

z̃2(t)
z̃3(t)

⎤
⎦ ∈ �q̄, K̃ =

⎡
⎣ K̃1 O

K̃2

O K̃3

⎤
⎦ .

Using the similar technique used in Theorem 2, the state
feedback gain K̃ by means of LMI that is based on (24) is
given below.

K̃1 =
[−2.8715 −1.2738

]
,

K̃2 =
[−1.9310 −1.8354

]
,

K̃3 =
[−1.1571 −1.2989

]
,

where K̃i := ỸiX̃
−1
i , Φ̃i = AiX̃i +BiỸi +(AiX̃i +BiỸi)T,⎡

⎢⎢⎣
Φ̃i Gi Hi (CiX̃i + DiỸi)

T X̃i

GT
i −Il̄i

0 0 0

HT
i 0 −γ2Iqi 0 0

CiX̃i + DiỸi 0 0 −Ipi 0

X̃i 0 0 0 −W−1
i

⎤
⎥⎥⎦ < 0.

(24)

For each subsystem, the neurocontroller is composed of 30
neurons in the hidden layer. On the other hand, there exist
two neurons in the input and the output layers, respectively.
The state variables of each subsystem are used as the NN’s
inputs and the learning ratio µ1 = 8.0, µ2 = 6.0 and µ3 =
6.0. The initial weights are randomly chosen in the range
of [ −0.05, 0.05 ]. Moreover, the external disturbances are
chosen as follows.

d1(t)=sin
(

2π

3
t

)
, d2(t)=sin

(
2π

6
t

)
, d3(t)=sin

(
2π

9
t

)
.

The simulation results are shown in Fig. 3-5. It is easy to
verify that the influence of the external disturbance to the
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Fig. 3. Simulation results of subsystem 1.
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Fig. 4. Simulation results of subsystem 2.

proposed system that is based on the NLMI is smaller than
that of the large-scale systems using the gain K̃. Moreover,
the disturbance attenuation of the proposed neurocontroller
is observed. Therefore, it is shown that the proposed NLMI
method with the neurocontroller result in the effectiveness
on the suppression of the disturbance.

Finally, it is easy to verify that L2-gain of the proposed
closed-loop system is 1.176006 that is less than γ = 10.0.
Thus, it is shown that the proposed method satisfy the
boundary of L2-gain. That is, it is emphasized that the
desired disturbance attenuation level can be attained.

VI. CONCLUSIONS

In this paper, the guaranteed H∞ performance analysis
and control synthesis of the large-scale uncertain nonlinear
systems with the neurocontroller has been studied. Using
the NLMIs approach, the sufficient condition that is related
to the existence of the guaranteed H∞ controller for the
large-scale uncertain nonlinear systems with the additive gain
perturbations has been derived. Moreover, the class of the
fixed state feedback controller has been newly established
by means of the LMIs. As another important feature, the
robust stability of the closed-loop system is guaranteed even
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Fig. 5. Simulation results of subsystem 3.

if the systems include NNs. Moreover, the guaranteed H∞
control synthesis with NNs has succeeded in reducing the
degradation of the given disturbance attenuation level that is
caused by the parameter uncertainties. Finally, the numerical
example have shown the excellent result.
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