
FEEDBACK CONTROL OF LINEAR
MULTIPARAMETER SINGULARLY PERTURBED

SYSTEMS

Hiroaki Mukaidani ∗ Hua Xu ∗∗ Koich Mizukami ∗∗∗

∗ Faculty of Information Sciences, Hiroshima City University,
3–4–1, Ozukahigashi Asaminami–ku Hiroshima, 731–3194 Japan.

e–mail:mukaida@im.hiroshima-cu.ac.jp
∗∗ Graduate School of Business Sciences, The University of

Tsukuba, 3–29–1, Otsuka Bunkyou–ku Tokyo, 112–0012 Japan.
∗∗∗ Faculty of Engineering, Hiroshima Kokusai Gakuin

University, 6–20–1, Nakano Aki-ku Hiroshima, 739–0321 Japan.

Abstract: In this paper, the linear quadratic optimal control problem for multiparam-
eter singularly perturbed systems (MSPS) is studied in a different approach from the
existing methods. The attention is focused on the design of a near–optimal controller
which does not depend on the values of the small unknown parameters. It is shown
that the resulting controller achieves O(||µ||2) approximation of the optimal cost for
the special case of the fast subsystems compared with the existing results. Moreover,
it is also shown that the resulting controller is equivalent to the existing composite
controller.

Keywords: Multiparameter singularly perturbed systems (MSPS), Multiparameter
algebraic Riccati equation (MARE), Linear quadratic optimal control problem,
Nnear–optimal control

1. INTRODUCTION

The deterministic and stochastic multimodeling
stability, control, filtering and dynamic games
have been investigated extensively by several re-
searchers (see e.g., Khalil and Kokotović, 1978,
1979; Coumarbatch and Gajić, 2000; Gajić, 1988;
Wang et al., 1994). The multimodeling problems
arise in large–scale dynamic systems. For exam-
ple, these multimodel situations in practice are
illustrated by the multiarea power system (Khalil
and Kokotović, 1978). In order to obtain the op-
timal solution to the multimodeling problems, we
must solve the multiparameter algebraic Riccati
equation (MARE), which are parameterized by
the small positive same order parameters εj , j =
1, 2, · · ·. Various reliable approaches for solving
the MARE have been well documented in liter-
atures (see e.g., Coumarbatch and Gajić, 2000;

Mukaidani et al. 2002). However, these results are
limited to the case that the small parameters are
assumed to be known. Thus, it is not applicable
to a large class of problems where the parameters
represent small unknown perturbations whose val-
ues are not known exactly.

A popular approach to deal with the MSPS is
the two–time–scale design method (see e.g., Khalil
and Kokotović, 1978, 1979; Gajić, 1988; Kokotović
et al., 1986). For example, optimal control of a
class of the MSPS has been studied by Khalil
and Kokotović (1979), where the design of the
εj–independent reduced–order controller has been
suggested. When εj is very small or unknown
the previously used technique is very efficient. In
Wang et al. (1994), using the descriptor variable
approach, the main results of Khalil and Koko-
tović (1979) have been improved for the nonstan-
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dard MSPS such that at least one of the fast state
matrices is singular. However, the existing con-
trollers proposed in Wang et al. (1994) and Khalil
and Kokotović (1979) only achieve O(||µ||) (where
µ =

[
ε1 ε2

]
) approximation of the optimal cost.

In this paper, we study the linear quadratic opti-
mal control problem for the MSPS. For this pur-
pose, we first investigate the unique and bounded
solution of the MARE and establish its asymp-
totic structure. Using the asymptotic structure,
a new near–optimal controller which does not
depend on the values of the small parameters is
obtained. This is done by eliminating the param-
eters εj for the full–order controller. It should be
pointed out that the design method proposed in
this paper is quite different from the two–time–
scale design method and the descriptor variable
approach (Wang et al., 1994). As a result, we
have only to solve the algebraic Riccati equation
(ARE) with same order dimension of the reduced–
order slow and each fast systems which do not
depend on the values of the small parameters. It is
emphasized that the resulting controller achieves
O(||µ||2) approximation of the optimal cost for the
special case of the fast subsystems compared with
the previously proposed controller in (Khalil and
Kokotović, 1979; Wang et al., 1994). Even if the
parameters are unknown, when the parameters
are sufficiently small, the proposed near–optimal
controller can be used reliably for the MSPS. As
another important feature, when the fast state
matrix Ajj is nonsingular, we show that the re-
sulting controller is equivalent to the composite
controller which is based on the two–time–scale
design method. Therefore, we claim that the new
near–optimal controller includes the existing one
as a special case.

2. THE MSPS

We consider the linear time–invariant MSPS

ẋ0(t) = A00x0(t) + A01x1(t) + A02x2(t)

+B01u1(t) + B02u2(t), x0(0) = x0
0, (1a)

ε1ẋ1(t) = A10x0(t) + A11x1(t) + ε12A12x2(t)

+B11u1(t), x1(0) = x0
1, (1b)

ε2ẋ2(t) = A20x0(t) + ε21A21x1(t) + A22x2(t)

+B22u2(t), x2(0) = x0
2, (1c)

where xj ∈ Rnj , j = 0, 1, 2 are the state vectors,
uj ∈ Rmj , j = 1, 2 are the control inputs. All
the matrices are constant matrices of appropriate
dimensions.

ε1 and ε2 are two small positive singular parame-
ters of the same order of magnitude such that

0 < k12 ≤ α ≡ ε1

ε2
≤ k̄12 < ∞. (2)

That is, we assume that the ratio of ε1 and ε2 is
bounded by some positive constants k12 and k̄12.
ε12 and ε21 are two weak coupling between the fast
subsystems. Note that the coupling parameters
ε12 and ε21 can be positive, negative or zero. We
note that the fast state matrices Ajj , j = 1, 2
may be singular. In the optimal control of the
above MSPS, the performance criterion is given
by

J =
1
2

∞∫
0

zT (t)z(t)dt, (3)

z(t) = C


 x0(t)

x1(t)
x2(t)


 + D

[
u1(t)
u2(t)

]
= Cx(t) + Du(t),

where

C :=
[

C10 C11 0
C20 0 C22

]
,

CT C = Q :=


 Q00 Q01 Q02

QT
01 Q11 0

QT
02 0 Q22


 ,

DT D = R :=
[

R1 0
0 R2

]
> 0, CT D = 0.

It is well known that the solution of the linear
quadratic control problem (1) and (3) is given by
(Khalil and Kokotović, 1978; Coumarbatch and
Gajić, 2000),

uopt(t) =
[

u1(t)
u2(t)

]
= −R−1BT

e Pex(t), (4)

where Pe satisfies the MARE

AT
e Pe + PeAe − PeSePe + Q = 0, (5)

with

Ae :=


 A00 A01 A02

ε−1
1 A10 ε−1

1 A11 ε−1
1 ε12A12

ε−1
2 A20 ε−1

2 ε21A21 ε−1
2 A22




∈ Rn̄×n̄, n̄ := n0 + n1 + n2,

Se := BeR
−1BT

e =


 S00 ε−1

1 S01 ε−1
2 S02

ε−1
1 ST

01 ε−2
1 S11 0

ε−1
2 ST

02 0 ε−2
2 S22




∈ Rn̄×n̄,

Be :=


 B01 B02

ε−1
1 B11 0

0 ε−1
2 B22




∈ Rn̄×m̄, m̄ := m1 + m2.

Moreover, the optimal cost is given by



Jopt =
1
2
x(0)T Pex(0). (6)

If we know the values of the small parameters
ε1, ε2, ε12 and ε21, this optimal control problem
could be solved (Coumarbatch and Gajić, 2000;
Mukaidani et al. 2002). However, it is impossible
to obtain the optimal control when the small
parameters are unknown. In such cases, the exact
controller (4) cannot be used.

A near–optimal control design for the MSPS has
been proposed in Khalil and Kokotović (1978,
1979). The algorithm consists of solving three
separate subproblems, one in a slow time scale
and two in fast time scale, and then combining
the solutions of these problems to form a compos-
ite controller. However, in order to separate the
MSPS the nonsingularity of the matrices Ajj , j =
1, 2 are required. To avoid these assumptions we
propose a new design method, which is based on
the approximate theory in a different approach
from the composite design.

3. THE MARE

Before we present the near–optimal controller, we
first introduce the asymptotic structure for the
MARE (5). A solution Pe of the MARE (5), if it
exists, must contain the parameters εj , j = 1, 2
because the matrices Ae and Be contain the ε−1

j –
order parameter. Taking into account this fact, we
look for a solutions Pe of the MARE (5) with the
structure

Pe :=


 P00 ε1P

T
10 ε2P

T
20

ε1P10 ε1P11
√

ε1ε2P
T
21

ε2P20
√

ε1ε2P21 ε2P22


 ∈ Rn̄×n̄,(7)

where P00 = P T
00, P11 = P T

11, P22 = P T
22.

It is assumed that the limit of α exists as ε1

and ε2 tend to zero, that is (see e.g., Khalil and
Kokotović, 1978, 1979)

ᾱ = lim
ε1→+0
ε2→+0

α. (8)

Furthermore, without loss of generality, the fol-
lowing assumptions are made (Wang et al. 1994).

Assumption 1: The triples (Ajj , Bjj , Cjj), j =
1, 2 are stabilizable and detectable.

Assumption 2:

rank


 sIn0 − A00 −A01 −A02 B01 B02

−A10 −A11 0 B11 0
−A20 0 −A22 0 B22


 = n̄,

rank


 sIn0 − AT

00 −AT
10 −AT

20 CT
10 CT

20

−AT
01 −AT

11 0 CT
11 0

−AT
02 0 −AT

22 0 CT
22


 = n̄,

where Re[s] ≥ 0, s ∈ C.

Assumption 3: The Hamiltonian matrix Tjj , j =
1, 2 is nonsingular, where

Tjj :=
[

Ajj −Sjj

−Qjj −AT
jj

]
.

Let P̄00, P̄10, P̄20, P̄11, P̄21 and P̄22 be the limiting
solutions of the MARE (5) as εj → +0, j = 1, 2,
ε12 → 0, ε21 → 0, then we obtain the following
equations under the assumptions 1–3.

AT
s P̄00 + P̄00As − P̄00SsP̄00 + Qs = 0, (9a)

P̄ T
j0 = P̄00N0j − M0j , (9b)

AT
jjP̄jj + P̄jjAjj − P̄jjSjjP̄jj + Qjj = 0,(9c)

P̄21 = 0, (9d)

j = 1, 2, where

As := A00 + N01A10 + N02A20 + S01M
T
01

+S02M
T
02 + N01S11M

T
01 + N02S22M

T
02,

Ss := S00 + N01S
T
01 + S01N

T
01 + N02S

T
02

+S02N
T
02 + N01S11N

T
01 + N02S22N

T
02,

Qs := Q00 − M01A10 − AT
10M

T
01 − M02A20

−AT
20M

T
02 − M01S11M

T
01 − M02S22M

T
02,

N0j := −D0jD
−1
jj , M0j := Q̄0jD

−1
jj ,

Q̄0j := AT
j0P̄jj + Q0j ,

D00 := A00 − S00P̄00 − S01P̄10 − S02P̄20,

D0j := A0j − S0jP̄jj , Djj := Ajj − SjjP̄jj ,

Dj0 := Aj0 − ST
0jP̄00 − SjjP̄j0, j = 1, 2.

The matrices As, Ss and Qs do not depend
on P̄11 and P̄22 because their matrices can be
computed by using Tpq , p, q = 0, 1, 2 which are
independent of P̄11 and P̄22 (Coumarbatch and
Gajić, 2000), that is,

Ts := T00 − T01T
−1
11 T10 − T02T

−1
22 T20

=
[

As −Ss

−Qs −AT
s

]
,

T00 :=
[

A00 −S00

−Q00 −AT
00

]
, T0j :=

[
A0j −S0j

−Q0j −AT
j0

]
,

Tj0 :=
[

Aj0 −ST
0j

−QT
0j −AT

0j

]
, j = 1, 2.

In the following, we will consider the solution of
the reduced–order ARE (9). Before doing that, we
first introduce the useful property of the reduced–
order ARE (9) (Mukaidani, 2001; Mukaidani and
Mizukami, 2001; Mukaidani et al. 2002).

Lemma 1: Under the assumptions 1–3, there
exist a matrix Bs ∈ Rn0×m̄ and a matrix Cs



with the same dimension as
[
CT

10 CT
20

]T
such that

Ss = BsR
−1BT

s , Qs = CT
s Cs. That is,

Ss :=
[
B01 + N01B11 B02 + N02B22

]

·
[

R−1
1 0
0 R−1

2

]
·
[

BT
01 + BT

11N
T
01

BT
02 + BT

22N
T
02

]
,

Qs :=
[
CT

10 + LT
10C

T
11 CT

20 + LT
20C

T
22

]

·
[

C10 + C11L10

C20 + C22L20

]
= CT

s Cs,

j = 1, 2, Lj0 := −E−1
jj Ej0,

Ej0 := Aj0 − W̃jjQ
T
0j , Ejj := Ajj − W̃jjQjj ,

W̃jjA
T
jj + AjjW̃jj − W̃jjQjjW̃jj + Sjj = 0, (10)

Moreover, the triple (As, Bs, Cs) is stabilizable
and detectable.

It should be remarked that the solution Pe of the
MARE (5) is a function of the multiparameters
εj , j = 1, 2, ε12 and ε21. But, the solutions P̄00,
P̄11 and P̄22 of (9a) and (9c) are independent of
the multiparameters εj , ε12 and ε21, respectively.
Moreover, we do not assume here that Ajj , j =
1, 2 are nonsingular. Thus, our new results are
applicable to more realistic MSPS compared with
the existing results (Gajić, 1988).

The following lemma will establish the rela-
tion between Pe and the reduced–order solutions
(9) (Mukaidani, 2001; Mukaidani and Mizukami,
2001; Mukaidani et al. 2002).

Lemma 2: Under the assumptions 1–3, there
exists small σ∗ such that for all ||µ|| ∈ (0, σ∗) the
MARE (5) admits a symmetric positive semidef-
inite stabilizing solution Pe which can be written
as

Pe =


 P̄00 + O(||µ||) ε1(P̄10 + O(||µ||))T

ε1(P̄10 + O(||µ||)) ε1(P̄11 + O(||µ||))
ε2(P̄20 + O(||µ||)) √

ε1ε2O(||µ||)
ε2(P̄20 + O(||µ||))T

√
ε1ε2O(||µ||)

ε2(P̄22 + O(||µ||))


 . (11)

It should be noted that the entries (2, 3) and
(3, 2) of the solution Pe can be written as√

ε1ε2O(||µ||) because P̄21 = 0. With respect to
the results of Gajić (1988), we do not require the
singularity of Ajj , j = 1, 2.

4. NEAR–OPTIMAL CONTROL

The required solution of the MARE (5) exists
under the assumptions 1–3. Our attention is fo-
cused on the specific linear state feedback con-
troller which does not depend on the values of
the small parameters. Such the linear state feed-
back controller is obtained by eliminating O(||µ||)

item of the linear state feedback controller (4).
If ||µ|| :=

√
ε1ε2 is very small, it is obvious that

the linear state feedback controller (4) can be
approximated as

uapp(t) = −R−1BT P̄ x(t)

= −R−1BT


 P̄00 0 0

P̄10 P̄11 0
P̄20 0 P̄22


 x(t), (12)

where B = ΦeBe,

Φe = block − diag
(
In0 ε1In1 ε2In2

)
.

Remark: Even though it is quite different from
the composite controller design ( Khalil and Koko-
tović, 1979; Wang et al., 1994;Xu et al., 1997), the
resulting controller (12) is similar to the existing
one. In fact, it will be proved later.

When ||µ|| is sufficiently small, we know from
Lemma 2 that the resulting controller (12) will
be close to the optimal controller (4). In an
optimization problem it is of interest to check
whether the resulting value of the cost function
will be near its optimal value.

Theorem 1: Under the assumptions 1–3, the use
of the reduced–order controller (12) results in Japp

satisfying

Japp = Jopt + O(||µ||2). (13)

Proof: When uapp is used, the value of the perfor-
mance index is

Japp =
1
2
x(0)T Wex(0), (14)

where We is a positive semidefinite solution of
the following maltiparameter algebraic Lyapunov
equation (MALE) as P̄e = ΦeP̄

(Ae − SeP̄e)T We + We(Ae − SeP̄e)

+P̄eSeP̄e + Q = 0. (15)

Subtracting (5) from (15) we find that Ve = We −
Pe satisfies the following MALE

(Ae − SeP̄e)T Ve + Ve(Ae − SeP̄e)

+(Pe − P̄e)Se(Pe − P̄e) = 0. (16)

We again assume the form (17) for Ve as follows.

Ve =


 V00 ε1V

T
10 ε2V

T
20

ε1V10 ε1V11
√

ε1ε2V
T
21

ε2V20
√

ε1ε2V21 ε2V22


 . (17)

The MALE (16) can be partitioned into



DT
00V00 + V00D00 + DT

10V10 + V T
10D10 + DT

20V20

+V T
20D20 + O(||µ||2) = 0, (18a)

V00D01 + V T
10D11 + ε21V

T
20A21 + ε1D

T
00V

T
10

+DT
10V11 +

√
αDT

20V21 + O(||µ||2) = 0, (18b)

V00D02 + V T
20D22 + ε12V

T
10A12 + ε2D

T
00V

T
20

+DT
20V22 +

1√
α

DT
10V

T
21 + O(||µ||2) = 0, (18c)

DT
11V11 + V11D11 + ε1(DT

01V
T
10 + V10D01)

+
√

αε21(V T
21A21 + AT

21V21) + O(||µ||2) = 0,(18d)

ε1V10D02 + ε2D
T
01V

T
20 + ε12V11A12 + ε21A

T
21V22

+
√

αV T
21D22 +

1√
α

DT
11V

T
21 + O(||µ||2) = 0, (18e)

DT
22V22 + V22D22 + ε2(DT

02V
T
20 + V20D02)

+
1√
α

ε12(V21A12 + AT
12V

T
21) + O(||µ||2) = 0,(18f)

where

Ae − SeP̄e = Φ−1
e


 D00 D01 D02

D10 D11 ε12A12

D20 ε21A21 D22


 ,

(Pe − P̄e)Se(Pe − P̄e) = O(||µ||2).
Setting ||µ|| = 0 for the above equations (18), we
have

DT
00V̄00 + V̄00D00 + DT

10V̄10 + V̄ T
10D10

+DT
20V̄20 + V̄ T

20D20 = 0,

V̄00D01 + V̄ T
10D11 + DT

10V̄11 +
√

ᾱDT
20V̄21 = 0,

V̄00D02 + V̄ T
20D22 + DT

20V̄22 +
1√
ᾱ

DT
10V̄

T
21 = 0,

DT
jj V̄jj + V̄jjDjj = 0, j = 1, 2,

√
ᾱV̄ T

21D22 +
1√
ᾱ

DT
11V̄

T
21 = 0.

Since D11 and D22 are stable, using the stan-
dard properties of the algebraic Lyapunov equa-
tion (ALE) (Zhou, 1998), we deduce that V̄pq =
0, pq = 11, 21, 22, where V̄pq = 0 are 0–order
solutions of (18). Using V̄pq = 0, pq = 11, 21, 22,
we get

DT
0 V̄00 + V̄00D0 = 0,

V̄ T
j0 = −V̄00D0jD

−1
jj , j = 1, 2.

Since D0 := As − SsP̄00 is stable from the ARE
(9a) (Mukaidani, 2001; Mukaidani et al. 2002), we
also deduce that V̄pq = 0, pq = 00, 10, 20. Thus,
we have

Vpq = O(||µ||)V (1)
pq , pq = 00, 10, 20, 11, 21, 22.

Substituting Vpq = O(||µ||)V (1)
pq into (18) and by

following the above steps, we obtain the following
equations because V̄

(1)
pq = V

(1)
pq

∣∣
||µ||=0

= 0.

Vpq = O(||µ||2)V (2)
pq , V (2)

pq �= 0. (19)

Hence

Ve = We − Pe = O(||µ||2), (20)

which implies (13). �

We have therefore provided a complete theoretic
analysis of the near–optimality of the reduced–
order optimal control for the MSPS. Note that the
intuitive result of Theorem 1 can be also proved
by using Newton–Kantorovich theorem (Ortega,
1970).

In the rest of this section, we will show that the
near–optimal controller (12) is equivalent to the
existing composite optimal controller (Wang et
al., 1994;Kokotović et al., 1986). Let Ajj , j =
1, 2 of (1) be nonsingular. Then, the composite
optimal controller is

ucom(t) = −R−1BT Xx(t)

= −R−1BT


 X00 0 0

X10 X11 0
X20 0 X22


 x(t).(21)

In the above, X00 is the unique stabilizing positive
semidefinite symmetric solution of the ARE

(Ar − BrR
−1
r ET

r Cr)T X00

+X00(Ar − BrR
−1
r ET

r Cr) − X00BrR
−1
r BT

r X00

+CT
r (In0 − ErR

−1
r ET

r )Cr = 0, (22)

where

Ar = A00 − A01A
−1
11 A10 − A02A

−1
22 A20,

Br =
[
B01 − A01A

−1
11 B11 B02 − A02A

−1
22 B22

]
,

Cr =
[

C10 − C11A
−1
11 A10

C20 − C22A
−1
22 A20

]
, Rr = R + ET

r Er,

Er = −
[

C11A
−1
11 B11 0
0 C22A

−1
22 B22

]
.

Xjj , j = 1, 2 are the unique stabilizing positive
semidefinite solution of the following AREs

AT
jjXjj + XjjAjj − XjjSjjXjj + Qjj = 0,(23)

and Xj0, j = 1, 2 are

XT
j0 = [X00(S0jXjj − A0j) − (AT

j0Xjj

+Q0j)](Ajj − SjjXjj)−1. (24)

Theorem 2: Suppose that the fast state matrices
Ajj , j = 1, 2 are nonsingular. Under the assump-
tion 1–3, the following identities

Xjj = P̄jj, Xj0 = P̄j0, X00 = P̄00, j = 1, 2, (25)



hold. Hence the resulting near–optimal controller
(12) is the same as the composite optimal con-
troller (21).

Proof: First, comparing (23) with (9c) Xjj =
P̄jj , j = 1, 2 yields directly. Second, comparing
(24) with (9b) and noting that Xjj = P̄jj , we
have the conclusion that Xj0 = P̄j0, j = 1, 2 if
X00 = P̄00. Therefore, the remainder of the proof
is to show that X00 = P̄00. In order to do that, we
only need to show that

Ar − BrR
−1
r ET

r Cr = As, (26a)

BrR
−1
r BT

r = Ss, (26b)

CT
r (In0 − ErR

−1
r ET

r )Cr = Qs. (26c)

Before showing these relations, let us define
(pp.115, Kokotović et al. 1986)

H = In1+n2

+
[

R−1
1 BT

11P̄11D
−1
11 B11 0

0 R−1
2 BT

22P̄22D
−1
22 B22

]
.(27)

Then,

H−1 = In1+n2

−
[

R−1
1 BT

11P̄11A
−1
11 B11 0

0 R−1
2 BT

22P̄22A
−1
22 B22

]
.(28)

Thus, using (28) and the ARE (9c) we have

HR−1HT = R−1
r . (29)

Let us further introduce six useful identities.

A−1
jj + A−1

jj Sjj P̄jjD
−1
jj = D−1

jj , (30a)

A−1
jj + D−1

jj SjjP̄jjA
−1
jj = D−1

jj , (30b)

Inj + Sjj P̄jjD
−1
jj = AjjD

−1
jj , (30c)

Inj + P̄jjSjjD
−T
jj = AT

jjD
−T
jj , (30d)

QT
0j − QjjA

−1
jj Aj0 = Q̄T

0j + DT
jj P̄jjA

−1
jj Aj0,(30e)

−D0j + N0jSjjP̄jj = N0jAjj , j = 1, 2. (30f)

Hence, using the above relation, we have Ar −
BrR

−1
r ET

r Cr = As which proves (26a). Due to
the page limitation, the rest of the proof of The-
orem 2 is omitted. (See for e.g., Xu et al., 1999;
Mukaidani, 2001) �

From Theorem 2, we claim that the new near–
optimal controller includes the existing composite
optimal controller (21) as the special case.

5. CONCLUSION

In this paper, the optimal control problem asso-
ciated with the MSPS has been considered. The
main contribution of this paper is to propose

the new design method of the εj–independent
reduced–order controller. Note that the proposed
design method is quite different from the existing
method such as the two–time–scale design method
and the descriptor variable approach. It has been
newly shown that the resulting controller achieves
O(||µ||2) approximation of the optimal cost. Fur-
thermore, since it has been proven that the result-
ing controller is equivalent to the existing com-
posite controller, when the fast subsystems have
the special form such controllers will achieve the
O(||µ||2) approximation.
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