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Abstract: In this paper, Pareto optimal strategy for general multiparameter singularly
perturbed systems is investigated. The main contribution is to propose a new
computational method for obtaining the high—order Pareto near—optimal strategy.
Newton’s method and two fixed point algorithms are combined. As a result, the
new iterative algorithm achieves the quadratic convergence property and succeeds in
reducing the computing workspace dramatically. It is newly shown that the resulting
optimal strategy achieves the cost functional J; + O(| w|?"). Copyright©2005 IFAC
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1. INTRODUCTION

Multimodeling stability, control and filtering prob-
lems have been investigated extensively (see e.g.,
(Khalil and Kokotovié, 1978; Khalil and Koko-
tovié, 1979; Gaji¢, 1988; Coumarbatch and Gajic,
2000; Wang et al., 1994)). The popular ap-
proaches to deal with the multiparameter sin-
gularly perturbed systems (MSPS) are the two-
time-scale design method (Khalil and Kokotovié,
1978; Khalil and Kokotovié, 1979; Gaji¢, 1988)
and the descriptor technique (Wang et al., 1994).
When the positive parameters €5, j =1, ... ,N
are very small or unknown the previously used
techniques are very efficient. However, when the
parameters €; are not small enough, it is known
from (Coumarbatch and Gajic, 2000) that an
O(|p]) accuracy is very often not sufficient.

In order to avoid the O(|u|) accuracy of the cost,
the exact decomposition method has been studied

(Coumarbatch and Gajic, 2000). More recently,
the numerical algorithm which is based on New-
ton’s method for solving the multiparameter alge-
braic Riccati equation (MARE) has been estab-
lished (Mukaidani et al., 2002). However, these ap-
proaches can only be applied to the MSPS which
has two fast subsystems. From the viewpoint of
application of practical systems, it is very im-
portant to study the general MSPS that includes
the numerous fast subsystems. Furthermore, the
numerical algorithm which require smaller com-
putational dimension for solving the generalized
MARE has to be developed.

In this paper, Pareto optimal strategy for the gen-
eral multiparameter singularly perturbed systems
(MSPS) which includes numerous fast subsystems
compared with the previous results (Coumarbatch
and Gajic, 2000; Mukaidani et al., 2002) is inves-
tigated via the numerical computation method.
The main contribution of this paper is to pro-



pose a new numerical algorithm to obtain Pareto
optimal strategy. Our new idea is to combine
Newton’s method with two fixed point algorithms
for solving the generalized multiparameter alge-
braic Riccati equation (GMARE). As a result,
although the general MSPS has numerous fast
subsystems, the required workspace for comput-
ing the solution is dramatically small. As an-
other important feature, it is newly shown that
the proposed strategy achieves the cost functional

T; +0(|ul*), n=ler ... en].

2. PARETO OPTIMAL STRATEGY

Let us consider a linear time-invariant general
MSPS (Ozgtiner, 1979; Mukaidani et al., 2003)

N N
o(t) = Agja;(t) + Y Bojui(t),  (la)
j=0 j=1

Ej.%"j(t) = Aj()l’o(t) + Ajjl‘j (t) + Bjjuj(t),(lb)
z;(0)=2a9, j=0, 1, .. ,N,

where z;(t) € R", j =0, 1, ---,N are the
state vectors, u;(t) € R™, j =1, ---,N are
the control inputs. It is assumed that the ratios
of the small positive parameters ¢; > 0,5 =
1, ---, N are bounded by some positive constants
ki, ki; (Khalil and Kokotovi¢, 1978; Khalil and
Kokotovié, 1979),

&4 -
O<Eij§aijzi§kij<m. (2)
i

Note that the fast state matrices Aj;, j =
1, ..., N may be singular. In Pareto optimal strat-
egy of the above general MSPS (1), the quadratic
cost functionals are given by

o0

Ji=1 / 27 (1)25 () + ol (O Ryuy (0)dt, (3)

T2
0

where Zj(t) = joxo(t) + ijxj(t) e R, j =

1, ..., N.
Pareto solution is a set (u1, ... ,uy) which mini-
mizes
N N
J= Z’Yij7 0<v; <1, Z%‘ =1 (4
j=1 j=1
for some v;, j =1, ... ,N. It is well-known that

Pareto optimal strategy is given by

wi(t) = —y; 'Ry B Pa(t), j=1, ... ,N, (5)

where P is the solution of the following GMARE
such that ®.P is the unique positive semidefinite
stabilizing solution.

ATP 4+ PTA—-PTSP+Q =0, (6)

where

®,. := block diag([nO €1ln, - enlny ) ,
AOO Aof

A= Anr = [Apr -+ A
|:Af0 Af ) of [ 01 ON] )

Ago = [AlTo A%O]T’

Ay := block diag(A11 ANN)7
By :=[BL BLoo---0]", ...,
By = [BL 000 B5,]"
C1:=[C1pC1100---0], ...,

Cn:=[CNno 000 Cnn],
N N
S = Z’Y{lsj, Q= Z%‘Qj,
j=1 j=1
Sj:=B;R;'B], Q; :==C]C;j, j=1, .. ,N,

Soo S al
.f 00 L0f .7 -1 —1pT
S = {Son s, } Soo := > _; 'Bo;jR; ' B,

b

j=1
Sog:=1[So1 -+ Son] SOj3:7;1BOJRngJTj’
Sy := block diag (S1, -+ Snv ),

-1 —1 T
Sjj :==~; BjR; " Bj;,

Qoo Q -

Qof = [Q(n QON] , Qoj = C}EJCJJV
Qy = block diag (Q11 --- Qnn ),
Qjj = C};Cjj.

In order to avoid the ill-conditioned caused by
sj_l, the GMARE is used instead of the ordi-
nary multiparameter algebraic Riccati equation
(MARE). It should be noted that the GMARE
is introduced in (Mukaidani et al., 2003). It is
assumed that the solution P of the GMARE (6)

has the following structure.

Pyo PTH‘] T
P = foe Py = PL
[Pfo Py wor
T
Ppo:= [Py -+ Plo]
Py

T T T
Pr1 a2 Py 13 Ps; - - -a1 v Pyyy

T T
Py1 Paa awo3Psy- - -aan Py

Pn1 Pne2  Pn3 -+ Pnn
He.Pf = P}—‘He7
I := block diag (e1ln, -+ enlny ).

The near—optimal Pareto strategy for the MSPS
that has two fast subsystems has been proposed in
(Khalil and Kokotovié, 1978). However, when the
parameters ¢; are not small enough, the previous
technique (Khalil and Kokotovié, 1978) is very
often not sufficient. To improve the O(|u]), © =
[e1 ... en] accuracy of the cost for large parame-



ters €;, a new numerical method which is differ-
ent from the existing method (Coumarbatch and
Gajic, 2000; Mukaidani et al., 2002) for the MSPS
is proposed.

3. ASYMPTOTIC STRUCTURE OF GMARE

Before the design of Pareto strategy, the asymp-
totic structure of the GMARE (6) is investigated.
In the following analysis, some assumptions are
needed. These assumptions play an important role
in proving the results which will be given later.

Assumption 1. The triples (A;;, Bjj, Cjj;), j =
, N are stabilizable and detectable.

Assumption 2.

AQO —Aof Bo _
k = 7
ran [ 7Af0 _A; By n, (7a)
s, — Al A C’O .
rank —AT AT Cf =n, (7b)
where Vs € C, Rels] > 0 and
N
il :an, By :=[Bo1 -+ Bon |,
§=0
Bf := block diag(311 BNN)a
T
Co=[Cly - CRo]
Cy := block diag (Cu - CnN ) .

Assumption 3. The Hamiltonian matrices
Asi —S.
T = JJ ”], =1, ...,N
" [ij —aL |

are nonsingular.

Using the existing result (Mukaidani et al., 2003),
it is easy to derive the following useful lemma.

Lemma 4. Under Assumptions 1-3, there exists
a small o* such that for all |y (0, o*),
the GMARE (6) admits a symmetric positive
semidefinite stabilizing solution ®. P which can be
written as

Poo + O(lul) [Pro + O(IMII)]THQ} , (8)

e = [P+ 0dul) Py + O(nl)
Poo A+ AT Pyy — PooSPyo + Q = 0, (9a)
_ _ I,
Pjo = [Py =L, | T;;' T} 9b
JO [ Ji ;] Jo [po ] (9b)

PjjAj; + AT Py — Py;S;iP5 + Q5 =0, (9¢)

with

Pro = [Py -+ P,

)

Pf::blockdiag(p11-~PNN)
A
Ti:[ 0 AT:| TOO_ZTOJ Tjo,

Top = [ Ago —Soo] Ty = { Aoj —Soj] ’

—Qoo —Af —Qoj —AJy
Ao =S
Tjo = |: éo . (J)J:| ,N.
07 05

Proof : Since the proof can be done by using the
implicit function theorem, it is omitted. See detail
n (Mukaidani et al., 2003). O

4. A NEW ITERATIVE ALGORITHM

In order to solve the GMARE (6) without the
ill-conditioned, the following algorithm is estab-
lished.

Lemma 5. Consider the iterative algorithm which
is based on Newton’s method

+PITgpW 1 @ =0, PO =P, (10)
i=0,

with

Py Pjg "I

Under Assumptions 1-3, there exists a small &
such that for all |u| € (0, 7), & < o*, the iterative
algorithm (10) converges to the exact solution of
P with the rate of quadratic convergence, where
o, P = POTP, is the positive semidefinite so-
lution. That is, the following condition is satisfied.

D pT
P= [I_Doopfﬂne] , PO = .(11)

Pyy Py

|PD — P =0(u|*), i=0, 1, ... (12)

Proof : Since the proof of Lemma 5 can be done
by using Newton—Kantorovich theorem similarly
as in (Mukaidani et al., 2001), it is omitted.
For Newton—Kantorovich theorem , see e.g. (Ya-
mamoto, 1986). 0O

One needs to solve the GMALE (10) with the
N

dimension 7 := an larger than the dimension
§=0

nj, j =0, , N compared with the exact de-

composition technique (Coumarbatch and Gajic,
2000). Thus, in order to reduce the dimension of
the workspace, the new algorithm for solving the
MALE (10) which is based on the fixed point algo-
rithm is established. Let us consider the following
GMALE (13), in a general form.

ATY +YTA4+U =0, (13)



where Y is the solution of the GMALE (13).
Moreover, Y, A and U have the following forms,
respectively.

Yoo Y-Tne} T
Y = fote |y, = vT,
[on Yy 0o
T
Yo := [Y1€ YJ?;O] )
Y11 algEEle 04135Egl
elio Yoo ao3eEL
Yy = : : :
eEN_11 eE(N_1)2 eE(N_1)3
eEnt eEn2 eEns
OélNEE],l\;l
OéQNEE]I\;Q

T
CaN-)NEEN (v
Ynn

MYy = YT, &= Jul = /e + - + %,

A [Aoo Aof]’ Agj = [A01 AON]7

Ao Ay
T
Ao := [AlTO AJTvo] )
A eAp - el
€A21 A22 . €A2N
Af = . . 9
EANl €AN2 ANN
Ugo U
U:= {Ugi UO;} , Uog:= [Uo1 -+ Uon |,
Ui eUip --- elin
eUly U - elUan
Uf = . . )
eUly Uy -+ Unn

Uoo = Ugy, Us = U7
It should be noted that
PUHD =y, A— SPW = A,
PITSPY L Q=U
where = stands for the replacement.

Without loss of generality, the following condition
for the GMALE (13) is assumed.

Assumption 6. Aj;, 7=1, ... ,N and

N
Ao = Aoy — ZAOjAJ‘_lejO are stable.

j=1

The following algorithm (14) for solving the
GMALE (13) is given.

+1 +1)T nT
ATY D 4y TNy (AT YT

HILY o Aos) + Uy =0, (14a)
AgYo(éH) + Yo(éH)AO - A?OA;TEE‘Z())
~20TAT A g0+ Ugo = 0, (14b)

I+1 — I+1 —(l
YT = AT ALY +2R), (14c)

where

Ao = Moo — AogA; Ao,

20 = Y[ Moo + VTV A g0 + U,

Yoo = Yoo, Yy = Yyo, YV =5,

A§ Yoo + YooAo — AfoA UGy — UopA s A g
+A T AU Ao + Ugo =0,

Yo = —(Yoohos + AfoYs + Uof)]x;l,

Ao = Moo — AosAS " Ao,

Y; := block diag ()711 - Yy ) ,
Ay :=block diag(A11 ANN) )
Uy := block diag (U1 -+ Unn ),

AJYi+ Y5+ Uj; =0, j=1, .. ,N.
The following theorem indicates the convergence
of the algorithm (14).

Theorem 7. Under Assumption 6, the fixed point
algorithm (14) converges to the exact solutions

Yoo, Yo and Yy with the rate of convergence of
O(lu|*), that is

l

[Y;" =¥yl = O(|ul™*1), 1=0, 1, .., (15a)
l

[Yed) ~ Yool = O(lul™Y), 1 =0, 1, ... (15b)
l

[Y5e = Yyol = O(lu*1), 1=0, 1, ... (15¢)

Proof : Since the proof is done by applying the
mathematical induction and the fixed point theo-
rem, it is omitted. O

In order to solve the ALE (14a), not each dimen-

sionn;, i =1, ... , N but the very large dimension
N

n = Z n; is needed. Thus, the reduction of the
i=1

dimension of the computing workspace must be
needed. Therefore, the new algorithm for solving
the ALE (14a) which is based on the fixed point
algorithm is established. Let us consider the fol-
lowing ALE (16), in a general form.

\IJZXe + XeT\Ije + ‘/6 = 07 (16)

where X, is the solution of the ALE (16). More-
over, X, ¥, and V. have the following forms,
respectively.



T T
X11 a12€X21 04135X31
T
EX21 X22 0423€X32
X, = : :
eX(nvo11 eX(v_1)2 eEX(v_1)3
EXNl EXNQ EXNg
T
OélNEXNl
T
aQNEXNQ

‘ a(N—l)NEXJTV(N—l)
XNN

[ Uy ePqp --- Uy

8\1121 \1/22 'E\I/2N

| €¥N1 e¥nN2 -+ Upnn

[ Vi1 eVig -+ eVin
eViy Vo - eVan

T T
L eVin eVany -+ Vi

It should be noted that

Y 5 X, A= 0,
nT l
AT YT + TLY ) Nog + Up = Vi

where = stands for the replacement. Further-
more, the ALE (16) is a part of the ALE (13).

Without loss of generality, the following condition
for the ALE (16) is also assumed.

Assumption 8. V11, ..., Uy are stable.

The following algorithms (17) for solving the ALE
(16) are newly given.

X ey +of x{

N
+e2 3 (X + WEXTY) + Vir =0, (17a)
=2

DIl JUNIEL GOND ¢ \ieny
N-—-1

+e2 3 (o X\ 0 + v U X[RY)
=1
+VNn =0, (17b)

X{;nﬂ) Wao + 0412‘I’1T1X{;n+1)

+ X+ u T XY

N
+e Y (XU + VEXSY) + Via =0, (17c)
1=3
X(m+1) U + wT X(m+1)
(N—1)N ¥ NN T N-1)N¥(N-1)(N-1)*(N-1)N

(m+1) T (m+1)
+X(N—1)(N—1)\I/(N*1)N + ‘I'N(NA)XNN
N-2

+e Z (al(Nq)X((x)_l)l‘I’lN
=1

+aln\PljgN—1)Xl(J7\[n)) +Vin—yn =0, (17d)
m=0,1, -,

where

0 _ v 0 .5 >
X = X, Xi(j) = Xij, i<, Xij=XJ,,
Xij W5+ VX + X Wi + ¥, X5 + Vi = 0.

The following theorem indicates the convergence
of the algorithm (17).

Theorem 9. Under Assumption 8, the fixed point
algorithm (17) converges to the exact solution Xj;
with the rate of

X0 — Xy = O(e™?), m=1, ..,  (I8a)
IX0™ — Xy5] = O™, i< j, m=1, ...(18b)

Proof : The proof of Theorem 9 can be also
done by using mathematical induction and the
fixed point theorem. In order to respect the pages
limitation, it is omitted. O

An algorithm which solves the GMARE (6) with
the small positive parameters ¢; is given below.

Step 1. Solve the AREs (9) that are given as the
initial conditions of the Newton’s method (10).

Step 2. Partitioning the solution POtV of the
purpose into

pli+1) _ Yoo Y/plle
Yio Y ’

- Aoo A
A_gp — | oo o,f] 7
[Afo Ay

POTSPH L = [Uoo UOf:| ’

Usy Us

and do the preparation for solving the following
GMALE.

A?Yf +YrAg
+(AFYyolle + I Yo Aog) + Uy = 0,(19a)
A§ Yoo + Yooho — AfoA7 " Epo

—Ef0A 7 Ago + Ugo =0, (19b)
A?Yf@ + AngOO + Efo =0, (19C)

where E¢o = I YroMoo + YiAso + UOTf.

Step 3. In order to solve the GMALE (19), apply
the new proposed algorithm (14).

Step 4. In order to reduce the dimension of the
workspace for solving the ALE (14a), apply the
new proposed algorithm (17).



Step 5. Solve the solutions Yf(lH) and YO%H)
of the ALE (14a) and (14b), respectively and
compute Yf((l)ﬂ) using the relation of (14c). As
a result, the sequence of solution of Newton’s
method (10) is obtained.

Step 6. If the new combined algorithm converges,
go to Step 7. Otherwise, increment i — i+1 and
go to Step 3. |

Step 7. Calculate the solution P of the GMARE
(6) by using (11).

5. HIGH-ORDER APPROXIMATE PARETO
OPTIMAL STRATEGY

Our attention is focused on the optimal strategy
design. Such a strategy is obtained by using the
iterative solutions (10). The high—order approxi-
mate Pareto optimal strategy is newly given.

Uappj = *’Yj_le_leP(i)ﬂ?, j=1, ... ,N.(20)

Theorem 10. Under Assumptions 1-3, the use of

the high—order approximate Pareto strategy (20)

(@)

results in J ji satisfying

IO = 7 o(ul?). G =1, .. N, (21)

where the value of the actual cost is
79 = 1078, Y,2(0) = L2(0)7Y,ex(0) (22)
= 23: Y;z(0) = 23: jeT

and Y. is a positive semidefinite solution of
the multiparameter algebraic Lyapunov equation
(MALE)

Yje(Ae — SeP) + (Ae — SePe(i))TYje

+Q; +7; 2P S; PY =0, j=1, ... ,N.(23)
Proof : When Pareto optimal strategy (5) is given,
they result in J¥ = 32(0)" X;c2(0), j =1, ..., N,
where Xj. is a positive semidefinite solution of
the MALE: Xje(Ae — SePe) + (Ae — SePe) Xje +
Q; +’yj_2PeSjePe =0, j=1, ...,N. In order to
calculate the loss of performance J J@ — J}, sub-
tracting these equations, Z;. = Yj. — Xj. satisfies
the MALE: Zj, (Ac —S.P)+(Ac— S PN 7+
;2P 8o P 472 P Sje Pat X je Sje(Po— P+
(P, — PPNYTS; X;e =0, j =1, ... ,N. Using
the result established in (12), it is easy to verify
that ||PE(Z) — P.| = O(|p|?). Tt follows from the
above relation that Zj.(A. — SEPE(Z)) + (4 —
SePNTZio + O(|pf?') =0, j =1, ... ,N. Since
Dj;, 7=1, ...,N and Dy are stable, A, _Sepél)
is also stable (Mukaidani et al., 2003). Hence,
using (Zhou, 1998), Z;e = O(|u|?), j =1, ..., N,
results in (21). O

6. CONCLUSION

In this paper, the high—order Pareto approximate
strategy of the genaral MSPS has been studied.
The new iterative algorithm that combined New-
ton’s method with two fixed point algorithms has
been proposed for solving the GMARE. As a
result, the new iterative algorithm has achieved
the quadratic convergence property and has suc-
ceeded in reducing the dimension of the alge-
braic manipulation. Moreover, it has been newly
shown that the O(||u?") high-order approximate
Pareto strategy achieved the cost functional J; +

O(lul*).
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