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Abstract: This paper investigates an application of neural networks to the
guaranteed cost control problem of decentralized robust control for a class of
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additive gain perturbations is established. The novel contribution of this paper is
that to reduce the large cost caused by the LMI conditions Neural Networks (NNs)
are substituted for the additive gain perturbations. Although the NNs are included
in the uncertain large–scale systems, the closed–loop system is asymptotically
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than the specified upper bound for all admissible uncertainties. Copyright c©2005
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1. INTRODUCTION

In recent years, the decentralized robust control of
large–scale systems has been intensively studied
(Shu et al., 1982; LEE et al., 1988; Wang et al.,
1997). Compared with the centralized control ap-
proaches, the decentralized control approaches
have been known to be efficient in cases where
such approaches are applied to the large–scale
dynamic systems.

When controlling a real plant, it is desirable that
the control systems guarantee not only a robust
stability, but also an adequate level of perfor-
mance. One approach to this problem is the so–
called quadratic guaranteed cost control (Petersen
and McFarlane, 1994). Recently, the theory of

the Linear Matrix Inequality (LMI) has allowed
advancement in the guaranteed cost control. The
LMI–based guaranteed cost stabilization for the
uncertainty–free large–scale systems with time de-
lay has been discussed in Park (2004a). However,
due to the presence of the parameter uncertain-
ties, it is well known that the cost performance
becomes quite large.

Neural networks (NNs) have been utilized for
an intelligent control system because NNs have
nonlinear mapping approximation property. Then
some control methodologies utilizing NNs have
been proposed by combining with modern con-
trol approaches. For example, a decentralized con-
troller using NNs which identify the unknown
parameters for a class of large–scale nonlinear



systems was studied (Alessandri et al., 1997;
Huang et al., 2003). The linear quadratic reg-
ulator (LQR) problem using multiple NNs has
been investigated (Iiguni et al., 1991). However,
in these researches, there is a possibility that
NNs may cause the system unstable, because the
stability of the closed–loop system which includes
the neurocontroller has not been considered. For
example, it has been shown that the system sta-
bility is destroyed when the degree of system non-
linearity is strong (Iiguni et al., 1991). In order to
avoid this problem, the stability of the closed–loop
system with the neurocontroller was studied (Ishii
et al., 2004; Mukaidani et al., 2004b). However,
these researches have not been investigated for the
decentralized control of large–scale systems.

In this paper, the decentralized guaranteed cost
control problem of the discrete–time uncertain
large–scale systems with the neurocontroller is
discussed. The crucial difference between the
method in Park (2004b) and the proposed method
is that the decomposition of the optimization
based on the LMI is newly considered and the
neurocontroller is substituted for the additive gain
perturbations. Our contributions are as follows.
Firstly, a class of the fixed state feedback con-
troller of the discrete–time uncertain large–scale
systems with the gain perturbations is derived.
Secondly, some sufficient conditions to design the
decentralized guaranteed cost controller are newly
established by means of the LMI. Finally, in order
to reduce the large cost caused by the parameter
uncertainties, NNs are used. As a result, although
the neurocontrollers are included in the discrete–
time uncertain large–scale systems, it is newly
shown that the robust stability of the closed–loop
system and the reduction of the cost are attained.

2. PRELIMINARY

Consider discrete–time uncertain large–scale in-
terconnected systems, which consist of N subsys-
tems of the form.

xi(k + 1) = (Ai + ∆Ai(k))xi(k) + Biui(k)

+
N∑

j=1, j �=i

(Aij + ∆Aij(k))xj(k), (1a)

ui(k) = (Ki + ∆Ki(k))xi(k), (1b)

where xi(k) ∈ �ni and ui(k) ∈ �mi are the
state and control input of the ith subsystem i =
1, ... , N , respectively. Ai, Bi and Aij are constant
matrices of appropriate dimensions and Aij are
interconnected matrices between the ith subsys-
tems and other subsystems, and Ki ∈ �mi×ni

is the fixed gain matrix for the controller (1b).
∆Ai(k) and ∆Aij(k) are the parameter uncer-
tainties, and ∆Ki(k) is the neurocontroller. The
parameter uncertainties and the neurocontroller

considered here are assumed to be of the following
form

[∆Ai(k) ∆Aij(k) ∆Ki(k)]

=[DaiFai(k)Eai DaijFaij(k)Eaij DkiNi(k)Eki] ,

(2)

where Dai, Eai,Daij , Eaij ,Dki and Eki are known
constant real matrices of appropriate dimensions,
and Fai(k) ∈ �gi×hi and Faij(k) ∈ �pi×ri are
unknown matrix functions, Ni(k) ∈ �si×ti is the
output of NN. It is assumed that Fai(k), Faij(k)
and Ni(k) satisfy

FT
ai(k)Fai(k) ≤ Ihi , FT

aij(k)Faij(k) ≤ Iri ,

NT
i (k)Ni(k) ≤ Iti . (3)

Associated with the system (1) is the cost function

J=
N∑

i=1

( ∞∑
k=0

(xT
i (k)Qixi(k) + uT

i (k)Riui(k))

)
, (4)

where Qi ∈ �ni×ni and Ri ∈ �mi×mi are given
by the positive definite symmetric matrices.

In this situation, the definition of the guaranteed
cost control for the uncertain large–scale systems
(1) and the cost function (4) is given below.

Definition 1: For the discrete–time uncertain
large–scale systems (1) and the cost function (4),
if there exist a control gain matrix Ki and positive
scalar J∗ such that for the admissible uncertain-
ties and neurocontroller (2), the closed–loop sys-
tem is asymptotically stable and the closed–loop
value of the cost function (4) satisfies J < J∗, then
J∗ and Ki are said to be a guaranteed cost and a
guaranteed cost control gain matrix, respectively.

The following theorem gives the sufficient condi-
tion for existence of the guaranteed cost control.

Theorem 1: Consider the uncertain large–scale
interconnected systems (1) with uncertainties and
neurocontroller (2). Suppose that the matrix in-
equality (5) has solutions such as symmetric posi-
tive definite matrices Pi ∈ �ni×ni for all matrices
Fai(k), Faij(k) and Ni(k).

Mi =


Ã
T
i PiÃi + Θi Ã

T
i PiÃi1 · · · Ã

T
i PiÃiN

ÃT
i1PiÃi ÃT

i1PiÃi1 − In1 · · · ÃT
i1PiÃiN

.

.

.
.
.
.

. . .
.
.
.

Ã
T
iNPiÃi Ã

T
iNPiÃi1 · · · Ã

T
iNPiÃiN − InN




< 0, (5)

where there exists no matrix ÃT
iiPiÃii in Mi and



Mi ∈ �Ñ×Ñ , Ñ :=
N∑

j=1

nj ,

Θi := −Pi + (N − 1)Ini + Q̃i,

Q̃i := Qi + (Ki + ∆Ki(k))T Ri(Ki + ∆Ki(k)),

Ãi := Ai + BiKi + ∆Ai(k) + Bi∆Ki(k),

Ãij := Aij + ∆Aij(k).

If such conditions are met, the control laws
ui(k) = (Ki+∆Ki(k))xi(k), i = 1, ... , N are said
to be the guaranteed cost controller. In this case,
the corresponding value of the cost function (4)
satisfies the following inequality (6) for admissible
uncertainties.

J < J∗ =
N∑

i=1

xT
i (0)Pixi(0). (6)

Proof: With the control law (1b), the resulting
closed–loop subsystem becomes

xi(k + 1) = Ãixi(k) +
N∑

j=1, j �=i

Ãijxj(k). (7)

In order to prove the asymptotic stability of the
closed–loop system (7), let us define the following
Lyapunov function candidate.

V (x(k)) =
N∑

i=1

xT
i (k)Pixi(k), (8)

where x(k) := [xT
1 (k) · · · xT

N (k)]T , and Pi, i =
1, ... , N is the positive definite matrix. Note that
V (x(k)) > 0 whenever x(k) �= 0. Since the proof
can be done by using the similar approach in
Mukaidani et al., (2004a), it is omitted. �
The objective of this section is to design a fixed
guaranteed cost control gain matrix Ki for the
uncertain large–scale system (1) with the LMI
design approach.

Theorem 2: Consider the uncertain large–scale
systems (1) and cost function (4). Suppose that
for all i = 1, ... , N , the LMI (9) has a solution
set such as symmetric positive definite matrices
Xi ∈ �ni×ni , the matrices Yi ∈ �mi×ni , and the
positive scalars εai, εki, εai1, ... , εaiN > 0.

If such conditions are met, Ki = YiX
−1
i is

the guaranteed cost control gain matrix for the
closed–loop uncertain large–scale interconnected
systems. Furthermore, the value of the cost func-
tion (4) satisfies the following inequality (10).

J < J∗ =
N∑

i=1

xT
i (0)X−1

i xi(0). (10)

Proof : Applying the Schur complement (Zhou,
1998) to the matrix inequality (5) yields (11).
Using a standard matrix inequality (Wang et al.,
1998) to the LMI (12) and applying Schur com-
plement, the inequality (11) holds. Moreover, pre–

and post–multiplying both sides of the inequality
by the positive definite matrix block diag [ P−1

i

Ihi Iti Ini · · · Ini Ini Imi Ini Iri

· · · Ini Iri Ini ] and introducing the matrices
Xi = P−1

i , Yi = KiP
−1
i , the matrix inequality

(12) results in the LMI (9).

On the other hand, since the result of the cost
bound (10) can be proved by using the similar
argument for the proof of Theorem 1, it is omitted.
Thus, Ki is the guaranteed cost control gain
matrix. �
Since the LMI (9) consists of a convex solution
set (Xi, Yi, εai, εki, εai1, ... , εaiN ), various
efficient convex optimization algorithms can be
applied. Moreover, its solutions represent a set
of the guaranteed cost control gain matrix Ki.
Consequently, let us consider the optimization
problem that allows us to determine the optimal
bound.

Problem A: Consider the LMI (9) and the
following constrained conditions.[ −αi xT

i (0)
xi(0) −Xi

]
< 0. (13)

Moreover, also consider the convex set Xi ∈
(Xi, Yi, εai, εki, εai1, ... , εaiN ) such that εai, εki,
εai1, ... , εaiN > 0 holds. Find Ki = YiX

−1
i , i =

1, ... , N such that the LMIs (9) and (13) are

satisfied, and the cost
N∑

i=1

αi ∈ Xi becomes as

small as possible. That is, the problem addressed
in this paper is

J < J∗ < min∑N

i=1
Xi

N∑
i=1

αi, (14)

Xi ∈ (Xi, Yi, εai, εki, εai1, ... , εai1)

It should be noted that the existing result (Park,
2004b) has not considered the decomposition of
the LMI optimization problem. In this paper,
it is shown that the LMI optimization problem
related with the guaranteed cost control can be
decomposed. That is, it is possible to replace the
Problem A with each optimization problem for
all i by using the following result because the
Problem A can be decomposed.

Theorem 3: If the above optimization problem
A has the solution Xi and αi, then the fixed gain
matrices Ki are the decentralized state feedback
control gain matrices which ensure the minimiza-
tion of the guaranteed cost (10) for the uncertain
large–scale interconnected systems. Moreover, the
optimization problem (14) can be changed to the
following problem.

min∑N

i=1
Xi

N∑
i=1

αi =
N∑

i=1

min
Xi

αi.
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T
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T
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0 0 0 0 · · · 0 0 0 0 0 · · ·−Ini
E

T
aiN A

T
i1

0 0 0 0 · · · 0 0 0 0 0 · · ·EaiN −εaiN Iri
0

AiXi + BiYi 0 0 0 · · · 0 0 εkiBiDkiD
T
ki Ai1 0 · · ·AiN 0 −Xi + Φ




< 0, (9)

where Φ := εaiDaiD
T
ai + εkiBiDkiD

T
kiB

T
i +

N∑
j=1

εaijDaijD
T
aij .

(5) ⇔




−Pi + (N − 1)Ini Ini (Ki + ∆Ki(k))T 0 · · · 0 ÃT
i

Ini −Q−1
i 0 0 · · · 0 0

(Ki + ∆Ki(k)) 0 −R−1
i 0 · · · 0 0

0 0 0 −In1 · · · 0 ÃT
i1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · −InN ÃT
iN

Ãi 0 0 Ãi1 · · · ÃiN −P−1
i




< 0. (11)

⇐




−Pi E
T
ai E

T
ki Ini

· · · Ini
Ini

K
T
i 0 0 · · · 0 0 (Ai + BiKi)

T

Eai −εaiIhi
0 0 · · · 0 0 0 0 0 · · · 0 0 0

Eki 0 −εkiIti
0 · · · 0 0 0 0 0 · · · 0 0 0
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0 0 −Ini

· · · 0 0 0 0 0 · · · 0 0 0
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.

.
Ini

0 0 0 · · ·−Ini
0 0 0 0 · · · 0 0 0

Ini
0 0 0 · · · 0 −Q

−1
i

0 0 0 · · · 0 0 0

Ki 0 0 0 · · · 0 0 −R
−1
i

+ εkiDkiD
T
ki 0 0 · · · 0 0 εkiDkiD

T
kiB

T
i
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E

T
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T
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0 0 0 0 · · · 0 0 0 0 0 · · ·−Ini
E

T
aiN A

T
i1

0 0 0 0 · · · 0 0 0 0 0 · · ·EaiN −εaiN Iri
0

Ai + BiKi 0 0 0 · · · 0 0 εkiBiDkiD
T
ki Ai1 0 · · ·AiN 0 −P

−1
i

+ Φ




< 0. (12)

Proof: Since the proof can be done by using the
similar approach in Mukaidani et al., (2004a), it
is omitted. �
Remark: It can be noted that the bound ob-
tained in Theorem 3 depends on the initial condi-
tion xi(0). It is assumed to remove such condition
that xi(0) is a zero mean random variable satis-
fying E[xi(0)xT

i (0)] = Ini, where E[·] denotes the
expectation. Then, the LMI (13) becomes[−Mi Ini

Ini −Xi

]
< 0, (15)

where Mi is the expectation of αi.

In this paper the condition (15) will be used
instead of (13) in the optimization problem.

3. NEURAL NETWORKS FOR ADDITIVE
GAIN PERTURBATIONS

The LMI approach for the uncertain large–scale
systems usually results in the conservative con-

troller design due to the existence of the pa-
rameter uncertainties and the gain perturbations,
which cause the large cost. The main purpose of
this paper is to improve the cost with a learning
method using NN (Mukaidani et al.,, 2004b; Ishii
et al.,, 2004). Note that the proposed neurocon-
troller regulates its outputs in real–time under the
robust stability guaranteed by the LMI approach.

3.1 On–line learning Algorithm of neurocontroller

It is expected that the reduction of the cost will
be attained when the dynamics of the uncertain
large–scale systems are close to a nominal one.
That is, the neurocontroller is required to com-
pensate the conservative controller to perform as
the nominal system in the uncertain large–scale
systems.

Let us consider the following nominal discrete–
time large–scale systems.
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Fig. 1. Block diagram of proposed system com-

posed of three–dimensional subsystems

x̂i(k + 1) = Aix̂i(k) + Biûi(k)

+
N∑

j=1, j �=i

Aij x̂j(k), (16a)

ûi(k) = K̂ix̂i(k), (16b)

where x̂i(k) ∈ �ni is the state and ûi(k) ∈ �mi

is the control input of the ith subsystem i =
1, ... , N . K̂i ∈ �mi×ni is the state feedback
gain derived by any LMI approach for the nominal
system (16). For the nominal system (16) and the
cost function (4), it is known that the guaranteed
cost Ĵ∗ of the nominal system is smaller than
that of the cost J∗ for the uncertain large–scale
systems.

In this paper, the decentralized neurocontroller for
the discrete–time uncertain large–scale systems
is considered. As a specific example, the block
diagram of the proposed control systems that have
three–dimensional subsystems is given by Fig. 1.
Note that L is a time lag diagram. Fig. 1 shows
that each neurocontroller uses only the observed
state values of each subsystem as its input. It
should be noted that this example is also used
in the next section.

For each subsystem, the NN should be trained in
real–time so that the norm of the state discrep-
ancy, which is given by

∣∣∣∣x̂i(k + 1) − xi(k + 1)
∣∣∣∣

between the behavior of the nominal system and
the uncertain large–scale system becomes as small

as possible at each step k. Ni(k), in equation (2),
can be expressed as a nonlinear function of the
state xi(k), the weight coefficient of NN wi(k),
and the threshold θi(k) as follows

Ni(k) = f (xi(k), wi(k), θi(k)) . (17)

For each subsystem, an energy function Ei(k) is
defined as the square norm of the state discrep-
ancy. At each step, the weight coefficients are
modified so as to minimize Ei(k) given by

Ei(k) =
1
2
(x̂i(k + 1) − xi(k + 1))T

×(x̂i(k + 1) − xi(k + 1)) (18)

Ei(k) can be calculated by using the observed
state value xi(k+1). Therefore, it is not necessary
to consider the behavior of the uncertain matrices
Fai(k) and Faij(k). If Ei(k) can be minimized
as small as possible for each subsystem, the dis-
crepancy

∣∣∣∣x̂i(k + 1) − xi(k + 1)
∣∣∣∣2 would also be

minimized so that the cost of the uncertain large–
scale system is close to the cost of the nominal
large–scale systems.

In the learning of NN, the modification of weight
coefficient ∆wi(k) is given by

wi(k + 1) = wi(k) + ∆wi(k), (19a)

∆wi(k) =−ηi
∂Ei(k)
∂wi(k)

, (19b)

∂Ei(k)
∂wi(k)

=
∂Ei(k)
∂Ni(k)

∂Ni(k)
∂wi(k)

, (19c)

where ηi, i = 1, 2, 3 is the learning ratio. The
term ∂Ei(k)

∂Ni(k)
can be calculated from the energy

function (18) as follows.

∂Ei(k)
∂Ni(k)

=−(x̂i(k + 1) − xi(k + 1)
)

× BiDkiEkixi(k) (20)

On the other hand, ∂Ni(k)
∂wi(k)

can be calculated using
the chain rule on the NN. As a result, using (16)–
(20), NN can be trained so as to decrease the cost
J on–line.

3.2 Multilayered Neural networks

The utilized NN are of a three–layer feed–forward
network as shown in Fig. 2. A linear function is
utilized in the neurons of the input and the hidden
layers, and a sigmoid function in the output layer.
For each subsystem i, inputs and outputs of each
layer can be described as follows

sy
iq(k) =




Uy
i (k) {q = 1(input layer)}∑

w
(y,z)
i1 (k)oz

i1(k) {q = 2(hidden layer)}∑
w

(y,z)
i2 (k)oz

i2(k) {q = 3(output layer)},
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Fig. 2. Structure of the multilayered neural net-
works.

oy
iq(k)=




sy
i1

(k) {q = 1(input layer)}
s

y
i2(k) + θ

y
i1(k) {q = 2(hidden layer)}

1 − e(−s
y
i3(k)+θ

y
i2(k))

1 + e(−s
y
i3(k)+θ

y
i2(k))

{q = 3(output layer)},

where sy
iq(k) and oy

iq(k) are the input and output

of neuron y in the qth layer at step k, w
(y,z)
iq (k)

indicates the weight coefficient from neuron z in
the qth layer to neuron y in the (q + 1)th layer,
Uy

i (k) is the input of NN, θy
iq(k) is a positive

constant for the threshold of neuron y in the
(q+1)th layer. As the additive gain perturbations
defined in the formula (3), the outputs of NN are
chosen adaptively in the range of [−1.0, 1.0].

In general, it should be noted that the number
of neurons and the learning ratio that is a con-
stant as neural networks architecture should be
chosen appropriately. However, since our proposed
method is independent of such choice, the pro-
posed method is reliable and useful.

4. CONCLUSIONS

The application of neural networks to the guar-
anteed cost control problem of the discrete–time
uncertain large–scale interconnected systems has
been investigated. Using the LMI approach, the
class of the decentralized state feedback gain
has been derived. Substituting the neurocontroller
into the gain perturbations, the reduction of the
cost is attained by using them. Moreover, the
robust stability of the closed–loop system is guar-
anteed even if the systems include NN. It is worth
pointing out that the decentralized controller is
constructed by using the new decomposed LMI
optimization technique compared to existing re-
sults (Park, 2004b). The numerical example have
shown the excellent result that the NN have suc-
ceeded in reducing the large cost caused by the
LMI.

The implementation of the proposed feedback
control law may result in increasing the compu-
tational complexity. As a result, the computing
time required to carry out the control algorithm

should be clarified. It will be demonstrated in the
near future by showing the practical example.
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