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Abstract: This paper considers the robust alabilization of singularly perturhed sys-
terns with time-varying unknown-but~bounded uncertainties. The implicit funetion
thecren is used to prove the sufficient condition for stability of the closed—loop system.
The construction of the stabilining controller involves solving slew and fast algebraic
[iceati equations. [t is shown that if the reduced-order slow and fast slgebraic Rie-
catl equations have positive definite stabilizing solution then the oblained uncertain
closed—loop system with the proposed e-independent controller is quadratically sta-
ble. The rain contribution of this paper s that the sufficient. condition for stability
derived hete is independent of the parameter £, Furthermeore, our new resulis apply
Lo the both standard and non standard singularly perturbed systems, Copyrighe £ 1999
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Reywords: Robast stability, Uneertain linear systems, Singular perturbations, Alge-
braic Riceatl equations, Jacobian matrices

1. INTRODUCTION

In recent papers, some authors have concerned
with the problem of stabilizing the singularly per-
turbed systems containing uneerisan paramneters
(Shao and Srwan 1993, Corlass =5 al. 1993). Shao
and Sawan (1923} showed that the robust sta-
Lility conditiens of singularly perlurbed systems
can be obtained by using a singularly perturba-
tion method (Rokotovie ef al. 1986). Tt is obvi-
ous that the basie assumption in Theorem 1 of
Shao and Sawan (1993), that iz, the uncertain
matrix sz + Azoft) 18 Horwite, play an itopor
tant role in the sindy of the problem, Corlesa et
al. {1093} propose a ¢lass of nonlinear composite
controllers which assure global uniform ultimate
houndedness of the trajectories of closed loop =in-
gular perturbed systems, 6 is also obvious that
Assumption 3 of Corless ef al (1904}, that s,
function Asz(y) is invertible, is needed to con-
gbruct the stabilizing controller. However, these
assumptions are restricted because they contains
uncertaintios,

In this paper, bazed on Khargonekar {1990), the
robuat stabilization for singularly perturbed sya-
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tamz with uncertamties s studied n a differont
point of view. In order to prove the existence of
stabilizing controller, the implicit function theo-
rem s used. In general, in order to obtain the
stabilizing controller we muat solve a certain full -
order algebraic Riccati cguation with amall pa-
rameter £ = 0. The alm of the present paper
15 to propose a method whick, instead of zolv-
ing the full-order algebraic Riccati equation, solve
the reduced-—order slow and fast algebraic Hiceati
equations without small parameter 2. It 18 also
proposcd thal an s-independent stabilizing con-
troller ean be obtamed by making use of the so-
lutions for reduced-order slow and [ast algebraic
Riccats equations. As the result, it s shown that if
the reduced -order slow and fast Riccati equations
hawve positive definite stabilizing solution, {hen the
obtained closed loop system with the proposed
controller is quadratically stable.

The main feature of this paper is that the sufficient
condition for stability margin is derived fron exis-
Lence of solutions for the & -independent slow and
fast algebraic Riccati equations. Furthermore, al-
though the uncerlain Agg <+ Agai(t) has onatabie
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maode, there exists the stabilizing controller for
singularly perturbed systems with uncertainties.
Thus, cur new results apply Lo both slandard and
non—standard singularly perturbed systems.

2. PROBLEM FORMULATION

Consider & linear time-invariani non standard sin-
gularly perturbed sysiem

st} = (Ae + FeATOE (1) + Heult),
where

(1

iz
E_lﬁ'}gg

Ay
E_IA?E

where £ i3 a small positive parameter, o=
{7, 211 is the n-dimensional state vector, with o
of dimension n; and 25 of dimension ny 1= n—ny,
i i= the m-dimensional conteol, A(E) s & Lehesgue
measurable matrix of uncertain parameters and
satisfies norm conditions |[A{2)]] < 1. All matrices
ebove are of appropriate dimensions. The system

(1} is said to be in the standard form o the ma-
trix Ayp is nonsingular. Otherwise, it i called the
noen standacd singularly perturbed system (Khalil
105G).
Let us introduce the partitionsd matrices

- .-‘i”_ A1 i . R:I o F1
‘*—[42. A T L g Lk
Now, ket us consider the stabilization of such non-
standard singularly perturbed systems by using
linear state feedhack andar the following basie as-
sumplion.
Assumption 1 The pair (., B.) s stabilizable
Jore £ (0, 2] (£* = 0).

Clearly, this assumption is necessary for even the
neminal aystem to be considered. The following
lemmin is already known (see Khargonekar et al,

L5694

Lemvma 1 UMader Assumplion J, of #hiere crsts
p = 0 osuch thet the following algebraic Riccati

i alion
AP 4+ PA. — Pp™ ' B.B] — F.FT)P.

+ETE 4 pl =0 (2

fias the wnigue posilioe definile sgmmeiric sofu-
fen, then the non-standard stnqularly perturbed
systcre (1) i quadratically stable vea linear con-
irol, Fa this case a slabilizing lnear sfale feedback
control daw 18 groen by

-I—HE_FL.EU}. (3)

wll) = — 7
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Comversely, if the wop-standard singwlarly per-
turhed systems (1) 15 quadratically stable via lnear
conirol (3}, then fhere exesds p* = 0 such that for
all g e (0, w™), the algebyaic Riccati cquation [2)
admits a wnique postleve defintle sinbilizing solu-
fion.

However, it is dithoult te solve the algebraic Rie-
catl equation (2 becanse of the different mag-
nitades of their coefficients caused by the small
perturbation parameter £ and high dimension. In
Lhis paper, in order o overcome the computation
difficuliies cavsed by numerical stiffness, we pro-
pose a method which, instead of solving the full-
order algebraic Riceati equation (2) witl &, solyves
the redured—order slow and fast Riccati equations
without small perturbation parameter ¢

3. GENERALIZED ALGEBRAIC RICCATL
EQUATIONS

In order to solve the algebraie Hiceati eguation
{2}, we iniroduce the following useful lemma
[Mukaidani et al ).

Lomma 2 Vhe algebraic Hiccaty equation () is
equévalent to the following generalized algebrace
fececati equation {4)

PTAw AP = PY (' BB — FFP

+ ETE +uf =0, {4a)
F.=0Tr=p"n,, {4b)
tohe e
P1 sFPR I n
= - o, = L 1
ic [ Py P | TS 0 e, |

Proofi Firsily, from (4b]. P has the following
partitioned form

=)
P [ Py

It is worth to note that # i not symmetric, but
Po=107FP = PTN, is. Secondly, we can observe
the following useful relationships belween 4., f:,
Feoll,, A Hand F.

A =074, By = 7' By, Ba = I Ba.

Substituting the above relations and P, = 11T P =
PTUL, nto the Riccati equation (4a). Then, [2)
can he rewritten as (4a). Thos, to solve the alge-
braic Kiccati equation [4a) is equivalent to solving
the gencralized elgebraic Riceat! equation (2). I
By rmaking use of the relation (4b), we can change
the form of the controller (3).

1
w{t}x—i};[

E.P;':

- pl — pT
Pog ] v Pro= Py, Paz = Pis.

Bl B | Pat) (5)
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4. THE LINEAR STATE FEEDBACK
CONTROLLER

Im this section, the linear state feedhack controller
for singularly perturbed systems with structured
unceriainiies are presonled,

4.0 The Linear State Feedback fall-erder
Controller

The generalized algebraie Riccati equation (4a)
can be partitioned into
AT Po+ PR AL+ AL Py 4+ PR A
_Pu{"]:PH o P‘H‘:‘ Py - Flu |:;'P-H
~Phsl Py QY =0, {fia)

£y Ay } oAy -J- +Fy + .ldb-mﬁé'l.
—ePu S Py — ePu Sl P — PRSI Py
—ngi‘zaﬁi] + le = n* Eﬁb}

AE;P_’EE‘ o Pé';».""_rg' = E.-“T;;P-_:r_; ES ER“."‘.J'E
—"‘li 58Py ~ ePL S Pl — cP STy Py

s h]LSl]F 'E Q ] - U. lﬁt}
where

fl T E'.i'ri-‘..-|-+—|l'4.r, Qm- = EI‘_!E ¥

Q@ = L Ex+ul,

g = a BBy — I FT,
SE = uiBRT - AT,
5% = w 'l - RrFY

For the previous equations (6), setting = = 0, we
oheain the following equations
AT Py + PE AL+ AL Py + P A,
- P51 Py — PSPy
—PlSE Py — PRSP QY =0, {T8)

PRAu + APy + AL P — PRSI Py
. Rg{_'iﬂﬁs + QL =0 (7b)

AL Py + PLAR — PLSN Py 4+ QY = 0.(Tc)

The Riceati equation (7e) will produce the unigue
positive definile slabilizing solution under the fol-
lewing assamption and econditicn.

Assumption 2 The pair (Az, Haa) is stabalsz-
abie.

Leu

Uy o= {u > Ofthe Hiceati equation {Te) has a pos-
itive definite stabilizing solution},

gt o= suplulo € Iy}
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Then, the matrix Aga — ‘-221"92 is nom-—singular if
we choose posuch that 0 < g < gy, Therelors, we
obtain the folowing O-order eqoations

Plas s AT#p, — PILgip, 4+ Q% =0, (Ra)

Py, = — ¥ + Ny Pu, (Eh]

Ay Py o+ Py gy — PLSEPyy + Q= 0,(8¢)
where
'ﬂl} = J'"‘l” + N A2| =+ qF "-T + ."i"rS;z_"'l.i';1
'S“H b Sf..t + |I“";rl -F"]g + S-r:r,'“l'rl + e"l'r].gg._tr'\'-r,
Qf = Q4 — Nady — AL NT — ApSELNT,
Ny =Dyt QT NT = -D3T DY,
= A "--L-f'z-z- “‘4 = Agy — S Poa,
i = tha + -3!:;1 Pay.
Remark 1 Althowgh the erpressions of the ma-
trer Af S5 and Q) contoen the mairir Po, they
do mof depend on of {Ten et of 1998, Xu and

Mizukami 1995). Fn fact, the coefficient malraces
af the equalion [Sa) is ebbained from the fufm-ufa

1 5 i agi— g AE
n=n-tarn=[ 25 TH ] o
where

s Ay “-'3‘1

I [ - —AT

L Ay =87

2 = [ (= "‘"1%-; ] '
_ A3| _SHT

o= { —tli]

. A -5

- [-..az, i

Let us define
Iy := {¢ = Ojthe Riccati equation [8a} has a pos-
ibive definite stabilizing solution],
jis 1= supfpu|p € I}
As the results, for every 0 = p =« p =
minfp, , up}, the Riccali equabions {8a) and (Sc)
have the positive defisite stabilising solutions.
Now, let us inhrodites

Piy= P+ eBy, Py =Py +cEa,

Paz = Py + £Fp. (1o}
Substituting (107 into (6} and subtracting (€) from
(7], we arrive st the error equations.  Hence,

we propose the following recursive algorithm (L1)
(Gajic of al. 1990 ).

‘r.:;f'j{i+l}”n ﬂTF1I+IJ r!'HT'[‘

—HOV L VTRV 4 e HY, {11a)
Fi[r-l- ”I.D + F” +”.!’..-"4 -I—DTE“ +1%

zgh {11h}
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E"I-_:I-HPD-'I + E.? Elul';;+l] o H.,F;}"' [11{.:'
where
B = AT, pT 0 pTign pR)
+P2,f- 1guT pIii)
+&( P"“]Ef;‘zr'“-q- ETqs plid)
I8 = glithge plé) 4 gTiH e pli)
+FTU:|S,|. '31 +E~T[r]gﬂ!"bﬂ'ﬂjl
Hi:il:] A.gPT'” PI‘]‘_ii! T E P’i*.’
v IJ:’]S.':E -f; P[_l}:._’“ |
P:‘(::."?HTFTU}
Iy = Ay = 57 Pn. - .'G'“P2|1
D3 = Az - 5“"" Py = 5%, Pa,
Dy =Dy — D071 Dy, V = Dylhy,
P{i]: Py o+ "EEF: B = == J-.-_Em'
1D P+ e, fs‘ﬁ”‘= B - 2 =0
Let AL PLY and PL2°) be the limit points of

Lhe recursive alg_nrlthm {i L.
Our first chaervation is as follows.

Theoreim 1 Copder the Azssumplion [ oand 2, of e
can select a parameler g guch that 0 < p < g =
min{p,, pp}, then from the recwrsive elyerithe
{11} we have

PT) 4 4 A7 pLowd _ prl=) (=1 BT

— FFP) L BETE 4+ ul = 0, (12}
where
] P:'?IWI P?J: )
el

Furthermore, by using the linear state feedback
Jull-order contrilier
| =z ()

~-— [ BT (13}

g7
2yl ] z

"lu.'-ll{!-} =
the wncerfamn linear simgulerly perturbed syslem
{11 as quadrefically stabie.

Proof: By using the implicit funeticn theorem,
the theorcm can be proved {Mukaidani ef al). I

4.2 The Lmear Stale Feedback ¢ -Independent
Condroller

Chur altention in this section i3 focusced on Hinear
slate feedback c—independent. contraller design for
the non-standard singularly perturbed systems.
In Gajie ed al  LHO0 and Mukaidani ef al., by
making use of the recursive algorithm, a linear
state feedback controller for the standard or non-
standard singularly perturbed systoms are given.
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However, contreller design need fo repeat the re-
cursive algorithim. ‘Therefore, it will take a lot of
time Lo get Lhe required posilive definite solulion.
We proposed that an s-mdependent stabilizing
controller can be obtmned by making use of the
aolutiona for reduced-—order show and fast alpebraic
Hiccat: equations, that is, O-order solutions, DBy
analogy with the lincar staie fecdback controller
(5], the linear state feedback cindependent con-
iroller are ohtamed by neglecting O(¢) for the lin-
ear stake fecdback controller (5. It is obvious thal
the linear state feedback controller (3) given in
Lermma ¥ can be approximated as

uft) = tocall) 22 v (i)

1 _ _
— [ BT Ay + BT Py

The main result of this section is as follows.

BY Pan ] (1), (14)

Theorem 2 Fader the Assumption 4 and 2 for
small £, i we con select @ parcmeter g such that
0 < p < ji min s, gy}, then by wsing the
lincar state feedback s <independent controller (14)
fhe wneerfoim lincar singalarly perturbed sysiem
{1} as guodratically siable.

FProof: Applying the proposed controller (14} to
the system (1) yields a elosed-loop systemn as fol-
lows:

E(I = (A, + F. A Ex(t), (1)
where

i = .|"I|l ."1.;_3

e g7 Ay T A |

. 1 b = -
Az A — if—jfﬂsﬂff'u + B;BE'FEL}.

1 E

in = Ajg— —BBT P, (i=1, 2V
A:. ] .a’u i‘. jﬂ"! Et ]

By unsing Theorem (3.89}{see Khargonekar of al
1941, we will consider the following algebraic Rie-
cabi eguation

ATX: + XA, + X P FTX,

+ETE kI =0, Yk 0, (1)
where
Pyt .-1‘:1_1 E;\r:{i
}L: o [ E.‘('_q J’."Xz: :

In arder to verify the existence of solution far the
algebraic Riccati equation {16), substitnting X,
into (16} yields

_.-i?"-:_h-“ + .\',r. -‘i” + .-‘.1.3.] Xy + .}C-_Ej J;im
+ XL EFT X+ XTI R FT Xy,
+.1{|?i ) F{'};g! = zYﬂFgf'\r.?{n

+ 8y =10, (17a)
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eXap Ay + X5 Ay + ALX, + AL Xy
+eXnd }"E' X+ X M FT Xy
+ XL FaFE X+ XL R X
+QT, =0, {(17h)
J{-_T;ng- + sz;,-"i:ng + E.‘f?g.’h’g; + X A
XL FoFT Xow + e XTI FT XT
+EXa1 Iy F;' XNaa + E?.}[:” o f"]T Jl.r.";
4+ Fuy = 1, (17e)
where
Hiy = E] By + kI, Rog = ETE; + k1.
For the previous egquations {17}, seliing & = 0, we
ohiain the following equakions
Al Ry + XL AL + AL Ko + XT Ay
+ATLFFL Xy + XL RFT X
X PP Xoy + XT 0T X,

+ R|_1_ =1 { 18a}
B Ay AR AL Ky # AL R Ry
+ X5 Faly Xar + QT =0, (18b)

AL Ros 4+ XL Ay + XD FT Xon
+ Rag = (L {18c)
Thus, setting & = g for equation {L8) and com-
paring [ 18) with (71 yields

X::-‘-'-Pu- X‘u '—"P2|~x?'.4=l':*2? {14)
direcily, Now, lel us introdurce arror term

X=X +eMy, Koy = Kay + =M,

Xog = Xgo + e My, (200
Substituting (20} into (17) and subtracting (17)
from {18), we arrive at the error equations

MG De+ DITM, =VTHT

BV — VT HV — cHy, (218}

MY Dy + M Dy + D5 Mag + 15 = 0, (21h)

M, Dy + O Bigs + Ha =0, (21c)
where
Hy= AT X5 + XL FRFT XD
+ X5 Pl X,
-i—a{ﬂdﬁ Fy f"éf'a‘lefﬂ + i‘Lng .F?F;Mzg n
Ho= MIFFI My + M B FT A,
+f'1"3fi]li.}'l}'1;?-”2] 5 qu 1?-F'1T!Ff|:h
Hﬂ. = J{T}-’Tﬁ -+ -‘fair.h? + s Xa F:YL
+E.|'1'IETQF:| f'-';Mz:a + Ao My F-}".X'_t;-
+ XL FTxT,
0y = A+ F:F{r_i'“ + !"-E-jfﬂ,
Dy = Ays + By 4T Xoa,
Dy = Agy + f'_ﬂff‘}:’u + PzF;f‘a:l-
f-’q = .‘i-gz + Fgﬁxj'g,
fjn =1 .Epi| = I{}g.[}.?.b;;, o= l—}_"":'.ﬂ\';g.
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We need to show the existence of a bounded so-
lution of My; (i, 7 = 1, 2) in neighborhood of
£ = (1. To prove that by the implicic fanction the
orem (Ciajie ef al 190 ), it is enongh to show
that the corresponding Jacobian s non—singular
al £ = 0. The Jacobian is given by

gt 1] 1]
Je=o = dar Jam T (22)
0 0 Jag
whers
Jil = fﬁ'ﬁbn+Dg"'§5].lr‘ .f:rg! f-ﬂi}*,
Jaaoo= IE}E‘-&-J}IG}L
ai.-_f BL;
ur' = — |, ,]' = ™ ==
i B, <=0 T2 = i le=os
i T . ;
"‘??3 = H{i—;ifﬁﬂ: L= Erzrﬂ'}s
Ly = MED o+ DMy —VTET _ W

+ l:'leirgﬁr —+ SHE.
I—z = .I!-'f?: f}z =+ a‘if-g; ﬂ.-: G S;‘rwag + H!,
La = MLDy+ DM+ Ha.

When 0 < g < i = minfp,, pr}, since the al-
gebraic Hiccati equation (Te) has a positive defi-
nite stabilizing solution, the matrix 0y = A +
F;».F"jr Pag = Aga F'-,;F';J'I_.';gg is non-singular. Sim-
ilarly, the marrix A + 5P, = A+ 5X,, is non-
sipgular. Then, we obtain the following relation.

A+ S‘P“ =A +S.j;-||_ = .[}n

Thus, the matrix £y is stable also. Therefore, for
a sufficiently small parameter £, the Jacobian s
non-singular. |

3 DESIGN PROCEDURE AND EXAMPLE

In light of the above Theorem 2, the z-
independent controller can be obtained by using
the aslutions of the reduced-order zlow and fast
algebraic fticcatl equations.  Therelore, the de-
sign procedure of the proposed conoreller is simple,
The basic steps are as follows.

Step 1. Calenlate A5, S5 Qf by using relation
9.

Step 2. By making use of method of bisection,
find the @ = min{g,, py}. This cime, i
a positive—definite symmetric solutions exigts
for the algebraic Riccati equations {8a) and
{#c), then proceed Lo Step 3. IF nob or 4
is less than some computational accuracy g,
then stop and declare that system (1) is not
quadratically slable,

Step 3. Calvulate Py in (8b) by using Py, Pis.

Step 4. Substituting Py Pos and Pey into (14),
we obtain the s-independent contraller (147

ISBN: 008 043248 4



ROBUST STABILIZATION OF NON-STANDARD SNGULARLY PE..

FErample: Consider a non—standard singularly per-

turhed system
)
Ty

£ (|
£y
]ﬂ: Il < 1. (23)

]=[1 Aft)
0

e

1l is obviouz Lhat the existing method (Shao and
Sawan 1993 ) to find the stabilizing conrroller is
ol availed for this example. By making use of
relation (99, we obtain A, S5, Q5 as follows.

| 1 p{d — )
___1:1 =1, b‘rl g e 2 oA o, SRR el ;
o Q o 1—p
From the algebraie Riccati equations [8a) and
{Rc), we ablain two quandities pr = p, = | an-
alytically, Mence, 0 < p < o= in.in[p:_r. p:,:;l =1
Then, we get

v,@iuﬂﬁ—.@

by = ?-ij-;_:“ + 02— ),

\KM’I-F-#J
| T

Therefore, we obtain an e—independent controller
as follows:

1+I=g, 1 {13y
—— - 5 e T

1~ p) 2V ull — u)
On the ather hand, substituting the contraller (24)
into the aystem (23], the solution of the algebraic
Riceati equation (16} is given by

¥ ﬂ‘]

e [ 0 e
where

szﬁp-—l-}- Ehp'}f].
201 =)
[T !

oS-

Py

)

1

ﬁ.! 2

fl

§o—= - {24)

{25)

= — — .

# pil=g) Y p(l = g 4)"{]'
We chserve that a matrix N, 5 positive defi-
nite syrametric solution becanse of o > () and
d = . Hence, the closed-loop uncerktain system
{23) with proposed c-independent controller (24)
18 guadratically stable.

fi. CONCLUSION

In thiz paper. the robust stabilization of smgularly
periirbed systems with wneertaintios wasg investi-
eated. e—-independent sufficient conditions for the
existence of a controller were detived in a differ-
ent way. We proposed a s-independent stabilizing
coptroller such that the closed-loop uncertain lin-
car singularly perturbed svstems s quadratically
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stable. This struclure is achieved by solving slow
amd fast algebraic Riceatt equations, The tmplicit
function theorem s used to prove the sufficient
condition for stabdity of the closod-loop system,
It is pointed cul thal our results are applicable to
boih siandard and non-standard singularly per-
turbed systems.
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