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Abstract— The application of neural networks to the state–
feedback guaranteed cost control problem of discrete–time system
that has uncertainty in both state and input matrix is investigated.
Based on the Bilinear Matrix Inequality (BMI) design, a class
of a state feedback controller is newly established, and sufficient
conditions for the existence of guaranteed cost controller are
derived. The novel contribution is that the neurocontroller is
substituted for the additive gain perturbations. It is newly shown
that although the neurocontroller is included in the discrete–time
uncertain system, the robust stability for the closed–loop system
and the reduction of the cost are attained.

I. INTRODUCTION

In recent years, the guaranteed cost control problem for a
class of the uncertain discrete–time system which is based
on the LMI design approach has been widely studied in the
literatures (See e.g., [1], [2], [3]). The guaranteed cost control
approach has the advantage of providing an upper bound on
a given performance index. However, due to the presence of
the design parameter of the LMI conditions, it is well–known
that the cost becomes quite large.

In recent years, Bilinear Matrix Inequality (BMI) formula-
tion of the control problems was made popular. Although it
seems to be hard to solve the BMI, there were several attempts
to solve BMI problems numerically that is based on branch–
and–bound schemes [4]. As a result, it is possible to tackle
the BMI problems by applying such non–linear optimization
techniques.

A neural network (NN) has been actively exploited to
construct an intelligent control system because of its nonlinear
mapping approximation for the system uncertainties involved.
Then some control methodologies utilizing NN have been
proposed by combining the modern control theory. For ex-
ample, the Linear Quadratic Regulator (LQR) problem using
the multiple NN has been investigated [5]. However, in these
researches, there is a possibility that the existing neurocon-
troller may not stabilize the plant because the stability of the
closed–loop system which includes the neurocontroller has not
been considered. In fact, it has been shown that the system
stability is destroyed when the degree of system nonlinearity

is strong [5]. In order to avoid this problem, the stability of the
closed–loop system with the neurocontroller has been studied
via the LMI–based design approach [8], [9]. However, in these
researches, the uncertainty in the input matrix has not been
considered.

In this paper, the guaranteed cost control problem of the
discrete–time uncertain system that has uncertainty in both
state and input matrices is discussed. This is an extension of
the former results [8], [9] in the sense that the uncertainty in
the input matrix is included. A class of the fixed state feedback
controller of the discrete–time uncertain system with the gain
perturbations is newly established by means of the Bilinear
Matrix Inequality (BMI). A new idea is that the neurocon-
troller is substituted for the additive gain perturbations. As a
result, although the neurocontroller is included in the discrete–
time uncertain system, the robust stability of the closed–loop
system and the reduction of the cost are attained.

II. PRELIMINARY

Consider the following class of an uncertain discrete–time
linear system:

x(k + 1) = [A + DF (k)Ea]x(k)
+ [B + DF (k)Eb]u(k), x(0) = x0, (1a)

u(k) = [K + DkN(k)Ek]x(k), (1b)

where x(k) ∈ �n is the state, u(k) ∈ �m is the control input,
A, B, D, Dk , Ea, Eb and Ek are known constant matrices, K
is the fixed control matrix for the controller (1b), and F (k) ∈
�pa×qa is unknown matrix function and N(k) ∈ �pn×qn is
the output of NN. It is assumed that F (k) and N(k) satisfy

F T (k)F (k) ≤ Iqa , NT (k)N(k) ≤ Iqn . (2)

The block diagram of the new proposed method is shown in
Fig. 1, where L is a time lag diagram. It should be noted that
the controller (1b) has the neurocontroller as the additive gain
perturbations DkN(k)Ek compared to existing method [5].
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Fig. 1. Block diagram of a new proposed method.

Associated with the system (1) is the quadratic cost function

J =
∞∑

k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
, (3)

where Q and R are given as the positive definite symmetric
matrices. In this situation, the definition of the guaranteed cost
control with the additive gain perturbations is given below.

Definition 1: For the discrete–time uncertain system (1) and
the cost function (3), if there exist a control matrix K and a
positive scalar J∗ such that for the admissible uncertainties and
the neurocontroller (2), the closed–loop system is asymptoti-
cally stable and the closed–loop value of the cost function (3)
satisfies J < J∗, then J∗ and K are said to be the guaranteed
cost and the guaranteed cost control matrix, respectively.

The following result shows that the guaranteed cost control
for the system (1) has the upper bound on the cost function
(3).

Lemma 1: Suppose that the following matrix inequality
holds for the uncertain discrete–time system (1) with the cost
function (3) and for all x(k) �= 0.

xT (k + 1)Px(k + 1) − xT (k)Px(k)
+xT (k)[Q + K̃T RK̃]x(k) < 0, (4)

where K̃ := K + DkN(k)Ek.
If such condition is met, the matrix K of the controller (1b)

is the guaranteed cost control matrix associated with the cost
function (3). That is, the closed–loop uncertain system

x(k + 1)
= [(A + DF (k)Ea)

+(B + DF (k)Eb) · (K + DkN(k)Ek)]x(k), (5)

is stable and achieves

J < J∗ = xT (0)Px(0). (6)
Proof: Let us define the following Lyapunov function can-

didate

V (x(k)) = xT (k)Px(k), (7)

where P is the positive definite matrix. Since this proof can
be done by using the similar technique in [8], it is omitted.

Theorem 1: Consider the uncertain discrete–time system
(1) and cost function (3). For the uncertain matrix F (k) and

the gain perturbation matrix N(k), if the BMI (8) has a
feasible solution such as symmetric positive definite matrix
X ∈ �n×n and Y ∈ �m×n, and positive scalar µ > 0, then
K = Y X−1 is the guaranteed cost control gain matrix.

Furthermore, for all admissible uncertainties F (k), and the
gain perturbations N(k), the corresponding value of the cost
function (3) satisfies the following inequality (12)

J < J∗ = xT (0)X−1x(0). (12)
Proof: Let us introduce the matrices X = P−1 and Y =

KP−1. Pre– and post–multiplying both sides of the inequality
(8) by the positive definite matrix

block diag
(
P In Im Ipn Iqa Ipa In

)
> 0 (13)

and applying the Schur complement [7] gives (9). It should be
noted that the BMI (8) is equivalent to the matrix inequality
(9). Using a standard matrix inequality [6], for all admissible
uncertainty, the matrix inequality (10) holds. Moreover, using
a standard matrix inequality [6], for all the neurocontroller (2),
the matrix inequality (10) results in (11). Finally, it is easy to
verify that the matrix inequality (4) is satisfied. Thus, K is the
guaranteed cost control gain matrix. On the other hand, since
the results of the cost bound (12) can be proved by using the
similar argument for the proof of Theorem 1, it is omitted.

Since the BMI (8) consists of a solution set of (µ, X, Y ),
the efficient optimization algorithm such as branch and bound
algorithm can be applied. Moreover, its solutions represent
a set of the guaranteed cost control gain matrix K. This
parameterized representation can be exploited to design the
guaranteed cost control gain which minimizes the value of
the guaranteed cost for the closed–loop uncertain system.
Consequently, solving the following optimization problem
allows us to determine the optimal bound.

J < J∗ < min
(µ, X, Y )

α, (14)

such that (8) and [ −α xT (0)
x(0) −X

]
< 0. (15)

The crucial difference between the uncertain discrete–time
system in [1] and the considered system of this paper is that the
controller gain perturbations as the neurocontroller are newly
added. Furthermore, the BMI approach has been newly applied
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


−X (∗) (∗) (∗)
AX+BY −X (∗) (∗)

Y +µ(EbDkDT
k )T (EaX+EbY ) (BDkDT

k )T −R−1+DkDT
k +µ(EbDkDT

k )T EbDkDT
k (∗)

µ(EbDk)T (EaX+EbY ) (BDk)T µ(EbDk)T EbDkDT
k −Ipn +µ(EbDk)

T EbDk

µ(EaX+EbY ) 0 0 0
0 DT 0 0
X 0 0 0

(∗) (∗) (∗)
(∗) (∗) (∗)
(∗) (∗) (∗)
(∗) (∗) (∗)

−µIqa (∗) (∗)
0 −µIpa (∗)
0 0 −(Q+ET

k Ek)−1


 < 0, (8)




−P + Q+ET
k Ek (∗) (∗) (∗) (∗)

A+BK −P−1 (∗) (∗) (∗)
K+µ(EbDkDT

k )T (Ea+EbK) (BDkDT
k )T −R−1+DkDT

k +µ(EbDkDT
k )T EbDkDT

k (∗) (∗)
µ(EbDk)T (Ea+EbK) (BDk)

T µ(EbDk)T EbDkDT
k −Ipn +µ(EbDk)

T EbDk (∗)
Ea+EbK 0 0 0 µ−1Iqa




= M < 0. (9)

N =




−P +Q+ET
k Ek (∗) (∗) (∗)

A+BK+DF (Ea+EbK) −P−1 (∗) (∗)
K [(B+DFEb)DkDk]T −R−1+DkDT

k (∗)
0 [(B+DFEb)Dk]

T 0 Ipn


 ≤ M < 0. (10)

[ −P +Q (∗) (∗)
A+DFEa+(B+DFEb)(K+DkNEk) −P−1 (∗)

K+DkNEk 0 −R−1

]
≤ N < 0

⇔ [A+DFEa+(B+DFEb)(K+DkNEk)]T P [A+DFEa+(B+DFEb)(K+DkNEk)]

−P + Q + [K+DkNEk]R[K+DkNEk] < 0. (11)

where the symbol (∗) in BMI denotes entries that follow from symmetry.

to the guaranteed cost control problem for the discrete–time
system that includes the uncertainty in both state and control
matrices compared to existing results [8], [9].

III. NEURAL NETWORKS FOR ADDITIVE GAIN
PERTURBATIONS

The main purpose of this paper is to introduce NN as
additive gain perturbations into the discrete–time uncertain
system to improve the cost performance. It should be noted
that the proposed neurocontroller regulates its outputs in
real–time under the robust stability guaranteed by the BMI
approach.

A. On–line learning algorithm of neurocontroller

It is expected that the reduction of the cost will be attained
when the neurocontroller can manage the uncertain system as
the nominal linear system while compensating for control er-
rors by the conservative controller. That is, the neurocontroller
is required to compensate the conservative controller to work
as the LQR controller in the uncertain system.

Let us consider the following nominal system without the
uncertainty and the gain perturbation.

x̂(k + 1) = Ax̂(k) + Bû(k), (16)

where x̂(k) ∈ �n is the state and û(k) ∈ �m is the control
input. For such linear system, it is well–known that the LQR
control is an effective method to design the controller which
can minimize the cost function (3). Based on the LQR, the
optimal control û∗(k) can be designed as

û∗(k) = K̂x̂(k), (17a)

K̂ = −(R + BT P̂B)−1BT P̂A, (17b)

where K̂ is the optimal feedback gain matrix and the matrix P̂
is the positive semidefinite symmetric solution of the following
algebraic Riccati equation.

P̂ = AT P̂A − AT P̂B(R + BT P̂B)−1BT P̂A + Q. (18)

The NN of the proposed system should be trained at the real–
time so that the state discrepancy

∣∣∣∣x̂(k + 1) − x(k + 1)
∣∣∣∣

becomes as small as possible at each step k. An energy
function E(k) is defined as the discrepancy between the
behavior of the nominal system according to the LQR method
and the one of the uncertain discrete–time system of step k.
At each step, the weight coefficients are modified so as to
minimize E(k) which is given by

E(k) :=
1
2

(x̂(k+1)−x(k+1))T (x̂(k+1)−x(k+1)) . (19)
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If E(k) can be minimized as small as possible, the discrepancy∣∣∣∣x̂(k + 1) − x(k + 1)
∣∣∣∣2 would be also minimized so that the

cost of the uncertain discrete–time system is close to the cost
of the nominal system based on the LQR control.

In the learning of NN, the modification of the weight
coefficient ∆wij(k) is given by

wij
g (k + 1) = wij

g (k) + ∆wij
g (k), (20a)

∆wij
g (k) = −ε

∂E(k)
∂wij

g (k)
, (20b)

∂E(k)
∂wij

g (k)
=

∂E(k)
∂N(k)

· ∂N(k)
∂wij

g (k)
, (20c)

where ε is the learning ratio. The term
∂E(t)
∂N(k) can be

calculated from the energy function (19) as follows:

∂E(k)
∂N(k)

≈ − (x̂(k+1) − x(k+1))Γ(k)BDkEk, (21)

It should be noted that suppose there exists a parameter
Γ(k) such that B + DF (k)Eb ≈ Γ(k)B, where Γ(k) is the
matrix value function and its elements are the positive scalar.
Moreover, (20b) can be rewritten from (21) as follows:

∆wij
g (k) ≈ η (x̂(k+1) − x(k+1))BDkEk

∂N(k)
∂wij

g (k)
, (22)

where η := ε||Γ(k)|| is defined as a new learning ratio. η is

used instead of deciding ε according to Γ(k).
∂N(k)
∂wij

g (k)
can be

calculated using the chain rule on the NN. From (19), (20),
(21), and (22), NN can be trained so as to decrease the cost
J on–line.

B. Multilayered Neural networks

The utilized NN are of a three–layer feed–forward network
as shown in Fig. 2. The linear function is utilized in the
neurons of the input and the hidden layers, and a sigmoid
function in the output layer. The inputs and outputs of each
layer can be described as follows.

si
g(k)

:=




Ui(k) {g = 1(input layer)}∑
w

(i,j)
1 (k)oj

1(k) {g = 2(hidden layer)}∑
w

(i,j)
2 (k)oj

2(k) {g = 3(output layer)},
oi

g(k)

:=




si
1(k) {g = 1(input layer)}

si
2(k) + θ

(i)
1 (k) {g = 2(hidden layer)}

1 − e(−si
3(k)+θ

(i)
2 (k))

1 + e(−si
3(k)+θ

(i)
2 (k))

{g = 3(output layer)},

where si
g(k) and oi

g(k) are the input and the output of the
neuron i in the gth layer at the step k. wi,j

g (k) indicates the
weight coefficient from the neuron j in the gth layer to the
neuron i in the (g + 1)th layer. Ui(k) is the input of NN.
θ
(i)
g (k) is a positive constant for the threshold of the neuron

1
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Fig. 2. Structure of the multilayered neural networks.

i in the (g + 1)th layer. As the additive gain perturbations
defined in the formula (2), the outputs of NN are set in the
range of [−1.0, 1.0].

IV. CONCLUSIONS

The application of neural networks to the guaranteed cost
control problem of the discrete-time uncertain system has
been investigated. Using the BMI technique, the class of the
state feedback gain has been derived. The robust stability of
the closed-loop system has been guaranteed by substituting
the neurocontroller into the gain perturbations, even if the
systems include NN. Moreover, the reduction of the cost can
be attained by using neurocontroller.
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