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Abstract - In this paper, we study the infinite horizon zero-
sum differential games for both standard and nonstandard
multiparameter singularly perturbed systems. A composite
approximation of the full-order linear feedback saddle-point
solution is obtained by decomposing the full-order game prob-
lem into a slow game and two fast control problems. It is
proven that such a composite approximation forms an O(||µ||)
(near) saddle-point equilibrium of the full-order game, and
the resulting value is O(||µ||2) over or below the exact value of
the full-order game depending on the given game parameters.
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I. INTRODUCTION

In this paper, we study the infinite horizon zero-sum differ-
ential games of multiparameter singularly perturbed sys-
tems. A composite approximation of the full-order lin-
ear feedback saddle-point solution is obtained by decom-
posing the full-order game into a slow game and two fast
control problems. It is anticipated that such a composite
approximation can achieve an O(||µ||) (near) saddle-point
equilibrium of the full-order game, and the resulting value
is O(||µ||2) over or below the exact value of the full-order
game which depends on the parameters of the system. In
order to prove these anticipatations, we first investigate the
properties of the multiparameter algebraic Riccati equa-
tion(MARE) and establish its asymptotic structure. Then,
we compare the structures of the composite approxima-
tion of the full-order linear feedback saddle-point solution
and the main terms of the asymptotic expansions of the
MARE. We find that the main terms, which are indepen-
dent of the small positive singular perturbation parameters,
in the asymptotic expansions of the MARE determine the
composite approximation. As the result, we prove that the
anticipations stated above are correct.

Since we treat the slow game as the game for a special
kind of descriptor systems, the results obtained are valid
for both standard and nonstandard multiparameter singu-
larly perturbed systems.

II. PROBLEM FORMULATION

We consider the linear time-invariant multiparameter sin-
gularly perturbed systems(MSPS)

ẋ0(t) = A00x0(t) + A01x1(t) + A02x2(t)
+B01u1(t) + B02u2(t), x0(0) = x0

0,(1a)

ε1ẋ1(t) = A10x0(t) + A11x1(t) + B11u1(t),
x1(0) = x0

1, (1b)

ε2ẋ2(t) = A20x0(t) + A22x2(t) + B22u2(t),
x2(0) = x0

2, (1c)

where xj ∈ Rnj , j = 0, 1, 2 are the state vectors, u1 ∈
Rm1 is the control vector of Player 1, and u2 ∈ Rm2 is
the control vector of Player 2. All the matrices above are
constant matrices of appropriate dimensions.
ε1 and ε2 are two unknown small positive singular pertur-
bation parameters of the same order of magnitude such that

0 < k1 ≤ α ≡ ε1

ε2
≤ k2 < ∞. (2)

That is, we assume that the ratio of ε1 and ε2 is bounded
by some positive constants kj, j = 1, 2. Since we do not
know the values of ε1 and ε2, we can not reduce them to
a single singular perturbation parameter. Note that the fast
state matrices Ajj , j = 1, 2 may be singular. The sys-
tem (1) is called a standard multiparameter singularly per-
turbed system if the matrix Ajj is nonsingular, otherwise it
is called a nonstandard MSPS.
In a differential game problem of the MSPS, a quadratic
cost functional is given by

J =
1
2

∫ ∞

0

[zT (t)z(t) + uT
1 (t)R1u1(t)

−uT
2 (t)R2u2(t)]dt, (3)

where zT (t) = [zT
0 (t) zT

1 (t) zT
2 (t)], z0(t) = C00x0(t) ∈

Rr0 , zj(t) = Cj0x0(t) + Cjjxj(t) ∈ Rrj , j = 1, 2. The



goal of Player 1 is to minimize the cost function J while
Player 2 would like to maximize it.
Definition 1. An admissible feedback strategy pair
(u∗

1, u
∗
2) ∈ Γu1 × Γu2 is in a saddle-point equilibrium if

J(u∗
1, u2) ≤ J(u∗

1, u
∗
2) ≤ J(u1, u

∗
2), (4)

for all (u∗
1, u2) ∈ Γu1 × Γu2 and (u1, u

∗
2) ∈ Γu1 × Γu2 .

In Definition 1, the admissible strategy pairs set Γu1 ×Γu2

is composed of the feedback strategy pair (u1, u2) such that
the obtained closed-loop system is strictly feedback stabi-
lizing for all initial conditions x0(0) = x0

0, x1(0) = x0
1 and

x2(0) = x0
2. The existence of a saddle-point equilibrium is

a strong condition in general. A weaker version of saddle-
point equilibrium, called µ (near) saddle-point equilibrium,
is defined below (Başar and Olsder, 1995).
Definition 2. For a given µ ≥ 0, an admissible feedback
strategy pair (u∗

1, u
∗
2) ∈ Γu1 × Γu2 is in a µ (near) saddle-

point equilibrium if

J(u∗
1, u2) − µ ≤ J(u∗

1, u
∗
2) ≤ J(u1, u

∗
2) + µ (5)

for all (u∗
1, u2) ∈ Γu1 × Γu2 and (u1, u

∗
2) ∈ Γu1 × Γu2 .

From the existing theory on linear quadratic differential
game, we know that for ε1 > 0, ε2 > 0, the zero-sum
differential game described by (1) and (3) has equal upper
and lower values if the MARE

AT
E PE + PEAE − PESEPE + Q = 0, (6)

admits a minimal positive definite symmetric solution P +
E ,

where

PE =

⎡
⎣ P00 ε1P

T
10 ε2P

T
20

ε1P10 ε1P11
√

ε1ε2P
T
21

ε2P20
√

ε1ε2P21 ε2P22

⎤
⎦

P00 = P T
00, P11 = P T

11, P22 = P T
22,

AE =

⎡
⎣ A00 A01 A02

ε−1
1 A10 ε−1

1 A11 0
ε−1
2 A20 0 ε−1

2 A22

⎤
⎦ ,

SE = ST
E =

⎡
⎣ S00 ε−1

1 S01 ε−1
2 S02

ε−1
1 ST

01 ε−2
1 S11 0

ε−1
2 ST

02 0 ε−2
2 S22

⎤
⎦

= B1ER−1
1 BT

1E − B2ER−1
2 BT

2E ,

B1E =

⎡
⎣ B01

ε−1
1 B11

0

⎤
⎦ , B2E =

⎡
⎣ B02

0
ε−1
2 B22

⎤
⎦ ,

Q = QT =

⎡
⎣ Q00 Q01 Q02

QT
01 Q11 0

QT
02 0 Q22

⎤
⎦ ,

Q00 = CT
00C00 + CT

10C10 + CT
20C20,

Q11 = CT
11C11, Q22 = CT

22C22,

Q01 = CT
10C11, Q02 = CT

20C22,

and the value of the game is given by

J∗ =
1
2
xT

0 P +
E x0, (7)

where xT
0 = [x0T

0 x0T
1 x0T

2 ]. Moreover, if we further as-
sume that P +

E is the strictly feedback stabilizing solution to
the MARE (6), then the linear feedback strategy pair

u∗
1(t) = −R−1

1 BT
1EP +

E x(t), (8a)

u∗
2(t) = R−1

2 BT
2EP +

E x(t), (8b)

is in saddle-point equilibrium in the restricted class of feed-
back strategies that are strictly feedback stabilizing and un-
der which x(t) → 0 as t → ∞ for all x0.
For the convenience of the comparison between the full-
order saddle-point equilibrium and the near saddle-point
equilibrium later, we introduce the following useful lemma.
Lemma 1: The MARE (6) is equivalent to the follow-
ing generalized multiparameter algebraic Riccati equation
(GMARE) (9a)

AT P + P TA − P T SP + Q = 0, (9a)

PE = ΦEP = P TΦE , (9b)

where

ΦE =

⎡
⎣ In0 0 0

0 ε1In1 0
0 0 ε2In2

⎤
⎦ ,

A =

⎡
⎣ A00 A01 A02

A10 A11 0
A20 0 A22

⎤
⎦ ,

S = ST =

⎡
⎣ S00 S01 S02

ST
01 S11 0

ST
02 0 S22

⎤
⎦

= B1R
−1
1 BT

1 − B2R
−1
2 BT

2 ,

B1 =

⎡
⎣ B01

B11

0

⎤
⎦ , B2 =

⎡
⎣ B02

0
B22

⎤
⎦ ,

P =

⎡
⎢⎣

P00 ε1P
T
10 ε2P

T
20

P10 P11
1√
α

P T
21

P20

√
αP21 P22

⎤
⎥⎦ .



Combining the existing results recalled above and Lemma
1, we arrive at the following conclusions readily.
(i) The value of the full-order game, whenever it exists,
can be expressed as

J∗ =
1
2
xT

0 ΦEP +x0. (10)

(ii) The linear feedback saddle-point strategy pair, if it ex-
ists, can be expressed as

u∗
1(t) = −R−1

1 BT
1 P +x(t), (11a)

u∗
2(t) = R−1

2 BT
2 P +x(t), (11b)

where P + denotes the minimal positive definite solution in
the sense P +

E = ΦEP + > 0.

III. DECOMPOSITION OF THE FULL-ORDER
PROBLEM

In this section, we first decompose the full-order game into
a slow game and two fast control problems. Then, we dis-
cuss the solutions of the slow game and two fast control
problems respectively.
Slow game: The slow subsystem is formed by neglecting
the fast modes, which is equivalent to letting ε1,2 = 0 in
(1),

Eẋs(t) = Axs(t) + B1u1s(t) + B2u2s(t),
Exs(0) = Ex0, (12)

where xs(t) = [xT
0s(t) xT

1s(t) xT
2s(t)]T , E = ΦE |ε1,2=0

and A, B1 , B2 are defined in Lemma 1. The corresponding
reduced-order (slow) cost function is

Js =
1
2

∫ ∞

0

[zT
s (t)zs(t) + uT

1s(t)R1u1s(t)

−uT
2s(t)R2u2s(t)]dt, (13)

where zT
s (t) = [zT

0s(t) zT
1s(t) zT

2s(t)], z0s(t) =
C00x0s(t) ∈ Rr0 , zjs(t) = Cj0x0s(t) + Cjjxjs(t) ∈
Rrj , j = 1, 2.
Fast control problems: Two fast subsystems are derived
by assuming that the slow variables are constant during fast
transients, that is, ẋjs = 0, j = 1, 2 and x0s = a constant.
The fast subsystems are defined, respectively, as

εj ẋjf (t) = Ajjxjf(t) + Bjjujf (t),
xjf (0) = x0

j − xjs(0), j = 1, 2 (14)

where xjf = xj − xjs, u1f = u1 − u1s, and u2f = u2 −
u2s. The corresponding reduced-order (fast) cost functions
become

J1f =
1
2

∫ ∞

0

(xT
1fCT

11C11x1f + uT
1fR1u1f )dt (15)

and

J2f =
1
2

∫ ∞

0

(xT
2fCT

22C22x2f − uT
2fR2u2f )dt (16)

respectively. The purpose of Player 1 is to minimize J1f ,
while Player 2 will maximize J2f .
We now give some results concerning the solutions of the
slow game and two fast optimal control problems in a re-
verse order.
Two fast control problems are formulated as the linear
quadratic optimal control problems for state space systems
when stretched time scales τj = t/εj, j = 1, 2 are intro-
duced respectively. Therefore, we have
Proposition 1. Consider the fast control problems de-
scribed by (14), (15) and (14), (16) respectively, where
(Ajj , Cjj), j = 1, 2, are observable respectively. If the
algebraic Riccati equation

AT
jjPjjf+PjjfAjj−PjjfSjjPjjf+CT

jjCjj = 0, j = 1, 2
(17)

admits a unique stabilizing positive semidefinite solution
P +

jjf , j = 1, 2, then the linear feedback strategies

u∗
1f (t) = −R−1

1 BT
11P

+
11fx1f(t), (18a)

u∗
2f (t) = R−1

2 BT
22P

+
22fx2f (t), (18b)

constitute the optimal controls to the optimal control prob-
lems respectively. Moreover, the obtained optimal values
are

J∗
1f =

1
2
xT

1f (0)P +
11fx1f (0)

and

J∗
2f =

1
2
xT

2f (0)P +
22fx2f (0),

respectively.
Proposition 2. Consider the slow game described by (12),
(13), and suppose that the generalized algebraic Riccati
equation (GARE)

(i) AT Ps + P T
s A − P T

s SPs + Q = 0, (19a)

(ii) EPs = P T
s E, (19b)

admits a minimal positive-definite strictly stabilizing solu-
tion P +

s in the sense of EP +
s > 0, where

P +
s =

⎡
⎣ P +

00s 0 0
P +

10s P +
11f 0

P +
20s 0 P +

22f

⎤
⎦ .



Then, a linear feedback strategy pair

u∗
1s = −R−1

1 BT
1 P +

s xs, (20a)

u∗
2s = R−1

2 BT
2 P +

s xs, (20b)

is in a saddle-point equilibrium in the class of feedback
strategies that are strictly feedback stabilizing and under
which xs(t) is impulse-free and xs(t) → 0, as t → ∞ for
all Ex0. and the value of the slow game is given by

J∗
s =

1
2
x0T

0 P +
00sx

0
0.

Remark 1: It can be found that the block decomposition
of the GARE (19) is the same as the block decomposition
of the GMARE (9a) when ε1 → +0 and ε2 → +0. The
details are omitted (Xu and Mizukami, 1994)

IV. O(||µ||) NEAR SADDLE-POINT EQUILIBRIUM

In this section, we will construct a composite strategy pair
and prove that the obtained composite strategy pair is in
fact a O(||µ||) (near) saddle-point solution to the full-order
game.
Let us construct the composite strategy pair as follows.

u∗
1c(t)=u+∗

1s + u∗
1f + u∗

2f = −R−1
1 BT

1 P +
s x(t),(21a)

u∗
2c(t)=u+∗

2s + u∗
1f + u∗

2f = R−1
2 BT

2 P +
s x(t), (21b)

where x0(t) ≈ x0s(t), x1(t) ≈ x1s(t) + x1f (t) and
x2(t) ≈ x2s(t) + x2f (t).

P +
s =

⎡
⎣ P +

00s 0 0
P +

10s P +
11f 0

P +
20s 0 P +

22f

⎤
⎦

will be explained later.
We now want to apply the composite strategy pair
(u∗

1c, u
∗
2c) to the full-order game and compare it with the

exact linear feedback strategy pair (11). In order to do that,
we first study the asymptotic expansions of the MARE (6)
or the GMARE (9).
It is assumed that the limit of α exists as ε1 and ε2 tend to
zero, that is

ᾱ = lim
ε1→+0
ε2→+0

α.

The GMARE (9a) can be partitioned into

f1 = AT
00P00 + P00A00 + AT

10P10 + P T
10A10

+AT
20P20 + P T

20A20 − P T
20S22P20 + Q00

−P00S00P00 − P T
10S

T
01P00 − P00S01P10

−P T
20S

T
02P00 − P00S02P20 − P T

10S11P10 = 0, (22a)

f2 = P00A01 + P T
10A11 + ε1A

T
00P

T
10 + AT

10P11

−ε1(P00S00P
T
10 + P T

10S
T
01P

T
10 + P T

20S
T
02P

T
10)

−P00S01P11 − P T
10S11P11 +

√
αAT

20P21

−√
α(P00S02P21 + P T

20S22P21) + Q01 = 0, (22b)

f3 = P00A02 + P T
20A22 + ε2A

T
00P

T
20 + AT

20P22

−ε2(P00S00P
T
20 + P T

10S
T
01P

T
20 + P T

20S
T
02P

T
20)

−P00S02P22 − P T
20S22P22 +

√
α−1AT

10P
T
21

−√
α−1(P00S01P

T
21 + P T

10S11P
T
21) + Q02 = 0, (22c)

f4 = AT
11P11 + P11A11 + ε1(AT

01P
T
10 + P10A01)

−ε1(ε1P10S00P
T
10 + P11S

T
01P

T
10 +

√
αP T

21S
T
02P

T
10)

−ε1(P10S01P11 +
√

αP10S02P21)
−P11S11P11 − αP T

21S22P21 + Q11 = 0, (22d)

f5 = ε1P10A02 + ε2A
T
01P

T
20 − ε1ε2P10S00P

T
20

−ε2(P11S
T
01P

T
20 +

√
αP T

21S
T
02P

T
20)

−ε1(P10S02P22 +
√

α−1P10S01P
T
21)

+
√

α−1(A11 − S11P11)T P T
21

+
√

αP T
21(A22 − S22P22) = 0, (22e)

f6 = AT
22P22 + P22A22 + ε2(AT

02P
T
20 + P20A02)

−ε2(ε2P20S00P
T
20 + P22S

T
02P

T
20 +

√
α−1P21S

T
01P

T
20)

−ε2(P20S02P22 +
√

α−1P20S01P
T
21)

−P22S22P22 − α−1P21S11P
T
21 + Q22 = 0. (22f)

Taking the limitation of the GMARE (9a) or (22) when
ε1 → +0 and ε2 → +0, we obtain the following equa-
tions

AT
00P̄00 + P̄00A00 + AT

10P̄10 + P̄ T
10A10 + AT

20P̄20

+P̄ T
20A20 − P̄00S00P̄00 − P̄00S02P̄20

−P̄ T
10S

T
01P̄00 − P̄00S01P̄10 − P̄ T

20S
T
02P̄00

−P̄ T
10S11P̄10 − P̄ T

20S22P̄20 + Q00 = 0, (23a)

P̄00A01 + P̄ T
10A11 + AT

10P̄11 +
√

ᾱAT
20P̄21

−P̄ T
10S11P̄11 − P̄00S01P̄11 + Q01

−√
ᾱ(P̄00S02P̄21 + P̄ T

20S22P̄21) = 0, (23b)

P̄00A02 + P̄ T
20A22 + AT

20P̄22 +
√

ᾱ−1AT
10P̄

T
21

−P̄00S02P̄22 − P̄ T
20S22P̄22 + Q02

−√
ᾱ−1(P̄00S01P̄

T
21 + P̄ T

10S11P̄
T
21) = 0, (23c)

AT
11P̄11 + P̄11A11 − P̄11S11P̄11

−ᾱP̄ T
21S22P̄21 + Q11 = 0, (23d)√

ᾱP̄ T
21(A22 − S22P̄22)

+
√

ᾱ−1(A11 − S11P̄11)T P̄ T
21 = 0, (23e)

AT
22P̄22 + P̄22A22 − P̄22S22P̄22

−ᾱ−1P̄21S11P̄
T
21 + Q22 = 0, (23f)



where P̄00, P̄10, P̄20, P̄11, P̄21 and P̄22 are the 0-order so-
lutions of the GMARE (9a).
To solve the problem, we make the following basic condi-
tion without loss of generality (Dragan,1993).
(H1) The AREs AT

jjP̃jj + P̃jjAjj − P̃jjSjjP̃jj + Qjj =
0, j = 1, 2 admit the unique positive semidefinite stabiliz-
ing solutions respectively.
If the condition (H1) holds, there exist the solutions Pjj

+

such that the matrices Ajj − SjjPjj
+ are stable. Therefore,

we chose the solutions P̄jj as Pjj
+, where j = 1, 2. Then,

P +
21 = 0 in (23e) because the matrices Ajj − SjjP̄jj =

Ajj − SjjP
+
jj are stable. As a result, the parameter ᾱ dis-

appears from (23) automatically, that is, it does not affect
the equation (23) in the limit when ε1 and ε2 tend to zero.
Thus, the AREs (23) have the same structure with the block
decomposition of the GARM (19).
After some computations, we now obtain the following 0-
order equations.

AT
s P̄00 + P̄00As − P̄00SsP̄00 + Qs = 0, (24a)

P̄j0
T = P̄00N0j − M0j , j = 1, 2, (24b)

AT
jjP̄jj + P̄jjAjj − P̄jjSjjP̄jj + Qjj = 0,(24c)

where

As = A00 + N01A10 + N02A20 + S01M
T
01

+S02M
T
02 + N01S11M

T
01 + N02S22M

T
02,

Ss = S00 + N01S
T
01 + S01N

T
01 + N02S

T
02

+S02N
T
02 + N01S11N

T
01 + N02S22N

T
02,

Qs = Q00 − M01A10 − AT
10M

T
01 − M02A20

−AT
20M

T
02 − M01S11M

T
01 − M02S22M

T
02,

N0j = −D0jDjj
−1, M0j = Q̄0jDjj

−1,

Q̄0j = Aj0
T P̄jj + Q0j ,

D00 = A00 − S00P̄00 − S01P̄10 − S02P̄20,

D0j = A0j − S0j P̄jj,

Dj0 = Aj0 − S0j
T P̄00 − SjjP̄j0,

Djj = Ajj − SjjP̄jj , j = 1, 2.

The matrices As, Ss and Qs do not depend on P̄jj, j =
1, 2 because their matrices can be computed by using
Tpq , p, q = 0, 1, 2 which are independent of P̄jj , j =
1, 2, that is,

Ts = T00 − T01T
−1
11 T10 − T02T

−1
22 T20

=
[

As −Ss

−Qs −AT
s

]
,

T00 =
[

A00 −S00

−Q00 −AT
00

]
, T0j =

[
A0j −S0j

−Q0j −AT
j0

]
,

Tj0 =
[

Aj0 −ST
0j

−QT
0j −AT

0j

]
, Tjj =

[
Ajj −Sjj

−Qjj −AT
jj

]
.

Note that the Hamiltonian matrices

Tjj :=
[

Ajj −Sjj

−Qjj −AT
jj

]
, j = 1, 2

are nonsingular under the condition (H1) because of

Tjj =
[

Inj 0
P̄ T

jj Inj

][
Djj −Sjj

0 −DT
jj

][
Inj 0
−P̄jj Inj

]

⇔ T−1
jj =

[
Inj 0
P̄jj Inj

][
D−1

jj −D−1
jj SjjD

−T
jj

0 −D−T
jj

]

×
[

Inj 0
−P̄ T

jj Inj

]
.

We now assume,
(H2) The ARE (24a) has the minimal positive definite sta-
bilizing solution.
It should be remarked that the solution PE of (6) is a func-
tion of the parameters ε1 and ε2. But, the solutions P̄00

and P̄jj, j = 1, 2 of (24a) and (24c) are independent of
the parameters ε1 and ε2, respectively. The following theo-
rem will establish the relation between PE and the reduced-
order solutions (23).
Theorem 1: Under the conditions (H1) and (H2), there ex-
ist small ε∗1 and ε∗2 such that for all ε1 ∈ (0, ε∗1) and
ε2 ∈ (0, ε∗2), the MARE (6) admits a symmetric positive
semidefinite stabilizing solution PE which can be written
as

PE

=

⎡
⎣ P̄00 + F00 ε1(P̄10 + F10)T ε2(P̄20 + F20)T

ε1(P̄10 + F10) ε1(P̄11 + F11)
√

ε1ε2FT
21

ε2(P̄20 + F20)
√

ε1ε2F21 ε2(P̄22 + F22)

⎤
⎦ ,

(25)

where

Fpq = O(||µ||), µ = [ε1, ε2], ||Fpq|| = cpq < ∞,

pq = 00, 10, 20, 11, 21, 22.
In order to prove Theorem 1, we need the following lemma
(Khalil, 1978).
Lemma 2: Consider the system

ẋ0(t) = A00x0(t) + A01x1(t) + A02x2(t), x0
0,

ε1ẋ1(t) = A10x0(t) + A11x1(t) + ε3A12x2(t), x0
1,

ε2ẋ2(t) = A20x0(t) + ε4A21x1(t) + A22x2(t), x0
2,

where x0 ∈ Rn0, x1 ∈ Rn1 and x2 ∈ Rn2 are the state
vector. ε3, ε4 are small weak coupling parameters, ε1 and



ε2 are small positive singular perturbation parameters of
the same order of magnitude with (3). If Ajj

−1, j = 1, 2
exist, and if A0 ≡ A00 − A01A

−1
11 A10 − A02A

−1
22 A20,

Ajj , j = 1, 2 are stable matrices, then there exist small
ε̂1 and ε̂2 such that for all ε1 ∈ (0, ε̂1) and ε2 ∈ (0, ε̂2),
the system is asymptotically stable.
Now, let us prove Theorem 1.

Proof: Since the MARE (6) is equivalent to the
GMARE (9a) from Lemma 1, we apply the implicit func-
tion theorem (Gajic, 1988) to (9a). To do so, it is sufficient
to show that the corresponding Jacobian is nonsingular at
ε1 = 0 and ε2 = 0. It can be shown, after some computa-
tions, that the Jacobian of (9a) in the limit is given by

J = ∇F|(µ, P)=(µ0, P0)

=
∂vec(f1, f2, f3, f4, f5, f6)

∂vec(P00, P10, P20, P11, P21, P22)T

=

⎡
⎢⎢⎢⎢⎢⎢⎣

J00 J01 J02 0 0 0
J10 J11 0 J13 J14 0
J20 0 J22 0 J24 J25

0 0 0 J33 0 0
0 0 0 0 J44 0
0 0 0 0 0 J55

⎤
⎥⎥⎥⎥⎥⎥⎦

, (26)

where vec denotes an ordered stack of the columns of its
matrix and

µ = (ε1, ε2), µ0 = (0, 0),
P = (P00, P10, P20, P11, P21, P22),
P0 = (P̄00, P̄10, P̄20, P̄11, 0, P̄22),
J00 = In0 ⊗ D00

T + D00
T ⊗ In0 ,

J0j = (In0 ⊗ Dj0
T )Un0nj + Dj0

T ⊗ In0 ,

Jj0 = D0j
T ⊗ In0 , Jjj = Djj

T ⊗ In0 , j = 1, 2,

J13 = In1 ⊗ D10, J14 =
√

ᾱ(In1 ⊗ D20)Un1n2 ,

J24 =
√

ᾱ−1In2 ⊗ D10, J25 = In2 ⊗ D20,

J33 = (In1 ⊗ DT
11)Un1n1 + DT

11 ⊗ In1 ,

J44 =
√

ᾱDT
22 ⊗ In1 +

√
ᾱ−1In2 ⊗ DT

11,

J55 = (In2 ⊗ DT
22)Un2n2 + DT

22 ⊗ In2 ,

where ⊗ denotes Kronecker products and Unjnj , j =
0, 1, 2 is the permutation matrix in Kronecker matrix
sense.
The Jacobian (26) can be expressed as

detJ = detJ33 · detJ44 · detJ55

·det

⎡
⎣ J00 J01 J02

J10 J11 0
J20 0 J22

⎤
⎦

= detJ33 · detJ44 · detJ55 · detJ11 · detJ22

·det(J00 − J01J
−1
11 J10 − J02J

−1
22 J20)

= detJ11 · detJ22 · detJ33 · detJ44 · detJ55

·det[In0 ⊗ DT
0 Un0n0 + DT

0 ⊗ In0 ], (27)

where D0 ≡ D00 − D01D
−1
11 D10 − D02D

−1
22 D20. Ob-

viously, Jjj , j = 1, · · · , 5 are nonsingular because the
matrices Djj = Ajj − SjjP̄jj , j = 1, 2 are nonsin-
gular under the condition (H1). After some straightfor-
ward algebra but tedious, we see that the As − SsP̄00 =
D00 − D01D

−1
11 D10 − D02D

−1
22 D20 = D0. Therefore, the

matrix D0 is nonsingular if the condition (H2) holds. Thus,
detJ �= 0, i.e., J is nonsingular at (µ, P) = (µ0, P0).
The conclusion of the first part of Theorem 1 is obtained
directly by using the implicit function theorem. The sec-
ond part of the proof of Theorem 1 is performed by direct
calculation. By using (25), we obtain

Φ−1
E (A − SP )

= Φ−1
E

⎛
⎝

⎡
⎣ D00 D01 D02

D10 D11 0
D20 0 D22

⎤
⎦ + O(||µ||)

⎞
⎠ .

We know from Lemma 2 that for sufficiently small ||µ|| the
matrix Φ−1

E (A − SP ) will be stable. On the other hand,
since P̄00 ≥ 0, P̄11 ≥ 0 and P̄22 ≥ 0, PE is positive
semidefinite as long as ε1 > 0 and ε2 > 0 by using the
Schur complement. Therefore, the proof on Theorem 1
ends.
Since PE = ΦEP , we have

P

=

⎡
⎣ P̄00 + F00 ε1(P̄10 + F10)T ε2(P̄20 + F20)T

P̄10 + F10 P̄11 + F11
√

α
−1FT

21

P̄20 + F20
√

αF21 P̄22 + F22

⎤
⎦ .(28)

Under the conditions (H1) and (H2), we have P̄11 = P11f
+,

P̄22 = P +
22f , P̄00 = P +

00s, P̄10 = P +
10s, P̄20 = P +

20s. There-
fore, we readily have

u∗
1(t) = u∗

1c(t) + O(||µ||), (29a)

u∗
2(t) = u∗

2c(t) + O(||µ||). (29b)

Furthermore, we will show the O(||µ||2) approximation
between J∗ and J∗

c .
Applying the composite strategy pair (u∗

1c, u
∗
2c) to the full-

order game described by (1),(3), we have

J∗
c =

1
2
xT (0)PcEx(0), (30)

where PcE is the solution of the Lyapunov equation

(AE − SEP +
sE)T PcE + PcE(AE − SEP +

sE)
= −P+

sESEP +
sE − Q, (31)



where P +
sE = ΦEP +

s .
Theorem 2: Under the conditions of Theorem 1, we have

J(u∗
1c, u

∗
2c) = J(u∗

1, u∗
2) + O(||µ||2), (32)

with J∗
c > J∗ for S > 0, and J∗

c < J∗ when S < 0, where
S := Φ−1

E SEΦ−1
E .

Before proving this theorem, we introduce the following
lemma (Mukaidani et al., 2001).
Lemma 3: Consider the iterative algorithm which is based
on the Kleinman algorithm

(A − SP (i))T P (i+1) + P (i+1)T (A − SP (i))
+P (i)TSP (i) + Q = 0, i = 0, 1, ... , (33a)

P (i) =

⎡
⎢⎣

P
(i)
00 ε1P

(i)T
10 ε2P

(i)T
20

P
(i)
10 P

(i)
11

√
α
−1

P
(i)T
21

P
(i)
20

√
αP

(i)
21 P

(i)
22

⎤
⎥⎦ , (33b)

with the initial condition obtained from

P (0) =

⎡
⎣ P̄00 0 0

P̄10 P̄11

√
ᾱ
−1

P̄21

P̄20

√
ᾱP̄21 P̄22

⎤
⎦ . (34)

Under the conditions (H1) and (H2), there exists a small
σ̄ such that for all ||µ|| ∈ (0, σ̄), σ̄ ≤ σ∗ Kleinman
algorithm (33) converges to the exact solution of PE =
ΦEP = P T ΦE with the rate of quadratic convergence,

where P
(i)
E = ΦEP (i) = P (i)T ΦE is positive semidefinite.

||P (i) − P || = O(||µ||2i

), i = 0, 1, ..., (35)

where

γ = 2||S|| < ∞, β = ||[∇G(P (0))]−1||,

η = β · ||G(P (0))||, θ = βηγ, ∇G(P ) =
∂vecG(P )
∂(vecP )T

.

Proof: When u∗
1c and u∗

2c are used, the value of the
performance index is given by (30). Subtracting (6) from
(31) we find that VE = PcE − PE satisfies the following
multiparameter algebraic Lyapunov equation (MALE)

(AE − SEP +
sE)T VE + VE(AE − SEP +

sE)
+(PE − P +

sE)SE (PE − P +
sE) = 0. (36)

Since AE − SEP +
sE is stable, using the standard Lyapunov

theorem (Zhou, 1998), we have J(u∗
1c, u

∗
2c) > J(u∗

1, u∗
2)

for S > 0, and J(u∗
1c, u

∗
2c) < J(u∗

1, u∗
2) when S < 0. On

the other hand, subtracting (6) from (33a) we also get the
MALE

(AE − SEPE(i))T (PE(i+1) − PE)
+(PE(i+1) − PE)(AE − SEPE(i))
+(PE − PE(i))SE (PE − PE(i)) = 0, (37)

where P
(i)
E = ΦEP (i). When i = 0, we have

(AE − SEPE(0))T (PE(1)−PE)
+(PE(1)−PE )(AE − SEPE(0))
+(PE − PE(0))SE (PE − PE(0))

= (AE − SEPsE+)T (PE(1)−PE )
+(PE(1)−PE )(AE − SEPsE+)
+(PE − PsE+)SE (PE − PsE+) = 0.

Therefore, it is easy to verify that VE = P
(1)
E − PE be-

cause AE − SEP +
sE is stable from Theorem 1 in Khalil and

Kokotović (1979). Using Lemma 3 we obtain that

||VE || = ||PcE − PE || = ||PE(1) − PE ||
≤ ||ΦE|| · ||P (1) − P ||
≤ ||P (1) − P || = O(||µ||2). (38)

Hence, we have VE = PcE−PE = O(||µ||2), which implies
(32).
Finally, by using the similar method(Xu and Mizukami,
1997), we show that the composite approximation
(u∗

1c, u
∗
2c) of the full-order linear feedback saddle-point so-

lution constitutes the O(||µ||) near saddle-point equilibrium
of the full-order game.
Theorem 3: Under the conditions of Theorem 1, the com-
posite feedback strategy pair (u∗

1c, u
∗
2c) constitutes the

O(||µ||) near saddle-point equilibrium of the full-order
game, that is,

J(u∗
1c, u2) − O(||µ||)

≤ J(u∗
1c, u∗

2c)
≤ J(u1, u∗

2c) + O(||µ||). (39)

V. CONCLUSION

In this paper, we have studied the infinite horizon zero-sum
differential games for multiparameter singularly perturbed
systems. We have shown that the composite approxima-
tion of the full-order linear feedback saddle-point solution
(u∗

1c, u
∗
2c) constitutes the O(||µ||) near saddle-point equi-

librium of the full-order game, and the resulting value is
O(||µ||2) over or below the exact value of the full-order
game which depends on the parameters of the system. The
conclusions obtained in this paper are similar to those in the
paper (Xu and Mizukami, 1997) where the same problem



for singularly perturbed systems are considered. However,
it is worth to note that the method used to prove the results
in the paper (Xu and Mizukami, 1997) is not suitable to the
differential games for the MSPS. In this paper, we have de-
veloped a different method to prove the results (Mukaidani,
et al., 2001)
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