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Abstract - In this paper, we study the infinite horizon zero-
sum differential games for both standard and nonstandard
multiparameter singularly perturbed systems. A composite
approximation of the full-order linear feedback saddle-point
solution isobtained by decomposing thefull-order game prob-
lem into a slow game and two fast control problems. It is
proven that such a composite approximation formsan O(||u|)
(near) saddle-point equilibrium of the full-order game, and
theresulting valueis O(|u1|*) over or below the exact value of
thefull-order game depending on the given game parameters.

Keywords— Multiparameter, singular perturbation, differen-
tial games, saddle-point equilibrium.

I. INTRODUCTION

In this paper, we study the infinite horizon zero-sum differ-
ential games of multiparameter singularly perturbed sys-
tems. A composite approximation of the full-order lin-
ear feedback saddle-point solution is obtained by decom-
posing the full-order game into a slow game and two fast
control problems. It is anticipated that such a composite
approximation can achieve an O(|x|) (near) saddle-point
equilibrium of the full-order game, and the resulting value
is O(||u1]?) over or below the exact value of the full-order
game which depends on the parameters of the system. In
order to prove these anticipatations, we first investigate the
properties of the multiparameter algebraic Riccati equa
tion(MARE) and establish its asymptotic structure. Then,
we compare the structures of the composite approxima-
tion of the full-order linear feedback saddle-point solution
and the main terms of the asymptotic expansions of the
MARE. We find that the main terms, which are indepen-
dent of the small positive singular perturbation parameters,
in the asymptotic expansions of the MARE determine the
composite approximation. As the result, we prove that the
anticipations stated above are correct.

Since we treat the dow game as the game for a specia
kind of descriptor systems, the results obtained are valid
for both standard and nonstandard multiparameter singu-
larly perturbed systems.

Il. PROBLEM FORMULATION

We consider the linear time-invariant multiparameter sin-
gularly perturbed systems(M SPS)

x.o (t) = Aooxo (t) + Aolxl(t) + AQQJ?Q(t)

+Boiu1 (t) + BQQU,Q(t), X0 (O) = xg,(la)

e141(t) = Aroxo(t) + A1121(t) + Briua(¢),

1(0) = 2, (1b)
e9do(t) = Asgoxo(t) + Asawa(t) + Baosus(t),

22(0) = 29, (1c)

wherez; € R", j =0, 1, 2 are the state vectors, u; €
R™ is the control vector of Player 1, and us € R™2 is
the control vector of Player 2. All the matrices above are
constant matrices of appropriate dimensions.

€1 and e, are two unknown small positive singular pertur-
bation parameters of the same order of magnitude such that

O<k1§azi—1§kj2<oo. )
2

That is, we assume that the ratio of £; and ¢5 is bounded
by some positive constants k5, j = 1, 2. Since we do not
know the values of ¢, and 5, we can not reduce them to
asingle singular perturbation parameter. Note that the fast
state matrices A;;,7 = 1, 2 may be singular. The sys-
tem (1) is called a standard multiparameter singularly per-
turbed system if the matrix A;; is nonsingular, otherwise it
is called a nonstandard M SPS.

In a differential game problem of the MSPS, a quadratic
cost functional is given by

J = §Am[zT(t)z(t)—|—uf(t)R1u1(t)

—ug (t)Raus(t)]dt, (3)

where 2T(t) = [21(t) 2F'(t) 2L (t)], 20(t) = Coozo(t) €
R, Zj(t) = ngxg(t) + ijxj(t) eR, j=1, 2. The



goa of Player 1 isto minimize the cost function J while
Player 2 would like to maximize it.

Definition 1. An admissible feedback strategy pair
(uy,u3) € Ty, x Ty, isinasaddle-point equilibrium if

J(“Ia U'Q) < J(“Ia U’;) < J(ula U,;), (4)

forall (uy,us) € Ty, x Ty, and (ug, ub) € Ty X Ty
In Definition 1, the admissible strategy pairsset ", x Ty,
iscomposed of the feedback strategy pair (u1, us) suchthat
the obtained closed-loop system is strictly feedback stabi-
lizing for all initial conditions z:4(0) = zJ, 1 (0) = 29 and
x2(0) = 29. The existence of a saddle-point equilibrium is
a strong condition in general. A weaker version of saddle-
point equilibrium, called 1 (near) saddle-point equilibrium,
is defined below (Bagar and Olsder, 1995).

Definition 2. For a given . > 0, an admissible feedback
strategy pair (uf,u3) € T'y, x Ty, isinay (near) saddle-
point equilibrium if

Jul,ug) —p < J(uj,uy) < J(up,usy) +p (5)

forall (uy,us) € Ty, x Ty, and (ug, ud) € Tyy X Ty
From the existing theory on linear quadratic differential
game, we know that for e > 0, e2 > 0, the zero-sum
differential game described by (1) and (3) has equal upper
and lower valuesif the MARE

AL Pg + PeAg — PeSgPe +Q = 0, (6)

admits aminimal positive definite symmetric solution P,
where

T T
POO ElPlO EQPQO

T

Ps=| 1P 1P Vei1e2 Py
ealPa (/€162 €9Pa

T T T
Poo = Foo, Pr1 = Pry, Paa = Pa,

Ago A1 Ap2
Ag = El_lAlo 81_1A11 0 s
82_1A20 0 82_1A22
Soo €7 So1 €5 ' Soe
Se=SE = | 'St e7%Sn 0
52_15(7;2 0 52_2522 :|

= Bie Ry 'Bl; — Bye Ry ' Bl

BOl BOQ
Big= | e'Bi1 |, B = 0 ;
0 52_1322

Qoo Qo1 Qo2
R=Q"=1 QL Qu 0 |,
QR 0 Qn

Qoo = CECop + CT,C1o + CF Cao,
Q1 = CT,C11, Qa2 = CH o,
Qo1 = C1,C11, Qo2 = O3 Cos,

and the value of the gameis given by

1
J* = §ngg+x0, @)

where 21" = [237 297 297]. Moreover, if we further as-
sumethat PgL isthe strictly feedback stabilizing solution to

the MARE (6), then the linear feedback strategy pair

ui(t) = —Ry "Bl Pfa(t),
us(t) = Ry'BigPda(t),

(82)
(8b)

isin saddle-point equilibrium in the restricted class of feed-
back strategiesthat are strictly feedback stabilizing and un-
der which z(t) — 0 ast — oo for al .

For the convenience of the comparison between the full-
order saddle-point equilibrium and the near saddle-point
equilibrium later, we introduce the following useful lemma.
Lemmal: The MARE (6) is equivalent to the follow-
ing generalized multiparameter algebraic Riccati equation
(GMARE) (99)

ATP4+PTA-PTSP+Q =0,
P = ®cP = PTog,

(92)
(9b)

where

0 0 52]n2
Agp Aor Ao
A= Aoy An O ;
Ag 0 Ag
Soo So1  So2
S=8T=| S8 Su 0
Sgﬂz 0 Soo

= BiR;'Bf — ByR;'BY,

Bo1 Boz |
Bi=| Bi1 |, Bo= 0 ,

0 By |
POO Elpf;) EIQPQ% 7

P= [ PlO P11 ﬁpg;
Py \aPy Py



Combining the existing results recalled above and Lemma
1, we arrive at the following conclusions readily.

(i) The value of the full-order game, whenever it exists,
can be expressed as

1
J* = 53;{ Pe Py, (10)

(ii) Thelinear feedback saddle-point strategy pair, if it ex-
ists, can be expressed as
ul(t) = —R7'BT PTa(t),
uy(t) = Ry'BIPTa(t),

(11a)
(11b)

where P denotes the minimal positive definite solutionin
thesense P = &P > 0.

I1l. DECOMPOSITION OF THE FULL-ORDER
PROBLEM

In this section, we first decompose the full-order game into
a slow game and two fast control problems. Then, we dis-
cuss the solutions of the slow game and two fast control
problems respectively.
Slow game: The slow subsystem is formed by neglecting
the fast modes, which is equivalent to letting e12 = 0 in
(1)1
Eig(t) = Axs(t) + Bruis(t) + Bauags(t),
Ex,(0) = Euxy, (12)

where z,(t) = [af,(t) 2{,(t) 23,(t)]", B = Pele, ,—0
and A, By, B, aredefined in Lemma 1. The corresponding
reduced-order (slow) cost function is

1

-1 /0 T ()2 (0) + (1) Riuns()

—ugs (t) Raugs(t)]dt,

where 2/ (t) = [:0,(t) 21,(t) 23,()], 20s(t) =
Cooxos(t) € R, st(t) = joxos(t) + ijxjs(t) S
R, j=1, 2.

Fast control problems: Two fast subsystems are derived
by assuming that the slow variables are constant during fast
transients, that is, #;s = 0, j = 1,2 and zo, = a constant.
The fast subsystems are defined, respectively, as

gjdjp(t) = Ajjajp(t) + Bjju;g(t),
zir(0) = a9 —;5(0), j =1, 2
wherez;r = x; — Tjq, U1f = U1 — U, AN ugy = up —

ugs. The corresponding reduced-order (fast) cost functions
become

(13)

(14)

1

Jip = 5/0 (xffCﬂCnxlf + ufleulf)dt (15)

and

1 o0
Jop = 5/0 (ngCgQngfo — ungquf)dt (16)

respectively. The purpose of Player 1 isto minimize J;,
while Player 2 will maximize Jo .

We now give some results concerning the solutions of the
dow game and two fast optimal control problemsin are-
verse order.

Two fast control problems are formulated as the linear
quadratic optimal control problems for state space systems
when stretched time scales 7; = t/e;,j = 1,2 areintro-
duced respectively. Therefore, we have

Proposition 1. Consider the fast control problems de-
scribed by (14), (15) and (14), (16) respectively, where
(4;;,Cjj), j = 1, 2, are observable respectively. If the
algebraic Riccati equation

APy 4Py A= PSP +C5Ch5 =0, j = (1172)
admits a unique stabilizing positive semidefinite solution

Py, j =1, 2, then the linear feedback strategies

uiy(t) = =Ry Bl Pl rp(t), (18a)

ubs(t) = Ry'BioPshwap(t), (18b)

congtitute the optimal controls to the optimal control prob-
lems respectively. Moreover, the obtained optimal values
are

N 1
Jiy = §$1Tf(O)P1tf$1f(0)

and
.1
J3p= §x§f(0)P;5fx2f(0),

respectively.
Proposition 2. Consider the slow game described by (12),
(13), and suppose that the generalized algebraic Riccati
equation (GARE)
(i)  ATP,+P/A-P[SP,+Q=0, (19%)
(i) ~ EP,=PTE, (19b)

admitsaminimal positive-definite strictly stabilizing solu-
tion P;f inthe senseof EP;" > 0, where

Py, 00
Pj_: Pl—"(_)s Pl—qf 0 .



Then, alinear feedback strategy pair

* —1 pT p+
Urs = _Rl Bl R@ Ts,
_ p-1pTp+
U';s - RQ BQ R@ Ts,

(20a)
(20b)

is in a saddle-point equilibrium in the class of feedback
strategies that are strictly feedback stabilizing and under
which z4(t) isimpulse-free and z5(¢t) — 0, ast — oo for
al Fxq. and the value of the Slow game is given by

1
* 0T p+ .0
Jg = 5% Poosto-

Remark 1: It can be found that the block decomposition
of the GARE (19) is the same as the block decomposition
of the GMARE (9a) whene; — 40 and e — +0. The
details are omitted (Xu and Mizukami, 1994)

IV. O(|p|) NEAR SADDLE-POINT EQUILIBRIUM

In this section, we will construct a composite strategy pair
and prove that the obtained composite strategy pair is in
fact aO(||p|) (near) saddle-point solution to the full-order
game.

L et us construct the composite strategy pair as follows.

ul () =u + ulp+usp = —R;'BIPfa(t),(219)

ub(t) =ug’ + ulp+usp = Ry'BY Pfa(t), (21b)

where xo(t) ~ zos(t), x1(t) =~
xQ(t) ~ $23(t) + ng(t).

xls(t) + xlf(t) and

Py, 00
Py, 0 Py

Pr=

S

will be explained later.

We now want to apply the composite strategy pair
(uf,,us,) to the full-order game and compare it with the
exact linear feedback strategy pair (11). In order to do that,
we first study the asymptotic expansions of the MARE (6)
or the GMARE (9).

It is assumed that the limit of « existsase; and e- tend to
zero, that is

The GMARE (9a) can be partitioned into

fi = Ay Poo + PooAgo + ATy Pro + Py Avg

+ AL Poy + Pih Asg — P Sos Pag + Qoo
— PooSoo Poo — P15t Poo — PooSo1 Pro
— P ST, Poo — PooSo2 Pao — Py S11Pio =0, (228)

fo = PooAo1 + Pl A1 + e1 ALy Ply + ALy Pra
—e1(PooSoo Py + P ST Pl 4 Pay S PL)
—PooSo1 P11 — PLS11 Py + VaAL Py
—v/a(PooSo2Pa1 + P3yS22Po1) + Qo1 = 0,

f3 = PooAoa + PayAgo + e2 AL PR + AL Pos
—e9(PooSoo Pay + PiySE P + Pay S P)
— P9 So2 Py — P3ySaa Pao + v/a AL P,
—Va  (PooSo1 Py + PlyS11P3y) + Qo2 = 0, (22¢)

fa=AT P+ PA+ 51(A51P17;) + PigAo1)
—e1(e1ProSoo Piy + P1153y Pl + VaPy, Sg, PLh)
—£1(P10So01 P11 + VaP19So2 Pa1)
—P11S11 P11 — aPJ S5 Poy + Q11 = 0,

f5s = e1Pio Aoz + £2 A%, Py — 12 P10So00 Py
—e2(P1150; Pag + VaP3, 505 Pag)
—e1(P10So2 Poz + va ' PigSo1 Py)
+va (A — S11 P )T P
+/aPl (Agy — SaaPay) = 0,

fo = A2, Pog + PagAgs + 2(AL, Pay + PapAg2)
—ée9(22P20So0 Pag + Pa2 Sy Py 4+ Vo™t Pay ST P3h)
—e2(P20So2Pos + Vo P So1 P,
—P3522Pas — o ' P21 S11Pgy + Qa2 = 0.

(22b)

(22d)

(22¢)

(22f)

Taking the limitation of the GMARE (9a) or (22) when
g1 — +0 and e; — 40, we obtain the following equa-
tions

AL Poo + PooAgo + ATy Pro + Pl Ao + AL Py
+P3 Aao — PooSo0 Poo — PooSo2 P20
—PLSE Poo — PooSo1 Pro — Pay S Poo

—1517;)5'11]510 - pg;)SQQPQO + Qoo =0, (239)
Poo Ao + PLA + AL Py + VaAL Py

—P{S11 P11 — PyoSo1 P + Qou

—Va(PooSoaPa1 + Pay S22 Po1) = 0, (23b)

Poo Aoz + Py Agg + AL Pay +Va=t AT P
— Py So2 Paz — PES20Pas + Qoo

—Va Y (PyoSor P, + PLS11 PH) =0,  (23¢)
Aﬂpn + P11 Ay — P11 S Py

—a P} S22 Po1 + Q11 = 0, (23d)
VaP] (Agy — S22 Pao)

+Va (A — S Pin) P =0, (23¢)
ALy Py + Pay Aoy — Pz Soo Pas

—a Py S PL + Qa0 =0, (23f)



where POO, PlO: Pgo, pll: pgl and PQQ are the 0-order so-
[utions of the GMARE (9a).

To solve the problem, we make the following basic condi-
tion without loss of generality (Dragan,1993).

(H1) The AREs A}}ij + ijAjj — P;;S;iPj; +Qj; =
0, j = 1,2 admit the unique positive semidefinite stabiliz-
ing solutions respectively.

If the condition (H1) holds, there exist the solutions P;
such that the matrices A;; — S;; P;l; are stable. Therefore,
we chose the solutions P;; as Pj;, where j = 1, 2. Then,
P;i =0in (238) because the matrices Ajj — Sjjpjj =
Ajj — Sijj’; are stable. As aresult, the parameter & dis-
appears from (23) automatically, that is, it does not affect
the equation (23) in the limit when £, and e, tend to zero.
Thus, the AREs (23) have the same structure with the block
decomposition of the GARM (19).

After some computations, we now obtain the following 0-
order equations.

AT Pyo + PooAs — PooSsPoo + Qs =0, (24d)
Pjiy = PooNoj — My;, j =1, 2, (24b)
AJ;Pjj + PyjAj; — PijS;iPyj + Qj5 = 0(240)

where

Ay = Ago + No1 A1 + NoaAzg + So1 M,
+8S02 Mgy + No1S11 M + Noz S2a M5,
Sy = Soo + No1SE + So1 Ny + No2Ses
+S02 Ny 4+ No1S11NJ; + No2Soa N,
Qs = Qoo — Mo1 A1g — ALy Mg, — MoaAsg
— A3 My — Mo1S11 Mgy — Mo Saa M,
Noj = —Do; Djj', Moj = Qo; D3,
Qoj = AJoP;; + Qoj,
Doo = Aoo — SooPoo — So1Pro — SozPao,
Doj = Aoj — So; Pjj,
Djo = Ajo — S3;Poo — S;; Pjo,
Djj = Ajj — Sj;Pjj, =1, 2.
The matrices A,, Ss and @, do not depend on P;;, j =
1, 2 because their matrices can be computed by using
Tpq: . ¢ = 0, 1, 2 which are independent of P;;, j =
1, 2,thatis,

Ts = Too — Tor Ty1' Tio — To2 Ty Tao
N _Qs _A? ’

Ago —500] [ Ao;
0 [—Qoo —AOTO P j
A
n-[
j

Note that the Hamiltonian matrices

A Sy
Tj5 = [ —Qjj _AT

are nonsingular under the condition (H1) because of

7o | Iy O || D =5 In; 0O
v Pj; In, 0 _D?j —Pjj In;

We now assume,

(H2) The ARE (24a) has the minimal positive definite sta-
bilizing solution.

It should be remarked that the solution Pg¢ of (6) is afunc-
tion of the parameters £; and £5. But, the solutions Py
and Pj;, j = 1, 2 of (243) and (24c) are independent of
the parameters e, and e,, respectively. The following theo-
remwill establish the relation between Ps and the reduced-
order solutions (23).

Theorem 1: Under the conditions (H1) and (H2), there ex-
ist small e and &5 such that for al ey € (0, 7) and
g9 € (0, €3), the MARE (6) admits a symmetric positive
semidefinite stabilizing solution P¢ which can be written
as

Pe

]5904-.7:00
= | e1(Pro + Fio) e1(Prn+ Fn1)
e2(Pao + F20)  E182F21

e1(Pio + Fro0)" e2(Pao + Fa0) "

VEIE2FS) ;
€2(Pag + Fa2)

(25)
where

Fpg = O(lul)s p=le1,e2], | Fpal = cpg < 00,
pg = 00, 10, 20, 11, 21, 22.
In order to prove Theorem 1, we need the following lemma
(Khalil, 1978).
Lemma2: Consider the system

io(t) = Aooxo(t) + Aolxl(t) + Aogxg(t), $8,
Elil(t) = Aloxo(t) + Anxl(t) + €3A12$2(t), x(l),
Egig(t) = Agoxo(t) + €4A21.231(t) + Aggxg(t), xg,

where g € R™, 27 € R™ and x5 € R"2 are the state
vector. e3, £4 are small weak coupling parameters, ; and



€9 are small positive singular perturbation parameters of
the same order of magnitude with (3). If A7, j =1, 2
exist, and if Ag = Agy — AglAl_llAlo — A02A2_21A20,
Ajj, j = 1, 2 are stable matrices, then there exist small
€1 and &5 such that for al e; € (0, 1) and ey € (0, &3),
the system is asymptotically stable.

Now, let us prove Theorem 1.

Proof:  Since the MARE (6) is equivalent to the
GMARE (9a) from Lemma 1, we apply the implicit func-
tion theorem (Ggjic, 1988) to (94). To do so, it is sufficient
to show that the corresponding Jacobian is nonsingular at
g1 = 0 and e; = 0. It can be shown, after some computa-
tions, that the Jacobian of (98) in the limit is given by

J = VF‘(M P)=(ro, Po)

_ Ovec(fi, fa; f3, fa, [5, o)
ovec(Poo, Pio, Pao, P11, Po1, Pa2)”

Joo Jor Jo2 O 0 0
Jo Ju 0 Jiz Juu O

| Jo 0 Jaa 0 Jog Jos
o 0 0 Jsz3 O 0 » (29

0
0 0 0 0 Juu O
0 0 0 0 0 Jss

where vec denotes an ordered stack of the columns of its
matrix and

p=(e1, €2), po = (0, 0),

P = (Poo, Pro, Peo, P11, Po1, Po2),

Po = (Poo, Pro, P20, P11, 0, Paa),

Joo = Iy ® Dgb + Dgb @ Iy,

Joj = (Iny ® Djt)Unyn; + Djo @ Iy,
Jjo=Dds @ Iy, Jjj = DE @1, =1, 2,
Jis = I, ® Dio, Jia = Va(In, @ D2o)Unin,,
Joa = Va ', ® Dig, Jas = I, @ Dag,
J33 = (Iny ® D{)Unyny + DYy @ Iy,

Ju =VaDi, ® I, +Va'I,, ® D},

Jss = (In, @ DL)Upyn, + DL @ 1,

where ® denotes Kronecker products and U, ;n;, j =
0, 1, 2 is the permutation matrix in Kronecker matrix
sense.

The Jacobian (26) can be expressed as

detJ = detJ33 -detJ44 . detJ55
Joo  Jo1  Jo2
-det JlO J11 0
Jao 0 J22

= detJ33 -detJ44 . detJ55 . detJ11 . detJQQ

-det(Joo — JorJ1; J10 — Joaday J20)
= detJ11 'detJQQ -detJ33 -detJ44 -detJ55
-det[l,, ® DEUpnyn, + DY @ I, (27)

where Dy = Dy — D01D1_11D10 — D02D2_21D20. Ob-
viously, J;;, j = 1,---,5 are nonsingular because the
matrices Dj; = Aj; — S;j;Pj;, j = 1, 2 are nonsin-
gular under the condition (H1). After some straightfor-
ward algebra but tedious, we see that the A, — S; Py =
Doy — Do1 D1_11D10 — D02D2_21D20 = Dy. Therefore, the
matrix Dy isnonsingular if the condition (H2) holds. Thus,
detJ # 0, i.e, J isnonsingular at (i, P) = (o, Po)-
The conclusion of the first part of Theorem 1 is obtained
directly by using the implicit function theorem. The sec-
ond part of the proof of Theorem 1 is performed by direct
calculation. By using (25), we obtain

;' (A—SP)
Doy Do1 Doz
=t Dio Din 0 | +0(ul)
Dyy 0 Do

We know from Lemma 2 that for sufficiently small ||| the
matrix &' (A — SP) will be stable. On the other hand,
since Py > 0, P11 > 0and Py, > 0, Pg is positive
semidefinite aslong ase; > 0 and 2 > 0 by using the
Schur complement. Therefore, the proof on Theorem 1
ends. |
Since Ps = $¢ P, we have

P
Poo + Foo €1(Pro + Fi0)T ea(Pao + Fa0)T

=|Pow+Fio Pu+Fn ﬁ_lfgjl
Py + Fao VaFa Poo + Foa

(28)

Under the conditions (H1) and (H2), we have Py, = Pifiy
Py = P3¢, Poo = Ppy, Pro = Pry, Pao = Py, There-
fore, we readily have

ui(t) = uic(t) + O(lpl), (299)

us(t) = use(t) + O(|pl)- (29b)
Furthermore, we will show the O(|u[?) approximation
between J* and J.
Applying the composite strategy pair (uf,., u5.) to thefull-
order game described by (2),(3), we have

1
J; = 52" (0)Pee(0), (30)
where P.¢isthe solution of the Lyapunov equation
(Ag — Se PL)  Peg + Peg(Ag — Se PL)
= —PSePg - Q, (3D)



where P, = ®: P
Theorem 2: Under the conditions of Theorem 1, we have

I (Wio,use) = J(ug, uz) + O(|ul?), (32)

with J¥ > J* for S > 0,and J; < J* when S < 0, where
Si=0 'S,

Before proving this theorem, we introduce the following
lemma (Mukaidani et a., 2001).

Lemma 3: Consider the iterative algorithm which is based
on the Kleinman algorithm

(A— Sp(i))Tp(H-l) + p(i-s-l)T(A _ Sp(i))

+POTSPW) L =0, i=0,1, .., (33a)
R A
= Pl?'); Pﬁ)(') ver (I'?(?T - )
P20 \/ap21 P22
with theinitial condition obtained from
Pyo 0 0
— — —1 —
PO = Py Py \/57 Py (34)
Pyy  VaPy Pso

Under the conditions (H1) and (H2), there exists a small
& such that for al |ul| € (0, ), & < o* Kleinman
algorithm (33) converges to the exact solution of Pe =
®sP = PTdg with the rate of quadratic convergence,

where Pg(i) = ® P = PWT P, js positive semidefinite.

[PD — Pl =O(|u*), i =0, 1, .. (35
where
v =2|S] < o0, B = |[VG(PO)1],
OvecG(P)
_a. (0) = =
n=p-19(F7)|, 0 = By, VG(P) d(vecP)T"

Proof: When ;. and u3, are used, the value of the
performance index is given by (30). Subtracting (6) from
(31) we find that Ve = P.¢ — Pg¢ sdtisfies the following
multiparameter algebraic Lyapunov equation (MALE)

(Ag = Se P) Ve + Ve(Ae — Se P)

+(Pg — PL)Se(Pe — PL) = 0. (36)
Since Ag — Sg P(jé is stable, using the standard Lyapunov
theorem (Zhou, 1998), we have J(uj,, us.) > J(uf, u3)
for S > 0, and J(uj,, u3,) < J(uf, ub)when S < 0.0On

the other hand, subtracting (6) from (33a) we also get the
MALE

(Ag — Se PED)T (P — Pe)
+(PTY — Pe)(Ag — SePe)

+(Pg — PEN)Se(Pe — PEDYy =0, (37)

where P{") = & P("). When i = 0, we have

(Ag — Se PO (Pe) — Pe)
+(PeW —Pe)(Ag — SePel™)
+(Pg — Pe)Se (P — P

= (Ae — SePye ™)' (P —Pg)
+(PeM) —Pe)(Ae — SePye™)
+(Ps — Pyet)Se(Pe — Pog™) = 0.

Therefore, it is easy to verify that Ve = Pg(l) — Pg be
cause Ag — Sg P is stable from Theorem 1 in Khalil and
Kokatovit (1979). Using Lemma 3 we obtain that

Vel = |Pes — Pe|| = | PeY) — Pe|
< el - 1PV P
< |PY = Pl = O(|ul?). (38)

Hence, we have Ve = P.gc — Pe = O(||u|?), whichimplies
(32). |
Finally, by using the similar method(Xu and Mizukami,
1997), we show that the composite approximation
(uf,, us,) of thefull-order linear feedback saddle-point so-
[ution constitutes the O (|| i1|) near saddle-point equilibrium
of the full-order game.

Theorem 3: Under the conditions of Theorem 1, the com-
posite feedback strategy pair (uj,., us.) constitutes the
O(|p|)) near saddle-point equilibrium of the full-order
game, that is,

J(uie; uz) = O(|ul)
J(uie, uze)

J(ur, uze) + O([ul)-

IAINA

(39)
V. CONCLUSION

In this paper, we have studied the infinite horizon zero-sum
differential games for multiparameter singularly perturbed
systems. We have shown that the composite approxima-
tion of the full-order linear feedback saddle-point solution
(ui,,us,.) congtitutes the O(|u|) near saddle-point equi-
librium of the full-order game, and the resulting value is
O(|p|?) over or below the exact value of the full-order
game which depends on the parameters of the system. The
conclusions obtained inthis paper are similar to thoseinthe
paper (Xu and Mizukami, 1997) where the same problem



for singularly perturbed systems are considered. However,
it isworth to note that the method used to prove the results
in the paper (Xu and Mizukami, 1997) is not suitable to the
differential gamesfor the MSPS. In this paper, we have de-
veloped adifferent method to prove the results (M ukaidani,
et a., 2001)
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