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Near-Optimal Kalman Filters for Multiparameter
Singularly Perturbed Linear Systems

Hiroaki Mukaidani

Abstract—In this brief, we study the near-optimal Kalman filtering
problem for multiparameter singularly perturbed system (MSPS). The
attention is focused on the design of the near-optimal Kalman filters. It
is shown that the resulting filters in fact remove ill-conditioning of the
original full-order singularly perturbed Kalman filters. In addition the
resulting filters can be used compared with the previously proposed result
even if the fast state matrices are singular.

Index Terms—Multiparameter algebraic Riccati equations (MARE),
multiparameter singularly perturbed system (MSPS), optimal Kalman
filters.

I. INTRODUCTION

Recently, filtering problems for the multiparameter singularly per-
turbed system (MSPS) have been investigated [1]–[3], [11]. Such prob-
lems arise in large-scale dynamic systems. For example, the MSPS in
practice is illustrated by the passenger car model [3]. In order to obtain
the optimal solution to the filtering problems, we must solve the mul-
tiparameter algebraic Riccati equation (MARE), which are parameter-
ized by small positive same order parameters"1; "2; . . .. Various reli-
able approaches to the theory of the algebraic Riccati equation (ARE)
have been well documented in many literatures (see e.g., [5], [6]). One
of the approaches is the invariant subspace approach which is based
on the Hamiltonian matrix [5]. However, such an approach is not ade-
quate to the MSPS since for the computed solution there is no guarantee
of symmetry when the ARE is ill-conditioned [5]. In order to avoid
the numerical stiffness, the exact slow-fast decomposition method for
solving the MARE has been proposed in [3]. However, the dimension
of the required workspace to carry out the calculations for the solution
is the same dimension of the original full-system. Furthermore, only
the Kalman filtering problem for MSPS with two fast subsystems has
been considered.

A popular approach to deal with the MSPS is the two-time-scale de-
sign method [4], [7]. However, in order to obtain the slow subsystem,
the nonsingularity of the fast state matrices are needed. Furthermore,
the near-optimal Kalman filtering of the MSPS has not been investi-
gated so far. In this brief, we study the near-optimal Kalman filtering
problem for the MSPS. The results obtained are valid for steady state.
Note that there exist several singular perturbation parameters"1; "2; . . .
for the considered MSPS compared with the previous results [1]–[3],
[11]. We first investigate the uniqueness and boundedness of the solu-
tion to such MARE and establish its asymptotic structure. The proof of
the existence of the solution to the MARE with asymptotic expansion
is obtained by an implicit function theorem [4]. The main contribution
of this brief is to propose the near-optimal Kalman filters. As a result,
we have only to solve the ARE with same order dimension of the re-
duced-order slow and fast systems which do not depend on the values
of the small parameters. Furthermore, we claim that the proposed fil-
ters can be constructed even if the fast state matrices are singular.

In [2] the well-posedness of multimodel strategies for a linear-
quadratic-Gaussian (LQG) optimal control problem has been studied.
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The local control problem of a control agent of the above paper
is obtained by neglecting the fast dynamics of the other agent’s
subsystem and each agent uses the optimal solution of his local control
problem. However, the nonsingularity assumptions for the fast state
matricesAii, i = 1; 2; . . . ; N are also needed. On the other hand, the
proposed near-optimal Kalman filter can be obtained without such
assumptions. Therefore, it is possible to construct the near-optimal
Kalman filter for the wider class of the MSPS. Furthermore, the
proposed design method has a feature, in which a new filter gain
is obtained by neglecting all small perturbation parameters of the
optimal Kalman filter and solving the reduced-order ARE’s. Hence,
compared with the existing results [2], since the proposed technique is
the batch processing which is not based on the two-time-scale design
method [4], [7], it is easy to design the near-optimal Kalman filters.

II. OPTIMAL KALMAN FILTERING PROBLEM

We consider the linear time-invariant MSPS [1], [2]

_x0(t) =A00x0(t) +

N

j=1

A0jxj(t) +

N

j=1

D0jwj(t) (1a)

"i _xi(t) =Ai0x0(t) + Aiixi(t) +Diiwi(t); i = 1; 2; . . .N

(1b)

with the corresponding measurements

yi(t) = Ci0x0(t) + Ciixi(t) + vi(t); i = 1; 2; . . .N (2)

wherexi(t) 2 Rn , i = 0; 1; 2; . . . ; N are state vectors,yi(t) 2
Rp , i = 1; 2; . . . ; N are system measurements,wi(t) 2 Rq , i =
1; 2; . . . ; N andvi(t) 2 Rr , i = 1; 2; . . . ; N are zero-mean sta-
tionary, Gaussian, mutually uncorrelated, white-noise stochastic pro-
cesses with intensitiesWi � 0 andVi > 0, respectively. All the
matrices are constant matrices of appropriate dimensions."i, "j , i,
j = 1; 2; . . . ; N are the small positive singular perturbation param-
eters of the same order of magnitude [1]–[4], [7], [11] such that

0 < kij � �ij �
"j

"i
� �kij <1: (3)

That is, we assume that the ratio of"i and"j is bounded by some pos-
itive constants. In this brief we design the near-optimal Kalman filters
to estimate system statesxi. The optimal Kalman filters of (1) and (2)
are given by [3]

_�0(t) =A00�0(t) +

N

j=1

A0j�j(t) +

N

j=1

K0j�j(t) (4a)

"i _�i(t) =Ai0�0(t) + Aii�i(t) +

N

j=1

Kij�j(t) (4b)

�i(t) =yi(t)� Ci0�0(t)� Cii�i(t); i = 1; 2; . . . ; N

(4c)

where the filter gainKij are obtained from

Ke =XeC
T
V
�1 = ��1e K

opt

=��1e XC
T
V
�1 = ��1e

K01 � � � K0N

...
. . .

...
KN1 � � � KNN

�e :=
In 0

0 �e

�e :=block � diag ( "1In � � � "NIn ) (5)
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with matrixXe representing the positive semidefinite stabilizing solu-
tion of the MARE

AeXe +XeA
T
e �XeSXe + Ue = 0 (6)

where

Ae :=
A00 A0f

��1e Af0 ��1e Af

A0f := [A01 � � � A0N ]

Af0 := [AT
10 � � � AT

N0 ]
T

Af :=block� diag (A11 � � � ANN )

C := [C0 Cf ]

C0 := [CT
10 � � � CT

N0 ]
T

Cf :=block � diag (C11 � � � CNN )

De :=
D0

��1e Df

D0 := [D01 � � � D0N ]

Df :=block � diag (D11 � � � DNN )

W :=block � diag (W1 � � � WN )

V :=block � diag (V1 � � � VN )

S :=CT
V
�1
C =

S00 S0f

ST
0f Sf

S00 :=

N

j=1

C
T
j0V

�1
j Cj0

S0f := [S01 � � � S0N ]

= [CT
10V

�1
1 C11 � � � CT

N0V
�1
N CNN ]

Sf :=block� diag(S11 � � � SNN )

=block � diag (CT
11V

�1
1 C11 � � � CT

NNV
�1
N CNN )

Ue :=DeWD
T
e

=
U00 U0f�

�1
e

��1e UT
0f ��1e Uf�

�1
e

U00 :=

N

j=1

D0jWjD
T
0j

U0f := [U01 � � � U0N ]

= [D01W1D
T
11 � � � D0NWND

T
NN ]

Uf :=block� diag(U11 � � � UNN )

=block � diag (D11W1D
T
11 � � � DNNWND

T
NN ) :

Since the matricesAe andDe contain the term of"�1i order, a solution
Xe of the MARE (6), if it exists, must contain terms of order"i. Taking
this fact into consideration, we look for a solutionXe to the MARE (6)
with the structure

Xe :=
X00 X0f

XT
0f ��1e Xf

X00 =XT
00; �

�1
e Xf = X

T
f �

�1
e

X0f :=

XT
01

...
XT
0N

T

and

Xf :=

X11 �21X12 �31X13 � � � �N1X1N

XT
12 X22 �32X23 � � � �N2X2N

...
...

...
. . .

...
XT
1(N�1) XT

2(N�1) XT
3(N�1) � � � �N(N�1)X(N�1)N

XT
1N XT

2N XT
3N � � � XNN

:

In the following analysis, we need some assumptions.
Assumption 1:The pairs (Aii,Cii), i = 1; 2; . . . ; N are detectable.
Assumption 2:The Hamiltonian matricesTii, i = 1; 2; . . . ; N have

not eigenvalues on the imaginary axis, whereTii :=
AT
ii �Sii

�Uii �Aii

.

Assumption 3:

rank
sIn �AT

00 �AT
f0 CT

0

�AT
0f �AT

f CTt
f

=�n (7a)

rank
sIn � A00 �A0f D0

�Af0 �Af Df

=�n (7b)

with 8s 2 C, Re[s] � 0 and�n := N

j=0 nj .
Before investigating the optimal Kalman filtering problem, we in-

vestigate the asymptotic structure of the MARE (6). In order to avoid
the ill condition caused by the large parameter"�1i which is included
in the MARE (6), we introduce the following useful lemma [11].

Lemma 1: The MARE (6) is equivalent to the following generalized
multiparameter algebraic Riccati equation (GMARE) (8)

F(X) = AX
T +XA

T
�XSX

T + U = 0 (8)

whereA = �eAe, U = �eUe�e andX = �eXe.
The GMARE (8) can be partitioned into

f1 =A00X00 +X00A
T
00 + A0fX

T
0f +X0fA

T
0f

�X00S00X00 �X0fSfX
T
0f �X00S0fX

T
0f

�X0fS
T
0fX00 + U00 = 0 (9a)

f2 =A0fX
T
f +A00X0f�e +X00A

T
f0 +X0fA

T
f

�X00S00X0f�e �X0fS
T
0fX0f�e �X00S0fX

T
f

�X0fSfX
T
f + U0f = 0 (9b)

f3 =AfX
T
f +XfA

T
f + Af0X0f�e +�eX

T
0fA

T
f0

�XfSfX
T
f ��eX

T
0fS0fX

T
f �XfS

T
0fX0f�e

� �eX
T
0fS00X0f�e + Uf = 0: (9c)

It is assumed that the limit of�ij exists as"i and"j tend to zero (see
e.g., [4], [7]), that is

��ij = lim �ij : (10)

Let �X00, �Xf0, and �Xf be the limiting solutions of the above (9) as
"i ! 0+, "j ! 0+, i, j = 1; . . . ; N , then we obtain the following :

A00
�X00 + �X00A

T
00 + A0f

�XT
0f + �X0fA

T
0f

� �X00S00 �X00 � �X0fSf �XT
0f

� �X00S0f �XT
0f � �X0fS

T
0f

�X00 + U00 = 0 (11a)

A0f
�XT
f + �X00A

T
f0 + �X0fAf � �X00S0f �XT

f

� �X0fSf �XT
f + U0f = 0 (11b)

Af
�XT
f + �XfA

T
f � �XfSf �XT

f + Uf = 0 (11c)
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where

�Xf :=
�X11 ��21 �X12 ��31 �X13 � � � ��N1

�X1N

�XT
12

�X22 ��32 �X23 � � � ��N2
�X2N

...
...

...
. . .

...
�XT
1(N�1)

�XT
2(N�1)

�XT
3(N�1) � � � ��N(N�1)

�X(N�1)N

�XT
1N

�XT
2N

�XT
3N � � � �XNN

and

�Xii = �XT
ii ; i = 0; 1; 2; . . . ; N: (12)

Note that the ARE (11c) is asymmetric. However, it can be seen that the
ARE (11c) admits at least a symmetric positive semidefinite stabilizing
solution as follows.

Theorem 1: Under Assumptions 1 and 2, the ARE (11c) admits a
unique symmetric positive semidefinite stabilizing solution�Xf which
can be written as

�X�

f := block� diag ( �X�

11 � � � �X�

NN ) (13)

where �X�

ii is a unique symmetric positive semidefinite stabilizing so-
lution, respectively, for the following AREs:

Aii
�X�

ii + �X�

iiA
T
ii � �X�

iiSii �X
�

ii + Uii = 0; i = 1; 2; . . . ; N: (14)

Proof: Substituting (13) into the ARE (11c) as�Xf ! �X�

f , it is
easy to verify thatAf

�X�

f+ �X�

fA
T
f � �X�

fSf
�X�

f+Uf = 0. Furthermore,
it can be seen that�X�

f = �X�T
f � 0 and the matrix

Af � �X�

fSf

= block � diag (A11 � �X�

11S11 � � �ANN � �X�

NNSNN )

is stable because�X�

ii is a unique symmetric positive semidefinite stabi-
lizing solution under Assumptions 1 and 2. Consequently, there exists
a unique solution of the ARE (11c) and its solution is (13) itself.

Remark 1: Since by Assumptions 1 and 2 the matricesAii� �X�

iiSii
are stable, the unique solution of the ARE (11c) is given by (13) under
�Xij � 0, i = 1; 2; . . . ; N � 1, j = 2; 3; . . . ; N , i < j. Thus the

parameters��ij , i = 1; 2; . . . ; N � 1, j = 2; 3; . . . ; N , i < j do not
appear in the (11). In other words,�ij do not affect the (9) in the limit
when"i tends to zero. In addition, by Assumption 3 the unique solution
of the (11a) is guaranteed. Therefore, there exist the unique limit points
of the solutionsX00, X0f andXf as the parameter"i tends to zero.
Finally, the existence of the limits�X00, �X0f , �Xf is guaranteed. For the
basic idea of the proof, see for example [4].

Substituting the solution of (11c) into (11b) and substituting�X�

0f

into (11a) and making some lengthy calculations (the detail is omitted
for brevity), we obtain the following zeroth-order equations

A �X�

00 + �X�

00A
T
� �X�

00S �X�

00 + U = 0 (15a)

�X�

0f = [� �X00 In ]H2H
�1
4

I�n
�Xf

(15b)

Af
�X�

f + �X�

fA
T
f � �X�

fSf �X�

f + Uf = 0 (15c)

where

H1 (= T00) :=
AT
00 �S00

�U00 �A00

H2 :=
AT
f0 �S0f

�U0f �A0f

H3 :=
AT
0f �ST0f

�UT
0f �Af0

H4 :=
AT
f �Sf

�Uf �Af

H0 :=
AT �S

�U �A
= H1 �H2H

�1
4 H3:

Note that Assumptions 1 and 2 ensures that the matrixAf � �X�

fSf is
nonsingular because the matricesAii � �X�

iiSii, i = 1; 2; . . . ; N are
nonsingular. Moreover, Assumptions 1 and 2 ensures thatH4 are also
nonsingular because
TH4
 = block � diag (T11 � � � TNN ),
where


 =

In 0 0 0 0 0 � � � 0 0

0 0 In 0 0 0 � � � 0 0

0 0 0 0 In 0 � � � 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 � � � In 0

0 In 0 0 0 0 � � � 0 0

0 0 0 In 0 0 � � � 0 0

0 0 0 0 0 In � � � 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 � � � 0 In

:

(16)
It should be noted that if (14) has a stabilizing solution, then the Hamil-
tonian matricesTii have not eigenvalues on the imaginary axis and
therefore these matrices are nonsingular.

In the following we established the relation between the GMARE
(8) and the zeroth-order equations (15). Before doing that, we give the
results for the ARE (15a).

Lemma 2: Under Assumptions 1–3, there exists a matrix
C 2 R�p�n , �p := N

j=1 pj , and a matrixD 2 Rn ��q, �q := N

j=1 qj

such thatS = CTV �1C, U = DWDT . Moreover, the triple (AT ,
CT , DT ) is stabilizable and detectable.

Proof: By using the similar technique done by the proof of [10],
we give the proof for Lemma 2. It is easy to verify thatS = (C0 +
CfN

T
1 )

TV �1(C0 + CfN
T
1 ), whereNT

1 = ���14 �2, �4 = Af �
�X�

fSf , �2 = Af0 � �X�

fS
T
0f . Thus, we haveC = C0 +CfN

T
1 . How-

ever, it seems difficult to findD from (15a). In order to do that, we
introduce a dual ARE

A
T
f X̂

�

f + X̂
�

fAf � X̂
�

fUf X̂
�

f + Sf = 0 (17)

where

X̂
�

f :=block � diag ( X̂�

11 � � � X̂�

NN )

A
T
iiX̂

�

ii + X̂
�

iiAii � X̂
�

iiSiiX̂
�

ii + Uii = 0; i = 1; 2; . . . ; N:

Note that there exists a symmetric positive semidefinite solutionX̂�

f

under Assumptions 1 and 2. Using the above ARE (17), we find that

H4 =
In̂ �X̂�

f

0 In̂

Âf 0

�Uf �ÂT
f

In̂ X̂�

f

0 In̂
n̂ =

N

j=1

nj

where�4 = Af � Uf �X�

f is stable under Assumptions 1 and 2. After
the calculation ofH0, we arrive at another expression forU , that is,
U = U00 +M1U

T
0f +U0fM

T
1 +M1UfM

T
1 , whereM1 = ��2�

�1
4 ,

�2 = A0f �U0f
�W �

f . Hence, it is easy to find thatD = D0 +M1Df

becauseU = (D0 +M1Df )W (D0 +M1Df )
T = DWDT .

Let us now prove the stabilizability and detectability of the triple
(AT , CT , DT ). Note the relation

In ��T2 �
�T
4

0 ���T4

sIn � AT
00 �AT

f0 CT
0

�AT
0f �AT

f CT
f

�

In 0 0

���T4 AT
0f In̂ ��T4 CT

f

�1 �2 �3

=
sIn �AT

00 �N1A
T
0f 0 CT

0 In̂ 0
(18)

where�1 = �V �1Cf
�X�

f�
�T
4 AT

0f , �2 = V �1Cf
�X�

f , �3 = I�p +
V �1Cf

�X�

f�
�T
4 CT

f .
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It should be noted that the rank condition (7a) is satisfied if and only
if the following condition holds rank[ sIn �AT

00 �N1A
T
0f CT ] =

n0, 8s 2 C with Re[s] � 0. Hence, let us prove the stabilizability of
(AT

00+N1A
T
0f , CT ). SinceAT = AT

00+N1A
T
0f + CTV �1CfN

T
2 =

AT
00+N1A

T
0f+CTK and the feedbackK does not change the stabiliz-

ability property of (AT
00+N1A

T
0f , CT ), we arrive at the conclusion that

the matrix pair (AT , CT ) is also stabilizable. Similarly, we can prove
that (AT ,DT ) is detectable if and only if rank condition (7b) is satis-
fied. The detail is omitted for brevity because of the duality arguments.
Thereby, we have finished the proof of Lemma 2.

Since the triple (AT ,CT ,DT ) is stabilizable and detectable, the ARE
(15a) admits a unique stabilizing positive semidefinite symmetric so-
lution, denoted by�X�

00 andA � �X�
00S is stable.

The limiting behavior of Xe as the parameterk�k :=p
"1"2 � � � "N ! 0+ is described by the following lemma.
Lemma 3: Under Assumptions 1–3, there exists a small�� such

that for allk�k 2 (0; ��) the MARE (6) admits a symmetric positive
semidefinite stabilizing solutionXe which can be written as

Xe =��1e
�X�
00 +O(k�k) �X�

0f +O(k�k)
�e

�X�
0f +O(k�k) T �X�

f +O(k�k)
=

�X�
00 +O(k�k) �X�

0f +O(k�k)
�X�
0f +O(k�k) T

��1e �X�
f +O(k�k) : (19)

Proof: We apply the implicit function theorem [4] to (9). To do
so, it is enough to show that the corresponding Jacobian is nonsingular
at k�k = 0. It can be shown, after some algebra, that the Jacobian of
(9) in the limit ask�k ! 0 is given by(20), shown at the bottom of the
page, where vec denotes an ordered stack of the columns of its matrix
[8] and

J00 =�1 
 In + In 
 �1;J01 = �3 
 In + (In 
 �3)Un n̂

J10 =�2 
 In = (�2 
 In )Un n ;J11 = �4 
 In

J12 =(In̂ 
 �3)Un̂n̂; J22 = �4 
 In̂ + In̂ 
 �4

�1 =A00 � �X�
00S00 � �X�

0fS
T
0f�3 = A0f � �X�

00S0f � �X�
0fSf

where
 denotes Kronecker products andUn n is the permutation
matrix in the Kronecker matrix sense [8]. The Jacobian (20) can be
expressed as

detJ = detJ22 � detJ11 � det [�0 
 In + In 
 �0] (21)

where�0 := �1 ��2�
�1
4 �3. Obviously,Jii, j =1, 2 are nonsingular

because the matrix�4 = Af � �X�
fSf is stable under Assumptions

1 and 2. After some straightforward but tedious algebra, we see that
A� �X�

00S = �1 � �2�
�1
4 �3 = �0. Therefore, the matrix�0 is also

stable if Assumption 3 holds. Thus,detJ 6= 0, i.e.,J is nonsingular
atk�k = 0. The conclusion of Lemma 3 is obtained directly by using
the implicit function theorem.

The remainder of the proof is to show thatXe is the pos-
itive semidefinite stabilizing solution. Firstly, let us prove
the stability of the matrixAe � XeS. Using (19), we obtain

Ae �XeS = ��1e
�1 �2
�3 �4

+O(k�k) . The matrices�4 and

�0 are stable since Assumptions 1–3 hold. Therefore, if parameter

k�k is very small,Ae �XeS is stable by applying the Theorem 1 in
[7]. Secondly, from MARE (6), we get

(Ae �XeS)Xe +Xe (Ae �XeS)
T +XeSXe + Ue = 0:

Noting thatAe �XeS is stable, we can change the form of the above
MARE.

Xe =
1

0

exp [(Ae �XeS) t] (XeSXe + Ue)

� exp (Ae �XeS)
T
t dt:

Therefore,Xe � 0 because the matrixXeSXe + Ue is the positive
semidefinite. This completes the proof of Lemma 3.

Remark 2: It seems that the result in Lemma 3 is typical for the case
with one small parameter [13]. However, when the MARE (6) contains
the several small singular perturbation parameters, there has been no
result of the detailed structure for the MARE (6). Therefore, it is worth
pointing out that the existing result has been extended to wider class.

III. N EAR-OPTIMAL KALMAN FILTERS FOR THENONSTANDARDMSPS

The required solution of the MARE (6) exists under Assumptions
1–3. Our attention is focused on the design of the near-optimal Kalman
filters. Such the filters are obtained by eliminatingO(k�k) item of
the filter gain matrix (5). Ifk�k is very small, it is obvious that the
near-optimal Kalman filters (5) can be approximated as

K
app = X

app
C
T
V
�1 =

�X�
00

�X�
01 � � � �X�

0N

0 �X�
11 � � � 0

...
...

. . .
...

0 0 � � � �X�
NN

C
T
V
�1

(22)
where

�X�
0i := [� �X00 In ]T0iT

�1
ii

I�n
�Xf

; T0i :=
AT
i0 �S0i

�U0i �A0i

:

Whenk�k is sufficiently small, we know from Lemma 3 that the re-
sulting filter gain (22) will be close to the optimal Kalman filter gain
Kopt of the (5).

Theorem 2: Under Assumptions 1–3, the use of the near-optimal
Kalman filter gain (22) results in

TraceWe = TraceXe +O(k�k) (23)

where TraceXe is the optimal steady-state mean-square error, while
TraceWe is the near-optimal steady-state mean-square error andWe

is a positive semidefinite solution of the following multiparameter al-
gebraic Lyapunov equation (MALE):

(Ae �X
app
e S)We +We (Ae �X

app
e S)T

+Xapp
e SX

app
e + Ue = 0 (24)

with Xapp
e := ��1e Xapp.

J = rF =
@ (vecf1; vecf2; vecf3)

@ (vecX00; vecX0f ; vecXf)
T

k�k=0; X = �X ; X = �X ; X = �X

=

J00 J01 0

J10 J11 J12

0 0 J22

(20)
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Ae �X
(0)
e S X

(1)
e �Xe + X

(1)
e �Xe Ae �X

(0)
e S

T

+ Xe �X
(0)
e S Xe �X

(0)
e = (Ae �X

app
e S) X

(1)
e �Xe

+ X
(1)
e �Xe (Ae �X

app
e S)T + (Xe �X

app
e )S (Xe �X

app
e ) = 0:

Before proving this theorem, we introduce the following useful
lemma [12].

Lemma 4: Consider the iterative algorithm which is based on the
Kleinman algorithm

A �X
(n)
S X

(n+1)T +X
(n+1)

A�X
(n)
S

T

+X(n)
SX

(n)T + U = 0; n = 0; 1; 2; . . . (25)

where

X
(0) =Xapp =

�X�

00
�X�

0f

0 �X�

f

X
(n) =

X
(n)
00 X

(n)
0f

�eX
(n)T
0f X

(n)
f

:

Under Assumptions 1–3, there exists a small�� such that for allk�k 2
(0; ��), �� � �� the iterative algorithm (24) converges to the exact so-
lution of Xe with the rate of quadratic convergence, whereX

(n)
e =

��1e X(n) = X(n)T��1e . That is, the following conditions are satis-
fied:

kX(n) �Xk = O k�k2 ; n = 0; 1; 2; . . . : (26)

Now, let us prove Theorem 2.
Proof: Subtracting (6) from (24) we find thatVe = We � Xe

satisfies the following MALE:

(Ae �X
app
e S)Ve + Ve (Ae �X

app
e S)

T

+(Xe �X
app
e )S (Xe �X

app
e ) = 0: (27)

Similarly, subtracting (6) from (25) we also get the MALE

Ae �X
(n)
e S X

(n+1)
e �Xe + X

(n+1)
e �Xe

� Ae �X
(n)
e S

T

+ Xe �X
(n)
e S Xe �X

(n)
e = 0 (28)

whereX(n)
e = �eX

(n). Whenn = 0, we have the equation shown at
the top of the page. Therefore, it is easy to verify thatVe = X

(1)
e �Xe

[9] becauseAe�X
app
e S is stable from Theorem 1 in [7]. Consequently,

we obtain that

kVek = kWe �Xek = X
(1)
e �Xe � ��1e

� X
(1) �X � k�k�1 � X

(1) �X = O(k�k):

HenceVe = We �Xe = O(k�k), which implies (23).
Remark 3: Taking the special case ofn = 0 into account, Theorem

2 has a simpler proof via implicit function theorem. The proof can be
done by using a similar technique as in [10].

IV. CONCLUSION

The near-optimal Kalman filtering problem for MSPS has been in-
vestigated. The new design method of the near-optimal Kalman filters
has been proposed. As a result, solving the high-dimensional ill-con-
ditioned MARE has been replaced by solving the low-order singular
perturbation parameter independent ARE. Furthermore, the proposed
filters can be implemented even if the fast state matrices are singular.
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