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Near-Optimal Kalman Filters for Multiparameter The local control problem of a control agent of the above paper
Singularly Perturbed Linear Systems is obtained by neglecting the fast dynamics of the other agent’s
subsystem and each agent uses the optimal solution of his local control
Hiroaki Mukaidani problem. However, the nonsingularity assumptions for the fast state
matricesd;;,7 = 1,2,..., N are also needed. On the other hand, the

o ] o proposed near-optimal Kalman filter can be obtained without such
Abstract—in this brief, we study the near-optimal Kalman filtering  55,mptions. Therefore, it is possible to construct the near-optimal
problem for multiparameter singularly perturbed system (MSPS). The . .
attention is focused on the design of the near-optimal Kalman filters. It Kalman filter for the wider class of the MSPS. Furthermore, the
is shown that the resulting filters in fact remove ill-conditioning of the ~proposed design method has a feature, in which a new filter gain
original full-order singularly perturbed Kalman filters. In addition the is obtained by neglecting all small perturbation parameters of the
result@ng filters can be usgd compar_ed with the previously proposed result optimal Kalman filter and solving the reduced-order ARE’s. Hence,
even if the fast state matrices are singular compared with the existing results [2], since the proposed technique is
Index Terms—Multiparameter algebraic Riccati equations (MARE), the batch processing which is not based on the two-time-scale design

][_Tultiparameter singularly perturbed system (MSPS), optimal Kalman  ethod [4], [7], it is easy to design the near-optimal Kalman filters.
ilters.

II. OPTIMAL KALMAN FILTERING PROBLEM

| INTRODUCTION We consider the linear time-invariant MSPS [1], [2]

Recently, filtering problems for the multiparameter singularly per- N N
turbed system (MSPS) have been investigated [1]-[3], [11]. Such prob- . y A .
lems arise in large-scale dynamic systems. For example, the MSPS in Zo(t) =Asozo(t) + ; Aojzj(t) + ; Dojuw;(®) (12)
practice is illustrated by the passenger car model [3]. In order to obtainsl,ji(f) — Ao (t) + Aim(t) n Diiuj’i(t), i=1.2....N
the optimal solution to the filtering problems, we must solve the mul- ’
tiparameter algebraic Riccati equation (MARE), which are parameter- (1b)
ized by small positive same order parametars., . . .. Various reli-
able approaches to the theory of the algebraic Riccati equation (AR
have been well documented in many literatures (see e.g., [5], [6]). One . (¢) = Cigao(t) + Ciszi(t) + vi(t), i=1,2,...N (2)
of the approaches is the invariant subspace approach which is based

'gh the corresponding measurements

on the Hamiltonian matrix [5]. However, such an approach is not adeherez;(t) € R",i = 0,1,2,..., N are state vectors(t) €
quate to the MSPS since for the computed solution there is no guarafée, i = 1,2,..., N are system measurements,(t) € R%,i =
of symmetry when the ARE is ill-conditioned [5]. In order to avoidl,2,..., N andv;(t) € R™,i = 1,2,..., N are zero-mean sta-

the numerical stiffness, the exact slow-fast decomposition method fmnary, Gaussian, mutually uncorrelated, white-noise stochastic pro-
solving the MARE has been proposed in [3]. However, the dimensieesses with intensitied; > 0 andV; > 0, respectively. All the
of the required workspace to carry out the calculations for the solutiomatrices are constant matrices of appropriate dimensions,;, i,
is the same dimension of the original full-system. Furthermore, onfy= 1,2,..., N are the small positive singular perturbation param-
the Kalman filtering problem for MSPS with two fast subsystems hagers of the same order of magnitude [1]-[4], [7], [11] such that
been considered.

A popular approach to deal with the MSPS is the two-time-scale de- 0 <k <oij=
sign method [4], [7]. However, in order to obtain the slow subsystem,
the nonsingularity of the fast state matrices are needed. Furthermdrigat is, we assume that the ratio=efands=; is bounded by some pos-
the near-optimal Kalman filtering of the MSPS has not been investiive constants. In this brief we design the near-optimal Kalman filters
gated so far. In this brief, we study the near-optimal Kalman filteringp estimate system states. The optimal Kalman filters of (1) and (2)
problem for the MSPS. The results obtained are valid for steady stzR€ given by [3]
Note that there exist several singular perturbation paramsters, . . . N N
for the considered MSPS compared with the previous results [11-3],  &,(t) =Aoo&o (1) + 3 A& (1) + 3 Kojn; (1) (4a)
[11]. We first investigate the uniqueness and boundedness of the solu- = =

M |m
[N e

< ]::U < o0. 3)

tion to such MARE and establish its asymptotic structure. The proof of N

the existence of the solution to the MARE with asymptotic expansion =&, () =A;0&o (1) + Asi&i(t) + Z K;jm;(t) (4b)
is obtained by an implicit function theorem [4]. The main contribution i=

of this brief is to propose the near-optimal Kalman filters. As a result, 7: (1) =y (t) — Ciobo(t) — Cis&i(t), i=1,2,....N

we have only to solve the ARE with same order dimension of the re- (4¢)

duced-order slow and fast systems which do not depend on the values
of the small parameters. Furthermore, we claim that the proposed {ilhere the filter gaini;; are obtained from
ters can be constructed even if the fast state matrices are singular.

In [2] the well-posedness of multimodel strategies for a linear- K. =X.0"v7' =3 'K
quadratic-Gaussian (LQG) optimal control problem has been studied. Koo --- Koy
:¢;]XCTV_1 _ @;1 : .
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with matrix X. representing the positive semidefinite stabilizing soluand
tion of the MARE

Xy =
~¥11 Q’ZIJYIZ OL’SIX13 et a"[\’lel\"
AX 4+ XA - X.SX. +U. =0 (6) X4 Xoo  asXes - anaXon
T ~T ~T -
where Moy Ky Kagn o eveven Xy
AXL\/ XQAf 1‘{3‘/\' e AX-Z\UV
4 N In the following analysis, we need some assumptions.
A = Hiloz H;?il Assumption 1: The pairs @;;, Ci;),i = 1,2,..., N are detectable.
o Af0 e 2 Assumption 2: The Hamiltonian matrices;;,i = 1,2,..., N have
Aog:=[Aor --- Aon] . o _ AL s
o T not eigenvalues on the imaginary axis, whére:= ) .
Ago:=[A10 -+ Ano A on 3 =Uii —Au
A; :=block — diag (A, -+ Aww) ssumption 3:
, rank| " "0 o =0 72
Co:=[Ch - CLo” —Aby -A7 Cft (7a)
Cy :=block —diag (C11 -+ Cnn) rank sIng — Aoo —dAor Do —5 7
2 —4jo ~4; D] 7" (70)

— DO
b= |:H6_1Df } ; _ N
with Vs € C, Res] > 0 andn := > ., n;.

Do :=[ Do DQN] Before investigating the optimal Kalman filtering problem, we in-
Dy :=block —diag (D11 --- Dxyn) vestigate the asymptotic structure of the MARE (6). In order to avoid
W :=block — diag (W7, --- Wyx) the ill condition caused by the large parametgt which is included
V :=block — diag (Vi -+ Vi) in the MARE (6), we introdu.ce thg following useful Igmma [11]. .
B S s Lemma 1: The MARE (6) is equivalent to the following generalized
S:=ctv~tc= {S%O S‘”} multiparameter algebraic Riccati equation (GMARE) (8)
of r
N - -T T - T T
— F(X)=AX XA —XSX U=0 8
Soo IIZC]-TOVJ- lc,’o (X) + + 8)
P S whered = &4, U = .U, andX = &, X,
or =1 oo on] o The GMARE (8) can be partitioned into
= [ Clo"’rl_ 011 s CIN(J‘{’\? ONN]
Sy :=block— diag( S11 -~ Saw) Fi =A00 Xoo + XooAgy + Aof Xop + XopAgs
=block — diag (C},V;"'Ciy -+ CEAVY'Cyn) — Xo00S00X00 — Xo,foXé} - XoosofX(/]l}
U.:=D.WD! — XosS0Xoo + Upo = 0 (9a)
— Uoo UUfHG_1 fo :AofoT + AgoXoyIle + Xoofl_?o + Xoffl;
I ' Uep 70T - . ST X, g xT
N / ! — XooSo0XosIle — XoySorXosle — XooSor Xy
- ’ - -7 T —
Upy 1= ZDOJW}'DOTJ = XosSs Xy +Uoy =0 (9b)
= fa =ApX[ + XpA7 + Apo XopI + L. X AT,
Uos :=[Uo1r -~ , Uon] , — XyS;Xf — T X07S0rXf — X5Sg;XorI
= [ Do W, D11 ... DO]\!'I/I/.TVDJ\TJ\T] _ HcXé’fSooXoch +U; =0. (9C)
Us :=block—diag(U11 -+ Unn)
=block — diag (D1 Wi DT, -+ DynWaDhy). It is assumed that the limit af;; exists ag; ande; tend to zero (see
e.g., [4], [7]), that is
. . . 1 . oi; = lim «j. (10)
Since the matriced. andD. contain the term of; " order, a solution ' cjm0t
X. ofthe MARE (6), if it exists, must contain terms of order Taking <=0t

this fact into consideration, we look for a solutidn to the MARE (6)

with the structure Let Xoo, X 0, andX ; be the limiting solutions of the above (9) as

i —0%,5;, = 0%,4,j=1,..., N, then we obtain the following :

X Xof AooXoo + XKoo Ao + Aor KXoy + XorAds
Ke:= | X5 ToX — Xo00S00X00 — Xop S Xy
Xoo =X, H:le = XfTH;1 - XOOS()[)Z’({;‘ - Xofsgijoo + Uoo =0 (11a)
[ XUT1 ’ Ao_foT + -Y00‘4§0 + XofAf - XoosofX_'/I
Xop:=| — XoyS; X} +Usy =0 (11b)
| X0y ApXJ 4+ XpA] - XpSpXf +Up =0 (11c)
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where Note that Assumptions 1 and 2 ensures that the maltyix- X;Syis
T, nonsingular because the matricés — X;S;;,¢ = 1,2,.... N are
Se= R I - nonsingular. Moreover, Assumptions 1 and 2 ensuresHhaire also
X anXnandn ani1Xin nonsingular because” H,$) = block — diag (Ti; --- Twx ),
Xy, Xo2 azpXoz - ane Xon where
: rl., O 0 0 0 0 0 0 7
XngN_l) XZT@,_U XST@__U =) X vonw 0 0 I, 0 0 0 0 0
X7y X1 X1 ... Xnn 0 0 0 0 I., 0 --- O 0
and : :
- - 0 0 0 0 0 0 1 0
X, = X7, i =0,1,2,..., N. 12 0= N
L TR (12) 0O L, 0 0 0 0 0 0
Note that the ARE (11c) is asymmetric. However, it can be seen that the o 0 0 L, 0 0 - 0 0
ARE (11c) admits at least a symmetric positive semidefinite stabilizing 0 0 0 0 0 I., -+ 0 0
solution as follows.
Theorem 1: Under Assumptions 1 and 2, the ARE (11c) admits a

unique symmetric positive semidefinite stabilizing solutip which Lo 0 0 0 0 0 - 0 L,/

, 16)

can be written as . I . ( .
~ ~ ~ It should be noted that if (14) has a stabilizing solution, then the Hamil-
X7 :=block —diag (X{, -+ Xin) (13) tonian matricesl;; have not eigenvalues on the imaginary axis and

where X, is a unique symmetric positive semidefinite stabilizing Sot_herefore thesg matrices are nonsingular. .
lution ré;pectively for the following ARES: In the following we establlshed the relation bet\_/veen the GMARE
' ' ’ (8) and the zeroth-order equations (15). Before doing that, we give the
AuXE+ XAl - X5SuXE+Ui=0,i=1,2,...,N. (14) results for the ARE (15a).

Proof: Substituting (13) into the ARE (11c) afs'f . X}iit is Lemma 2:Under Assumptions 1-3, there exists a matrix

- -2) TRO Y A pxng m._ N . i noXq z._ TN .
it can be seen thaf? — X—;T > 0 and the matrix such thatS = C*V7'C, U4 = DWD*. Moreover, the triple 4,

B C",D")is stabilizable and detectable.
Ay — X758y Proof: By using the similar technique done by the proof of [10],
= block — diag (A — X751, ---Ayn — XunSwvy ) We give the proof for Lemma 2. It is easy to verify that= (Co +

is stable b . . . defini b_c_/"fNI)TV”(co + CyN{), whereN{ = —T;'T2, Ty = Ay —
Is stable ecausle’ii IS aunique symmetrlc posmve semidefinite stabi-g £\ Ty = Af() _ X?S()Tf. ThUS, we havé = C, + CfN1T. How-

lizing solution under Assumptions 1 and 2. Consequently, there exig@er
a unique solution of the ARE (11c) and its solution is (13) itselfm '
Remark 1: Since by Assumptions 1 and 2 the matrices— X/;.5;;

it seems difficult to find® from (15a). In order to do that, we
introduce a dual ARE

are stable, the unique solution of the ARE (11c) is given by (13) under AFXF+ XA, - XU X7+ 55, =0 (17)
X, =0i=12....N—1,j =23,....N,i < j. Thus the

parametersi,;,i = 1,2,...,N —1,j = 2.3,...,N,i < j donot Where

appear in the (11). In other words;; do not affect the (9) in the limit X7 :=block — diag (X{; -+ Xin)

whene; tends to zero. In addition, by Assumption 3 the unique solution 4TX* A G R 4 U = L N
of the (11a) is guaranteed. Therefore, there exist the unique limit pointg*#:-* + XA = XiSiaXi + Ui = 0, i=12...,N.
of the solutionsX¥oo, Xos and X, as the parameter tends to zero. Note that there exists a symmetric positive semidefinite solutign

Finally, the existence of the limit§o0, Xo s, X1 is guaranteed. For the nder Assumptions 1 and 2. Using the above ARE (17), we find that

basic idea of the proof, see for example [4]. ,

Substituting the solution of (11c) into (11b) and substitutiigy [ =X71[ A 0 L X5 .
into (11a) and making some lengthy calculations (the detail is omitted™"* — [ 0 I } {—Uf _44:?} { 0 I, ] n= Z g
for brevity), we obtain the following zeroth-order equations =t

where=, = Ay — Uy X7 is stable under Assumptions 1 and 2. After

Tt ok 1 _ ok vk _
AXoo + Koo A" = Xoo S Xoo +IZ—4 =0 (153) 1 calculation offlo, we arrive at another expression far that is,
Xor=[-Xoo I, H-HS' { o } (15b) U =Uso + M Ugy +Uoy M| + MUy M|, whereM; = —E,57 ",
B B L Xy Ey = Aoy — Uoy W7 . Hence, itis easy to find thd? = Do 4 M1 Dy
ApXF+ X7AF - Xp5p X540, =0 (15¢) becausé/ = (Do + M, D;)W(Do + M, D)’ = DWD.
where Let us now prove the stabilizability and detectability of the triple
o (AT, ", DT). Note the relation
H, (=Ty) := Ao =500 T—T T T T
v(=To0) = 0y {Ino —T; 1“3' ] {slno —TAoo _*41%) COT]
Al o 0 -T, —Af,  —AT ]
Hs := d I 0 0
~los —dos T o
[ Al —S0y | T Ay L TG
Hj := T _ 4, ] Ay Ao Az
S T, — Al — N AT, 0 7
g AT =S = {5 ro T 0 T A of } (18)
4= | -U; —Af} 0 Iy 0
[AT -8 . whereA; = —V 'O XT7 AL Ae = VTIOrXT, As = I +
HO = »—Zl —.A:| —Hl _H2H/1 HJ ‘/rflcfX;F-i—chT
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It should be noted that the rank condition (7a) is satisfied if and onJj|| is very small,A. — X.S is stable by applying the Theorem 1 in

if the following condition holds ranksI,., — Ago — N1Aj; C"]= [7]. Secondly, from MARE (6), we get
no, Vs € C with Rds] > 0. Hence, let us prove the stabilizability of
(Afo + N1AJ;, CT). SinceA” = Afy + N1 A +CTVICpNS = (A — X)X + X, (A — X" + X.5X. +U. = 0.

AT+ N AUTf +¢T K and the feedback does not change the stabiliz-
ability property of g0+ N1 Ag, C*), we arrive at the conclusion that Noting that4, — X, S is stable, we can change the form of the above
the matrix pair @7, CT) is also stabilizable. Similarly, we can provepARE.
that (47, D7) is detectable if and only if rank condition (7b) is satis-
fied. The detail is omitted for brevity because of the duality argument/s(a _ - exp[(A. — X.S) 1] (X.SX. +T.)
Thereby, we have finished the proof of Lemma 2. [ | Jo

Sincethetripled”,C”,DT)is stabilizable and detectable, the ARE exp [(A _x.8)" t] gt
(15a) admits a unique stabilizing positive semidefinite symmetric so- ‘ ‘ '
lution, denoted byX, and A — X3S is stable.

The limiting behavior of X. as the parametef|u| :=
Nfz125---en — 07 is described by the following lemma.

Lemma 3: Under Assumptions 1-3, there exists a smadllsuch
that for all||¢|| € (0,0™) the MARE (6) admits a symmetric positive
semidefinite stabilizing solutio’. which can be written as

Therefore,X. > 0 because the matriX.SX,. + U. is the positive
semidefinite. This completes the proof of Lemma 3. [ |
Remark 2: It seems that the resultin Lemma 3 is typical for the case
with one small parameter [13]. However, when the MARE (6) contains
the several small singular perturbation parameters, there has been no
result of the detailed structure for the MARE (6). Therefore, it is worth

¢ gt { X0+ Ol X+ O(||/l/||)} pointing out that the existing result has been extended to wider class.
Ae —He ok 1 %
_,H {Xor + O(”/””)}__* Xf -+ Ol) I1l. NEAR-OPTIMAL KALMAN FILTERS FOR THENONSTANDARD MSPS
={ Ao+ OUlel) oy +O((led) } 19 Th ired solution of the MARE (6) exists under A i
(Xer+ 03Dy T X +0(ulh} e required solution of the (6) exists under Assumptions

1-3. Our attention is focused on the design of the near-optimal Kalman

Proof: We apply the implicit function theorem [4] to (9). To do filers. Such the filters are obtained by eliminatioy|.[|) item of
so, it is enough to show that the corresponding Jacobian is nonsingii filter gain matrix (5). Ifl|(| is very small, it is obvious that the
at||u|| = 0. It can be shown, after some algebra, that the Jacobian™§tar-optimal Kalman filters (5) can be approximated as
(9) in the limit ag||¢|| — 0 is given by(20), shown at the bottom of the

page, where vec denotes an ordered stack of the columns of its matrix )‘S‘O ‘:?il o XSN
[8] and Ix,—app — ){appc’l’-{/rfl — . P .11 e C’T‘/’fl
JOO :Fl [559) Ino +Ino [ FngOI = FS 59 Ino + (Ino [ FB)Z/{nOﬁ 0 0 e J‘ZX"A" 22
J10 =T @ Ly = (T2 © Tag) Ungngs J11 = T4 © I, here (22)
Jio=T @03) Uni, Joo = T4 @I + I, @ Ty
ok ok ok ok _ / T _ .
Ty =Aoo = XdoS00 = X785, Ts = Aoy — Xio S0y — XSy X5 =[-Xoo L] ToiT7! B ] Toi = { o o ] '
7 —Uoi  —Ao;

where® denotes Kronecker products aifl ., is the permutation

matrix in the Kronecker matrix sense [8]. The Jacobian (20) can ¥¢henllx|l is sufficiently small, we know from Lemma 3 that the re-
expressed as sulting filter gain (22) will be close to the optimal Kalman filter gain

K°?* of the (5).
Theorem 2: Under Assumptions 1-3, the use of the near-optimal

detJ = det Tz - detJny - det[To @ Ing + Ing @ To] (1) yaiman filter gain (22) results in

wherel'q :=T'; — I‘ZFZTS. Obvjously,Jii,j =1, 2 are nonsingular TraceW, = TraceX. + O(|||) (23)
because the matrik, = Ay — X;S5; is stable under Assumptions ‘ ‘
1 and 2. After some straightforward but tedious algebra, we see that

' 2 ra o
A= XgoS =TI — ILI; T = I'o. Therefore, the matriXo is also  yhere TraceX. is the optimal steady-state mean-square error, while
stable if Assumption 3 holds. Thudet J # 0, i.e.,.J is nonsingular Tracew. is the near-optimal steady-state mean-square errofand

at||[| = 0. The conclusion of Lemma 3 is obtained directly by using; 4 positive semidefinite solution of the following multiparameter al-

the implicit function theorem. gebraic Lyapunov equation (MALE):
The remainder of the proof is to show tha. is the pos-

itive semidefinite stabilizing solution. Firstly, let us prove(A — XPPPS) W, + W, (A _X‘?‘pPS)T

the stability of the matrixA. — X.S. Using (19), we obtain Capp ¢ xrapp

T, T, . +XPPSXPP+ U =0 (24)
A.—X.S=d;" LT +O(||ul) ). The matricesTs and

3 4

T'y are stable since Aésumptions 1-3 hold. Therefore, if parameteith X2PP := $_ 1 X°PP,

JOO ']01 O
= |Jio Juu Ji2 (20)
lell=0, Xoo=Xg» Xop=Xg,, Xp=X7 0 0 Joo

JovF= d (vecfy, vecfa, vecf37) .
0 (vecX o, vecX oy, vecXy)
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(4 - Xi‘”S) (Xg“ - )g) + (Xg“ - Xe) (4 - Xﬁ‘”S)T + (Xe - Xi‘”) S (X - XS”) = (A4, — X*PPS) (Xi” - X)

4 (Xc(,” - Y) (A, — X" 6)T 4 (X, — X™P) S (X, — X7PP) = 0.

Before proving this theorem, we introduce the following useful

IV. CONCLUSION

lemma [12].
Lemma 4: Consider the iterative algorithm which is based on th
Kleinman algorithm

(A — X(W)S) )(("‘H)T + X(n+1) (14 _ X(n)S)T

+XxMsx™T LUy =0, n=0,1,2,... (25
where
X* )Z*
_X(U) — X3P — 00 0 f
0 X;
() — X{ES) Xé?)
< - I Xv(n)T Xv(n) .
etof T

Under Assumptions 1-3, there exists a smaduch that for all| || €

(0, ), < o the iterative algorithm (24) converges to the exact so- [3]

lution of X, with the rate of quadratic convergence, wh&f§" =
B'X = xWTH! That is, the following conditions are satis-
fied:

IX" - x| =0 (||,,,||2”) . n=0,1,2,.... (26)

Now, let us prove Theorem 2.
Proof: Subtracting (6) from (24) we find thdt. = W. — X,
satisfies the following MALE:

(Ac — XPPPS)V. 4+ V. (A, — X2PP8)!

+(X. = XIP)S (X - X2P) = 0. (27)

Similarly, subtracting (6) from (25) we also get the MALE

(4 = x8) (X0 = X ) + (X0 - x)

: (A - X§">5)T n (Y _ Xc(,")) S ()s - X§">) -0 (28)

whereX{™ = &.X™) . Whenn = 0, we have the equation shown at
the top of the page. Therefore, it is easy to verify fhat= xM-x.

[9] becausel. — X PP S is stable from Theorem 1in [7]. Consequently,
we obtain that

Vol = W, = X.| = ngU - x| < e
RO = x| <l X = x| = o
HenceV. = W. — X. = O(||x|]), which implies (23). [ |

Remark 3: Taking the special case of= 0 into account, Theorem
2 has a simpler proof via implicit function theorem. The proof can b
done by using a similar technique as in [10].

The near-optimal Kalman filtering problem for MSPS has been in-
\G}estigated. The new design method of the near-optimal Kalman filters
has been proposed. As a result, solving the high-dimensional ill-con-
ditioned MARE has been replaced by solving the low-order singular
perturbation parameter independent ARE. Furthermore, the proposed
filters can be implemented even if the fast state matrices are singular.
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