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In this paper, N-player linear quadratic differential games that are sign-indefinite for infinite
horizon weakly coupled large-scale systems are discussed. After establishing the asymptotic
structure and local uniqueness of the solution for cross-coupled sign-indefinite algebraic
Riccati equations (CSARE), a new algorithm for solving CSARE is provided. It is shown
that the proposed algorithm attains linear convergence. Moreover, in order to reduce the
computational workspace, the recursive algorithm is combined. Finally, a high-order
approximation strategy based on the proposed iterative solutions is described. As a result,
it was recently proved that the numerical strategy achieves a high-order approximation of
the equilibrium value. As another important feature, when the small parameters are unknown,

a parameter-independent strategy is developed.

1. Introduction

Linear quadratic Nash games and their applications
have been widely studied in many literatures,
see e.g., Starr and Ho (1969) and Broek er al. (2003).
In particular, the robust equilibria in indefinite linear
quadratic differential games under the disturbance
input affecting the systems have been discussed in
Broek et al. (2003). It is well known that in order to
obtain the Nash equilibrium strategy, the cross-coupled
algebraic Riccati equations (CARE) must be solved. The
Newton-type algorithm for solving the CARE has been
applied (Krikelis and Rekasius 1971). However, this
research has focused on determining the feedback gain
matrices for the 2-player Nash games. It should be
noted that for general N-player Nash games, it is
difficult to solve the N-coupled CARE because the
required workspace is needed N times the dimension
of the full-systems.

Recently, in order to avoid such drawbacks, an
algorithm referred to as the Lyapunov iterations for sol-
ving the CARE has been introduced (Li and Gaji¢ 1994).
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However, the convergence rate of the Lyapunov
iterations for solving the CARE is unclear.

The control problems of large-scale systems have
been investigated extensively, see e.g. Siljak (1978).
In particular, the control problems of weakly coupled
large-scale systems have been studied by several
researchers (Delacour et al. 1978, Srikant and Basar
1992, Gaji¢ and Borno 2000, Mukaidani 2005 and refer-
ences therein). A new iterative approach to obtain the
solution of a class of two-agent dynamic stochastic
teams for weakly coupled systems has been derived
(Srikant and Basar 1992). On the other hand, the
N-player Nash games for such systems have been inves-
tigated via the Lyapunov iterations (Mukaidani 2006).
However, since the connection between each control
input and the input of each performance index has
not been considered, the Lyapunov iterations are not
applicable to a wider class of the Nash games.

This paper investigates the numerical computation for
solving N-player sign-indefinite linear quadratic diffe-
rential games of infinite horizon weakly coupled
large-scale systems. The existence and local uniqueness
of the solutions related to the CSARE are newly
discussed. It should be noted that the CSARE has a
sign-indefinite quadratic term. The main contribution
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is to propose a new algorithm for solving the CSARE.
It is shown that this new algorithm has a linear conver-
gence property even if the CSARE is different from the
existing CARE that has a positive semidefinite quadratic
term. In particular, it is noteworthy that even though
the control input coupling of the performance
indices are considered, the convergence rate of the
proposed algorithm and its exact proof are derived
first. Furthermore, although the proposed algorithm is
based on the Lyapunov iterations, it is possible to use
this algorithm for the CSARE because the convergence
proof is given. Additionally, in order to reduce the
computational workspace, the recursive algorithm is
combined. As another important feature, a high-order
approximation strategy based on the iterative solutions
is provided. As a result, it is proved that the proposed
strategy achieves a high-order approximation of the
equilibrium value. It should be noted that the proof
used in this paper is quite different from the
existing result (Mukaidani 2006). Moreover, when
the small parameters are unknown, the proposed
parameter-independent strategy is used. Finally, in
order to demonstrate the efficiency of the algorithm,
a numerical example is included.

Notation: The notations used in this paper are fairly
standard. The superscript 7" denotes the matrix trans-
pose. Trace denotes the matrix trace. /, denotes the
n x n identity matrix. block diag denotes the block diag-
onal matrix. ||-| denotes its Euclidean norm for a
matrix. detM denotes the determinant of M. ® denotes
the Kronecker product. §; denotes the Kronecker
delta. The space of RF-valued functions that are quadra-
tically integrable on (0, co) are denoted by L5(0, 00).

2. Problem formulation
Consider the weakly coupled large-scale linear systems
with N-players
N
Xi(l) = Apxd) + Biui() + & Y Ayxi(0)

J=1L

N N
+¢ Z B,ju](t) + E;wi(t) + ¢ Z E,‘jo(l),

J=L j#i J=L j#
xi(0) =x?, i=1,...,N,
(1)
where x; € R", i=1,..., N represent ith state vectors.
u; € R, i=1,...,N represent ith control inputs.

w; e R, i=1,..., N represent ith disturbance vectors.

¢ denotes a small positive weak coupling parameter
which connect the other subsystems.
Let us introduce the partitioned matrices

[ Ay eApn - eAin el =By,
Ay Axn -+ edoaw g% By,
AE = . . . . b Bi€ = . 9
LeAyt €Ay -+ Ann gl = By;
[ En eEn -+ ek
ek  Eyp - eky
E. .=
LeEn1 eEny oo Enn

By using above relations, the system (1) can be
changed as

N
X(1) = AeX(D) + Y Bieui(t) + Ecw(D), )

i=1

where

xN(t)T]Te R, =) m

i=1

x(1) == [xi(n”

WN(Z)T] TG Rlz, ]E = k;.
i=1

w(t) = [wl(t)T

The cost performance for ecach strategy subset is
defined by

Ji(uy, ..., uy, w, x(0))

= /oo I:XT(I)Q,‘SX(Z) + UjT(t)Riiui(l)
0

N
Yy uf(r)Rw,-(r)—»vT(r>V[,L}v<z)]dz, 3)

=T A
where
g0y e0inn QN
T =5,
eQl, &70n - €Qny o
Qic = . . . €R™,
T T .
eQiy  €0ny © &N

R;= R[][" ~0e Rm,»xm,', Rij — R,Yl" >0¢ Rm,‘XH?/’
Viu = block diag(n ="'y p =02y,
Wy =0 e RE, G j=1,..,N.
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The state weight matrices Q;. is symmetric and assumed
to be sign-indefinite (Broek er al. 2003). Furthermore,
it should be noted that w denotes a small positive
parameter which is the same order for the parameter e.
That is, the following assumption is made.

Assumption 1: The ratio of the small positive
parameters ¢ and u is bounded by some positive
constants k

O</€::%<oo. (4)

It is now assumed that the parameters ¢ and u are of the
same order of magnitude, that is, their ratio is bounded
by some positive constants. The reason for this is given
as follows. First, it is preferable that the connection
between each control input and the input of the
performance indices has the same order of the coupling
parameter & because the coupling parameter u
strongly depends on the connection of the systems.
Moreover, even though these parameters have the
same order of magnitude, the coupling parameter u
should be different from the coupling parameter ¢ such
that the order of the connection can be changed by the
control designer.

For the matrices 4., By, i=1,...,N, the set Fy is
defined by

N

Fni=3Fles ooy Fre) | A + ZngFjg is stable}.
Jj=1

The soft-constrained Nash

equilibrium  strategy

(Fi ..., Fy,) is defined as satisfying the following
conditions (Broek ez al. 2003)
J(Fuv-. . Fypo X(0)
S J[(F]kga st F‘;‘k_lga Fisa F‘;‘:,]ga et Fv]k\]gax(o))a
i=1,....,N, ®)
where
j[(F187 cero FNS) X(O)): S}lp Ji(Flaa T FNS> IV,X(O)),
wel(0. 00)
Ji(FISs ERE) FN&‘s w, X(O))
00 N
= f [xT(r)[Qig + FLRiFie + 10 ) EZRU»F,»S}x(z)
0 J=1 i
—wl(?) V,'Mw(t)i|dt,

for all x(0) and for all (Fy, ..., Fye) that satisfy
(F% F* Fi, F*

tes - Ficer fries e Fre) € Ty

It should be noted that the following assumption
guarantees the existence of the admissible strategy.

Assumption 2: Each player uses the linear feedback
strategy  u;(t) = Kiex(?), i=1, ..., N such that the
closed-loop system is asymptotically stable for
sufficiently small parameters ¢ and pu.

Obviously, this assumption is made in order to obtain a
stable system. Using the fact studied by Broek er al.
(2003), the soft-constrained feedback Nash equilibrium
is given below.

Lemma 1: Assume that there exist N real symmetric
matrices P;, and Wi, such that

gi(Plea ..

N N r
=Pi8<A£_ZSjste> + <AS_ZSjst£> Pis
=

J=1

"PNE)

N
+ PiaSisPis + n Z PjaSingjg
j=1. j#i

+ PieM;, P + Qj =0, (6)

S := Bi.R;' BT

where i

Mi#« = Es V;}Ez-
As - Z/Ail SjePje + M, Pie is stable for i=1,...,N,
Ao =, 8P is stable,

Sije = ngR;lRUR;lBT

Je

N N T
Wis<A£_ > SjsPis) + (As— > S/sta)

j=1, j#i J=1 j#
N
X Wis - I/I/iESiE VVis + 128 Z PjsSijera + Qis = 0. (7)
J=1, j#i

Define the N-tuple (F},, ..., Fy,) by

wi(t) == Fix(t) = —R;'BILPix(1), i=1,...,N. (8)

Then, (F},,....Fy,) € Fn and this N-tuple is a
soft-constrained — Nash  equilibrium.  Furthermore,

ji(FTga crt F‘]k\/'gy X(O)) = X(O)TPISX(O)

It should be noted that if Q; >0 and Sj >0 for
all i=1,..., N, the matrix inequality (7) is trivially
satisfied with W, = 0 (Broek ef al. 2003).

In the following analysis, the basic assumption is
needed.

Assumption 3: The triples (4;;, By, /Qii), i=1,...,N
are stabilizable and detectable.
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3. Asymptotic structure of the CSARE

Firstly, in order to obtain the strategy, the asymptotic
structure of the CSARE (6) is established. Since A,
Sie, Sje and M;, include the term of the small
parameters ¢ and p, the solution P; of the CSARE
(6), if it exists, must contain these parameters.
Moreover, it should be noted that two parameters &
and p are the same magnitude such that Assumption 1
holds. Taking these facts into account, the solution P;
of the CSARE (6) with the following structure is
considered (Shen et al. 1994, Mukaidani 2006)

1-5;
e Py ePpy - ePjy
T 1-5;
8Pi12 & '2Pi2 N 8P,’2N o
P = e R™",
T T 1—8iv p.
ePin ePhy g TN Pin

Substituting the matrices A, Si, Sj, My, Qi and Pj
into the CSARE (06), letting e =0 and u =0, and parti-
tioning the CSARE (6), the following reduced-order
algebraic Riccati equations (AREs) are obtained,
where Py, i=1,...,N be the 0-order solutions of the
CSARE (6) as e = u = 0.

PiAii + A,?;}_)ii - ﬁii(sii — Mii)ﬁii +0; =0, )
where S;; := B”R;IBZ- and M;; .= Ej;; V;lEIY;

It should be noted that since the CSARE (6) is
continuous and differentiable in ¢ = u = 0, there exist
Py, i=1,...,Nate=pu=0.It should also be noted
that the assumption that S;; — M}; is positive semidefinite
because of H, control problem setting is not needed.

In order to guarantee the existence of a positive
semidefinite stabilizing solution of the ARE (9), the fol-
lowing condition is assumed (Mukaidani 2004 and 2006).

Assumption 4: The ARE (9) has a positive semidefinite
stabilizing solution such that 4;; — S;;P;; is stable.

The asymptotic expansion of the CSARE (6) at
& = = 0 is described by the following lemma.

Lemma 2: Under Assumptions 1-4, there exist the small
constants o* and p* such that for all ¢ € (0, ¢*) and
w € (0, p*), the CSARE (6) admits a unique positive
semidefinite solution P}, that can be written as
Pj; := P = P;+ O(¢) = block diag(0 --- P;; --- 0)

+ O(e). (10)
Proof: The proof can be derived by using the implicit

function theorem (Gaji¢ et al. 1990) for the
CSARE (6). Using the implicit function theorem,

it can be shown that there exists a neighbourhood of
e=u=0 and a unique function P; := P;+ O(¢).
It should be noted that under Assumption 4, since
the solution of the reduced-order ARE (9) is unique
(see e.g. Theorem 13.5 of Zhou er al. (1996), P; is
a unique solution. Therefore, the CSARE (6) has a
unique positive semidefinite solution P}, under the
sufficiently small parameters ¢ and u. ]

4. Iterative algorithm for solving CSARE

In order to obtain the strategy, the following useful
algorithm is given.

Consider the following iterative algorithm that is
called Lyapunov iterations

N
P (As S M,»MPE?)
j=1
N T
n (Ag Sy s M,«Mpiﬁ) P
Jj=1

N
K Kk Kk Kk Kk k
+ PSPy — POM P+ Y PSP

J=1, #
+0,=0, k=0,1,..., (I1a)
m d—s, p(k) *) k) ]
el =Py el o ey
(T —8 ptk) (k)
(k) ePy, TPy ePyy
PO (11b)

(k)T (k)T 1-8;x pk)
L &Py ePyy € APiIif _

with the initial conditions

P = P; = block diag(0 --- P; --- 0). (12)
It has been shown that Lyapunov iterations yield the
positive semidefinite stabilizing solution for the
positive  sign-definite CARE (Mukaidani 2006).
However, so far, there are no results for the convergence
property for the CSARE (6). The following
theorem indicates that the proposed algorithm
which is based on Lyapunov iterations attain the
linear convergence.

Theorem 1: Under Assumptions 1-4, there exist
the small constants & and p such that for all
e€(0, 0), 0 <o and ne (0, p), p<p* the iterative
algorithm (11) converges to the exact solution of
Pt with the rate of the linear convergence, where
Pﬁ‘) is  positive semidefinite matrix and

ie
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A, — Z/]il Sngj(f) + M, P is stable. That is, the follow-
ing conditions are satlsﬁed

1P — PL| = O0(s"1), (13a)

N
Rel [Ag =Y S P+ M,-Mpgﬁ} <0, k=0,1,.... (13b)

Proof: The proof of this theorem can be derived by
using the mathematical induction. When k=0, taking
(10) into account, it is easy to verify that the first
order approximations P}, correspondmg to the small
parameters ¢ and p are the same as P . Moreover, since

N
A — Z Sjc Py + My, P

j=1
= block diag( Dy --- Dyy) + O(¢) := Dy + O(e),

where Dii = Aii — Sjjpl‘i + Ml'l'ﬁl‘j, D A — S P]j,

j#1i, j=1,...,N, there exists the srnall perturbatlon
parameter o such that

N
As =Y 8P + My, P
=

is stable because D, is stable for sufficiently small e.
When k =h, h > 1, it is assumed that

|17 = Pl = O(e"), (142)

Rek |:A - ZSJSP(/” + M, Pg”] <0. (14b)
Jj=1

Subtracting (6) from (11a) and setting k=~h, the
following equations are satisfied

N
(%wdggfz&w+m%j
=
N T
(4 St ) (- 1)

J=1

N N
+ 20 mse(E - B)+ 0 (P BY)sir
J

S AT
(s r)
— (PP = P )My (PD - )

N N
+ M|: Z P(h)Sz/eP(h) Z P;, S,,SP*:| =0. (15
j

J=1 £ =1, j#i

Using the fact that the assumption (14a) holds, it is easy
to derive that

N
> PSPy

J=L#
h % ) h
(PES) - PI'S)S"E(PE}S]) - PTS) = 0(82/+2)’

(ng) — PZ)MW <PZ’) _ P;’;) 0(82/1+2)’

- P) = 0("),

N N
ML > PUs; P - PrS;e P, }
=1, j#i L J#
N
=M|:j12j:¢[(P* +0 h+l) ljs(P*"f_O h+1))
N
Z S,,SP*]
i
N
_ |;Z (P*S,ng h+l)+0(8h+l)SU5P*+0(82h+2)):|
O(e

1+)

It should be noted that if i+#j, P.LS;, = O(¢) holds.
Thus, the following relation is satisfied

N
(=) (- Lot

J=1

N T
l l
+ (Ae =D SeP + Mfupi»;)) (A" -7y

j=1
+ 0" = 0. (16)

Taking into account the fact that the stability assump-
tion (14b) holds and using relation (14a), the following
result is satisfied.

(16) < PUY — pr = / exp[W!1]O(e"?) exp[W. 1] dt
0

= / ~ exp[O(e)f] exp[ D] O (")
0

x exp[D 4t] exp[O(¢e)r]dt

where W, = (4. — Y1, S PV + My, PP) = Dy + O(e).
Since there exist the e-independent scalar parameters
a and B such that

lexplO(e)]ll < Be™,
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it is easy to verify that

OO0
(h+1) * 2 Dact
IPUHD < /0 Bre

x exp[DAt]Hdt — 0("). (17)

exp[D]1]O("?)

Furthermore, using the relation (17), it is shown that
there exists the small positive perturbation parameter
op+1 such that

N N
h+1 h+1
Ae =) SpPt + My P = 4, =) S, P
= =

+ MI;LP;'kg + 0(€/1+2)
— D+ 0)

is stable. Consequently, choosing ¢ := min{oy, ..., 0511},
the relation (13b) holds for all £ € N. This completes
the proof of Theorem 1 concerned with the Lyapunov
iterations. U

Using the asymptotic structure of the solutions (10), the
local uniqueness of the convergence solutions is studied.

Theorem 2: Under Assumptions 1-4, there exist the
sufficiently small constants & and p such that for all
£€(0,0), 6<d<0* and ne (0, p), p<p<=<p* the
convergence solution P}, of the iterative solution Pg) is
unique in the neighbourhood of ¢ = u = 0.

Proof: First, under Assumptions 1-4, there exists the
neighbourhood of ¢ = u = 0 such that the CSARE (6)
admits a unique positive semidefinite solution P}, by
means of the implicit function theorem (see the proof
of Lemma 2). That is, for sufficiently small ¢ and pu,
the CSARE (6) has a unique positive semidefinite solu-
tion P}. Taking into account the fact that the solutions
P? of (10) and (13a) are equivalent, the iterative solution
P converges to P and it is a unique solution for suffi-

123

ciently small ¢ and u. O

Although the Lyapunov iterations (11) yield the positive
semidefinite solution of the CSARE (6) in general, the
local uniqueness of the convergence solution is guaran-
teed in the neighbourhood of ¢=0 under the weakly
coupled large-scale system.

On the other hand, the convergence solution may not
be maximum solution. However, since the solution is
unique in the neighbourhood of =0, other solution
cannot be used to the weakly coupled Nash games as
long as the sufficiently small parameter ¢ is considered.
As a result, it is worth pointing out that the convergence
solutions satisfy the local uniqueness and the positive
semidefiniteness in the neighbourhood of ¢ =0.

It is well known that the CSARE (6) could have
several positive definite solutions and even some
indefinite  solutions (Abou-Kandil ez al. 2003).
However, as long as the sufficiently small parameters ¢
and p are chosen, the obtained iterative solutions guar-
antee the positive semidefiniteness and admissibility.
Furthermore, the positive semidefinite stabilizing
properties of the solutions obtained by means of the
proposed algorithm are guaranteed (Li and Gaji¢ 1994).

When the ALE (11a) is solved, the dimension of the
workspace as 71:= Y~ n,; larger than the dimensions
n, i=1,... ,N is needed. Thus, in order to reduce
the dimension of the workspace, a new algorithm for
solving the ALE (11a) which is based on the recursive
algorithm is established. Let us consider the following
ALE (18), in a general form of the ALE (11a)

XA+ Al'X, + U, =0. (18)

In particular, the following special matrices X., A, and
U, which are related to the ALE (18) are considered
because the other case i=2,...,N can be changed
into the similar form by using the similarity transforma-
tion 7;, where

X, =T;'"P0T,
J k k
Ae:=T7! <A5 =Y S PY + My PYT,,
=1
1 phg pk) _ pk) g plk)
Ue:=T; (P[s SiePie — Pie’ My P

N
k k
+M Z Pﬁg)SifaP};) + QiS)Tia

oL A
-0 I, 0"
block diag(1...1)
T,’I: Im 0 0
block diag(1...1)
Lo 0 I,
[ X1 X eXin |
SXTZ 8X22 EXzN
X, = R
_SXITN EXQTN o eXynN |
[ Al eAn - eAy ]
eNy; Ay - ey
A= s
L AN EAN2 -+ Apnn |




Computation of sign-indefinite linear quadratic differential games 81

Un eUp -+ el

SUITZ €U22 8U2N
Us = . .

eUL, eULy -+ eUyy

In order to guarantee the existence of the solution and
the convergence of the algorithm, another assumption

is needed.
Assumption 5: Aj,..., Ayy are stable.

Without loss of generality, it should be noted that the
above assumption is satisfied automatically under the
condition of Theorem 1.

In order to calculate briefly, the following partitioned
matrices are introduced.

X11 £X1‘ A e\
eXyy eXy eAn Ay
U11 8U1f

Ug . = T .
sUlf eUy

As a result, the ALE (18) can be changed as follows
by partitioning.

XA +AL X+ XA+ ALY )+ Un =0, (19)
XeAp+ A X+ e(XT A+ Al X))+ Ur=0,  (19b)
X1 A+ XA+ Al X+ eAf X+ Uyp=0. - (19¢)

It should be noted that the ALE (19) is quite different
from the existing one (Gajic ez al. 1990). Moreover, Ais
stable because Assumption 5 holds.

Defining approximation errors as

Xu=Xu+eHn, Xy=Xy+eHy
Xy = Xy + eHy. (20)

where
XiAn + Al X, + Uy =0,
XpAy+ AfXp+ Ur =0,
)_(11A1f+A_’1fAf+ AITI/\_’lf—i- Uiy =0.

Substituting (20) into (19), the following ALEs for the
matrices Hyy, Hiy and Hyare derived

H11A11+A]1;H11+8(X1fAﬂ +A}{X]T/)=0, (21&)
HyAy+ AfHy+ XAy + AfX1p =0, (21b)
HiAyy+ HyAr+ Al Hy+ AfXp =0, (2lo)

Taking the form of (20) into account, the algorithm to
solve the ALE (21) is given by (22).

HE A +A1T1H<1li+l)+5(X(1/?[\/1 +Af7{X(11;)T> =0, (22a)
H}M)Af* A/;H;_k+1>+/‘x§)TA1f+ AleX?? =0, (22b)
HG DA ALHE - HE A AR XD =0, @20

where k =0,1, ...,

XY =X +eny), X[ =Xy +eH]),

X0 = Ty el, HY =0, HY =0, 1=,

It should be noted that H({;H) can be computed as the
Sylvester equation by using the solutions H(lle) and
H(/CH) that are obtained from ALEs (22a) and (22b)
because X}kH) =X+ ng,.k“).

The following theorem indicates the convergence
of the algorithm (22).

Theorem 3: Under Assumption 5, the recursive algo-
rithm (22) converges to the exact solution Hyi, Hys and
Hywith the rate of

IH) — Hipll = 0(%), ||1—1§f;’? — Hyll = 0>,
1HY — H =06, k=1..... 23)

Proof: The proof of Theorem 3 can be done by using the
mathematical induction. Subtracting (21) from (22), the
following equations hold

(H(lklﬂ) — Hi)Ay + A1T1(H<1k1+1) — Hyp)
+e[(H) — Hy)Ap + AJ(HS) — Hp)' =0, (24a)
(H ™0 = A+ A7 G — H))
+[(H\) — Hi) Ay + AT(H) — Hipl =0, (24b)
(HIY — HipAy+ (H<1.1;‘+1) — Hiy)Ay
+ AL HT = Hiy) + eAJHID — H) =0, (240)

First, k =0 for the algorithms (24) is considered. Taking
into account the fact that the stability assumption of A
holds and using the standard properties of the algebraic
Lyapunov equation ALE (Zhou 1998), it is easy to verify
that

|HY = Hull = 0, [1H)” = Hjll = OCe),
IH) — Hyll = O(?). 05
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Therefore, the equation (23) is true for k=1.
When k = h, h > 2, it is assumed that

WD — Hyll = 06, 1HY — Hyj = 0e),
] = il = O™, 6)

Setting k=~h for the ALE (24) and using the above
assumption, the following equations hold

(H(1/71+1) — Hy)An + AlTl(H(lth) — Hpp) + 0¥ = 0,
(27a)

(™Y = HpAy+ AJ(H™Y = Hp + 0" =0,
(27b)

(H(1h]+l) - Hll)Alf+ (H(1//14+1) — Hlf)Af
+ AL — Hy) + eAJ(H!D — H) =0, (270)

After the cancellation takes place, since Ay,
i=1,...,N are stable from Assumption 5, the follow-
ing relations hold

||H<lhl+1) _ H]l” — 0(82h+2), ||H/(rh+1) _ H/” — 0(82h+1),
||H<1il‘+l) _ Hlf” — 0(82}1+2). (28)

Consequently, the error equations (23) are true for all
k € N. This completes the proof of Theorem 3. O

5. High-order soft constrained Nash strategy

The required solution of the CSARE (6) exists under
Assumptions 1-4. Moreover, it is very important to
Starati ; (k) ,
note that the iterative solutions P, by means of the
Lyapunov iterations (11) satisfy the positive
semidefiniteness, the local uniqueness in the neighbour-
hood of ¢ =0 and the admissibility from Li and Gaji¢
(1994). That is, these convergence solutions will satisfy
the soft constrained Nash equilibrium properties (5)
for sufficiently small parameter &.

The attention is focused on the design of
the high-order Nash equilibrium strategy for the
sign-indefinite linear quadratic games. Such strategy is
obtained by using the iterative solution (11a).

U (1) = —R;'BLPOx(r), i=1,...,N. (29)
The degradation of the cost performance via the new
high-order soft constrained Nash equilibrium strategy
(29) is given as follows.

Theorem 4: Under Assumptions 1-4, the use of the
high-order soft constrained Nash equilibrium strategy
(29) results in (30)

T, o B X)) =B Py x(0)

+O0@E"*?), i=1,...,N. (30)

Proof: When ugk)*(t) = Fff)*x(t) is used, the value of
the cost performance is given by Broek ef al. (2003)

B(F.

L F x(O)) — XT(0)Yx(0),  (31)

where Y. is a positive semidefinite solution of the
following ARE

T

N N

Yie (Ag -3 S_/SP}-,’;)> + (Ag -3 S_,»sPﬁi‘))
J=1 j=1

ul k k

X Yie+ YieMy Yo+ > PRSP

J=1o A
+PPS. PP+ 0, =0. (32)

Subtracting the CSARE (6) from the ARE (32),
Z, = Y, — P satisfies the following ARE

N
Zs (Ae =S PP+ M P+ My (P - Pﬁ?))
J=1

T
N
+ (As =5 PY + My PY + My (P - P§§’)> Zs
J=1

N
+Zi M Zis + Z PiSje (Pje — P,(fi))
=1, A

N

+ Z <Pja - P](f)>Sj£Pis
j=, i
N (e )

+M[ > (P,-s Sije Lje —PJ-ES,»,-EP,-S)}

=T,
n (P,-g _ Pf.’;))s,-s (P,-e _ ng)) —0. (33)

Taking (13a) into account as Pj; = P, it is easy to
verify that

Zie(D4+ O(e)) + (D4 + O(e)) Zse
+ZieM Zie + O(£%) = 0. (34)
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Without loss of generality, using the similarity
transformation 7;, the following ARE is considered
because the other case is similar,

ZAAATZ A4 ZMZ 4+ 0 =0, (39)
where

Z_l 82_1_/' _
Z2.=T;'2,Ti=| _ _ | Zi=2y,

sZ{f- eZy
Az :=T; " (D4+ O(e))T: =block diag( D, D)) + O(e).
Dl = Dii = Aii — Sjj[_)ii + Miiﬁiia

Dy :=block diag(D2; -+ Di—1i—1 Ditii+1 -+ Dyw),

Ml Sle _
MMIZT;IMZ‘MT,'Z _ _ . M1:Mﬁ.
eM{, eM;
Letting e=pu =0, the following reduced-order

parameter independent algebraic Bernoulli equation
(ABE) is given

Zo Ao+ AJ 2o+ Z0Mo 2y = 0, (36)

where

|:Z_(]0) 0:|
Zy = s
0 0

- M, 0
Ao := block diag(D, Dy), M,:= )
‘ 0 0

The ABE (36) is equivalent to the following
reduced-order ABE by partitioning

295, + DTZ0 4 205,70 —0.  (37)

Taking into account the fact that

Dy M,

0 -Df
has no eigenvalues on the imaginary axis and D,
is stable under Assumption 4 and using the well-
known result (see e.g. Theorem 13.5 of Zhou et al.
(1996)), the reduced-order ABE (37) has a unique
stabilizing solution Z_(lo) =0. Thus, the following
equation holds

79 =0 7, =2 + 0() = 0(e). (38)

Hence, the solution (38) results in

Zi  eZy
z.=| 2 | =e20. (39)
eZiy eZy ‘

Substituting (39) into (35), it follows that
ZOA, + ATZD 4 ezWpr, 20 4 01 = 0. (40)

Using the similar technique, the following relation
holds.

Z, =820, (41)
Finally, continuing the above steps results in (41)
Zs — 8k+2Z§k+2) — 0(8k+2). (42)

Therefore, Z; = TiZgTi_l = O(¢"*?) because of the
stability condition (13b) and the standard properties
of the ARE. Hence

x(0)" Ziex(0) = x(0)" Y;ex(0) — x"(0)P;ex(0)
= J(F O x(0)

le »
—J(F,.... Fiy., x(0)) = 0(") (43)

les -+

results in (30). ]

It should be noted that the above results and its proof
are novel compared with the existing results
(Mukaidani 2000).

In the rest of this section, an important implication is
given. If the parameters ¢ and p are unknown, then the
following corollary is easily seen in view of Theorem 4.

Corollary 1: Consider the parameter-independent soft
constrained Nash strategy

() =u" ()= —R;'BTPx(r), i=1,....N, (44)

where B :=[0 ... Bl ... 0]
Under Assumptions 1-4, the use of the reduced-order
strategy (44) results in (45)

Ji(F;

le> -

Py X(0) = Ji(Fan ., Fir X(0))

+0(@?), i=1,...,N. (45

Proof: Since the result of Corollary 1 can be proved by
using the similar technique in Theorem 4 under the fact
that || P;; — P;|| = O(e), the proof is omitted. |
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6. Numerical example
In order to demonstrate the efficiency of the proposed

algorithm, an illustrative example is given. The system
matrices are given as follows:

0 1 —0.266 —0.009
-2.75 =278 —1.36 —0.037
Ay = ,
0 0 0 1
| —4.95 0 —55.5 —-0.039
[(0.0024 0 —0.087 0.002
—0.185 0 1.11 —0.011
edpn = ,
0 0 0 0
| 0222 0 8.17 0.004
[0.073 0 —0.25 0.003
—0.46 0 2.8 —0.02
8/413 =
0 0 0 0
| 0924 0 175 0.02
0.021 0 0.121 0.003
-1.1 0 —-1.62 -0.015
eAa = )
0 0 0 0
| —243 0 1.37 —0.034
—0.21 1 —1.6 —0.005
-19 —-1.8 93 —0.12
Axpn = )
0 0 0 1
| —3.1 0 —-56 0.032
[0.06 0 0.46 0.002
-1 0 149 —-0.04
8A23 = 5
0 0 0 0
| 0.12 0 29.8 —0.028
[—0.002 0 0.83 0
—-6.78 0 -—10.1 0.09
€A31 = 5
0 0 0 0
| —1.24 0 0498 -0.017
0.011 0 0.22 0
=21 0 1.7 -0.123
8/432 = s
0 0 0 0
| —0.07 0 6.38 —0.011

r—0.197 1 —1.2 —0.003
—-54.5 =20 70.1 =237
Az = )
0 0 0 1
| —34 0 -21.0 -0.017
r o0 0
B 36.1 | 789
1n= o I 0 = o |
0 0
0
1000 o
B33 = P ij — 0, l 7&]’
0
L 0
0.1 0 0 0 7 0 0 0 O
0 0 0 0.1 0 0 O
Ey = , En=
0 0 0 0.1 0 0 0.1
L O 0 0 0.1_ 0 0 0.1
rf0 0 0 07
0 0 0 O
Es; = ,
0.1 0 0 0.1
L O 0 0 0.1
Ej=0,i#],
Vii = block diag( 2 2 1),
Vi =block diag(V; pu'Iy p'L),
V> = block diag( u -114 Vi wn '),
V3 = block diag( u~ w Vi),
Q1 = block diag( 0. 514 Osxs ).
Q2 = block diag(04x4 0.5[4 04><4),
Q3 = block diag(Ong 0.514),
Rii=Rn=Ry;=1, Rp=R;3=02,
Rys = Ry; = 0.3, Ry = Ry =0.1.
The small parameters are chosen as &=0.01
and ©=0.005. It should be noted that the

algorithm (11a) converges to the exact solution with
accuracy of [|G¥(e)|| < 1.0e — 10 after five iterations,
where

3
IG9@0 = D" 1G(PY. P PO (46)

In order to verify the exactitude of the solution, the
remainder per iteration by substituting ng’ into the
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Table 1. Table 3.
ko 1990e—02))  1g9(1.0e—03)]  [O(1.0e—0d] Kk 2 ¢ ¢3
0 3.5262¢ — 01 3.5262¢ — 02 3.5262¢ — 03 0 1.8753¢ 401 1.0841¢ +01 2.3362¢ — 01
1 4.8116¢— 03 4.8163¢ — 05 4.8188¢ — 07 1 4.0209¢ — 02 2.0298¢ — 01 1.5967
2 1.6202¢ — 05 1.5945¢ — 08 1.6104¢ — 11 2 9.9697¢ — 02 1.5860¢ — 01 8.4013¢ — 01
3 1.1027¢ — 07 1.1069¢ — 11 3 1.2945¢ — 02 2.0882¢ — 01 2.2566¢ — 01
4 5.6047¢ — 10 4 6.2172¢ — 03 2.9310e — 02 1.5787¢ — 02
5 2.7238¢ — 12 5 3.3196 8.6597¢ — 01 2.3981e401
Table 2. Itk is easy to verify that J,-(F(l?*, e
- - - FY* x(0) = J(F,, ..., Fi.. x(0)) = O(s"*2) because
e |HY) — Hyl |H{) — Hyl |H — Hy of ¢ < o0.
0 5.3991e — 04 1.6457¢ — 03 3.1859 — 02
| 5.5514¢ — 07 2.4153¢ — 06 7.1316¢ — 05
2 9.8057¢ — 10 3.4647¢ — 09 8.4322¢ — 08 7. Conclusion
3 1.2965¢ — 12 5.0174e — 12 1.3434¢ — 10
4 1.8468¢ — 15 7.1821e—15 2.0040¢ — 13 In this paper, N-player indefinite linear quadratic differ-
5 4.7322¢ — 17 3.0454¢ — 16 1.7938¢ — 15

CSARE (6) is computed. In table 1, the results of
the error ||G®(¢)|| per iterations are given for several
values ¢ and u = 0.5¢. As a result, it can be seen that
the algorithm (11a) has the linear convergence. On the
other hand, it should be noted that the existence of
more than one soft-constrained Nash equilibrium is
possible because it is not a sufficiently small parameter
as ¢=0.01.

Second, the norm condition (22) is evaluated.
Choosing ¢=0.01 and w=0.005, the errors between
the exact solution and the iterative solution per itera-
tions are given in table 2. It should be noted that the
result for the first iteration of the algorithm (11a) is
demonstrated. It can be found that the norm condition
(23) for the numerical error of the algorithm (22) are
true.

Finally, the costs using the near-optimal strategy
(29) are computed. The initial conditions are
chosen as x(0)=[101110111011]". The cost
functional-to-perturbation &*2 ratio for various ¢ and
u are given in table 3, where

|Jiapp - iopt|
¢ = k2
_ |XT(0) Yiax(o) B xT(O)Pisx(O)l
- gk+2 >

(47)
with € =0.01, ©=0.005,

Japp = Ji(F, . B () = x(0)Viex(0),

Jiopt = Ji(Fis- .y Figeo x(0)) = x7(0)P;x(0).

ential games for large-scale systems connected by a
weak small positive coupling parameter have been stu-
died. The main contribution of this study is to propose
a new algorithm for solving the large-scale CSARE
with a sign-indefinite quadratic term. Comparing with
the existing result (Mukaidani 2006), the control input
coupling of the performance indices has been newly con-
sidered. It is noteworthy that although the proposed
design method is based on the Lyapunov iterations
(Petrovic and Gajic1988, Gajic et al. 1990) for solving
the sign-indefinite CARE, the convergence rate has
been newly proved as a linear convergence. Moreover,
to reduce the computational workspace, the recursive
algorithm has been combined. Finally, both fast conver-
gence and a reduced-order calculation are attained. As
another important feature, the asymptotic structure and
local uniqueness of the solution for the CSARE has
been proved.

It is well known that the implicit function theorem
(Gajic et al. 1990) guarantees the existence of the small
parameters o* and p* such that for all parameters
e € (0, 0*) and u € (0, p*), the CSARE admits a posi-
tive semidefinite stabilizing solution. However, there is
no information about the magnitude of these coupling
parameters ~ which  maintains the assertion.
Furthermore, the proposed algorithm may not converge
under the large parameters ¢ and w. These problems
will be addressed in future investigations via the
Newton—Kantorovich theorem (Yamamoto 1986).
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