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In this paper, N-player linear quadratic differential games that are sign-indefinite for infinite
horizon weakly coupled large-scale systems are discussed. After establishing the asymptotic
structure and local uniqueness of the solution for cross-coupled sign-indefinite algebraic

Riccati equations (CSARE), a new algorithm for solving CSARE is provided. It is shown
that the proposed algorithm attains linear convergence. Moreover, in order to reduce the
computational workspace, the recursive algorithm is combined. Finally, a high-order
approximation strategy based on the proposed iterative solutions is described. As a result,

it was recently proved that the numerical strategy achieves a high-order approximation of
the equilibrium value. As another important feature, when the small parameters are unknown,
a parameter-independent strategy is developed.

1. Introduction

Linear quadratic Nash games and their applications
have been widely studied in many literatures,
see e.g., Starr and Ho (1969) and Broek et al. (2003).
In particular, the robust equilibria in indefinite linear
quadratic differential games under the disturbance
input affecting the systems have been discussed in
Broek et al. (2003). It is well known that in order to
obtain the Nash equilibrium strategy, the cross-coupled
algebraic Riccati equations (CARE) must be solved. The
Newton-type algorithm for solving the CARE has been
applied (Krikelis and Rekasius 1971). However, this
research has focused on determining the feedback gain
matrices for the 2-player Nash games. It should be
noted that for general N-player Nash games, it is
difficult to solve the N-coupled CARE because the
required workspace is needed N times the dimension
of the full-systems.
Recently, in order to avoid such drawbacks, an

algorithm referred to as the Lyapunov iterations for sol-
ving the CARE has been introduced (Li and Gajić 1994).

However, the convergence rate of the Lyapunov
iterations for solving the CARE is unclear.

The control problems of large-scale systems have
been investigated extensively, see e.g. Siljak (1978).
In particular, the control problems of weakly coupled
large-scale systems have been studied by several
researchers (Delacour et al. 1978, Srikant and Basar
1992, Gajić and Borno 2000, Mukaidani 2005 and refer-
ences therein). A new iterative approach to obtain the
solution of a class of two-agent dynamic stochastic
teams for weakly coupled systems has been derived
(Srikant and Basar 1992). On the other hand, the
N-player Nash games for such systems have been inves-
tigated via the Lyapunov iterations (Mukaidani 2006).
However, since the connection between each control
input and the input of each performance index has
not been considered, the Lyapunov iterations are not
applicable to a wider class of the Nash games.

This paper investigates the numerical computation for
solving N-player sign-indefinite linear quadratic diffe-
rential games of infinite horizon weakly coupled
large-scale systems. The existence and local uniqueness
of the solutions related to the CSARE are newly
discussed. It should be noted that the CSARE has a
sign-indefinite quadratic term. The main contribution*E-mail: mukaida@hiroshima-u.ac.jp
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is to propose a new algorithm for solving the CSARE.
It is shown that this new algorithm has a linear conver-
gence property even if the CSARE is different from the
existing CARE that has a positive semidefinite quadratic
term. In particular, it is noteworthy that even though
the control input coupling of the performance
indices are considered, the convergence rate of the
proposed algorithm and its exact proof are derived
first. Furthermore, although the proposed algorithm is
based on the Lyapunov iterations, it is possible to use
this algorithm for the CSARE because the convergence
proof is given. Additionally, in order to reduce the
computational workspace, the recursive algorithm is
combined. As another important feature, a high-order
approximation strategy based on the iterative solutions
is provided. As a result, it is proved that the proposed
strategy achieves a high-order approximation of the
equilibrium value. It should be noted that the proof
used in this paper is quite different from the
existing result (Mukaidani 2006). Moreover, when
the small parameters are unknown, the proposed
parameter-independent strategy is used. Finally, in
order to demonstrate the efficiency of the algorithm,
a numerical example is included.

Notation: The notations used in this paper are fairly
standard. The superscript T denotes the matrix trans-
pose. Trace denotes the matrix trace. In denotes the
n� n identity matrix. block diag denotes the block diag-
onal matrix. k � k denotes its Euclidean norm for a
matrix. detM denotes the determinant of M. � denotes
the Kronecker product. �ij denotes the Kronecker
delta. The space of Rk-valued functions that are quadra-
tically integrable on ð0, 1Þ are denoted by Lk

2ð0, 1Þ.

2. Problem formulation

Consider the weakly coupled large-scale linear systems
with N-players

_xiðtÞ ¼ AiixiðtÞ þ BiiuiðtÞ þ "
XN

j¼1, j6¼i

AijxjðtÞ

þ "
XN

j¼1, j 6¼i

BijujðtÞ þ EiiwiðtÞ þ "
XN

j¼1, j 6¼i

EijwjðtÞ,

xið0Þ ¼ x0i , i ¼ 1, . . . ,N,

9>>>>>>>>=
>>>>>>>>;
ð1Þ

where xi 2 Rni , i ¼ 1, . . . ,N represent ith state vectors.
ui 2 Rmi , i ¼ 1, . . . ,N represent ith control inputs.
wi 2 Rki , i ¼ 1, . . . ,N represent ith disturbance vectors.

" denotes a small positive weak coupling parameter
which connect the other subsystems.

Let us introduce the partitioned matrices

A" :¼

A11 "A12 � � � "A1N

"A21 A22 � � � "A2N

..

. ..
. . .

. ..
.

"AN1 "AN2 � � � ANN

2
66664

3
77775, Bi" :¼

"1��1iB1i

"1��2iB2i

..

.

"1��NiBNi

2
66664

3
77775,

E" :¼

E11 "E12 � � � "E1N

"E21 E22 � � � "E2N

..

. ..
. . .

. ..
.

"EN1 "EN2 � � � ENN

2
66664

3
77775:

By using above relations, the system (1) can be
changed as

_xðtÞ ¼ A"xðtÞ þ
XN
i¼1

Bi"uiðtÞ þ E"wðtÞ, ð2Þ

where

xðtÞ :¼ x1ðtÞ
T

� � � xNðtÞ
T

� �T
2 R �n, �n :¼

XN
i¼1

ni,

wðtÞ :¼ w1ðtÞ
T

� � � wNðtÞ
T

� �T
2 R

�k, �k :¼
XN
i¼1

ki:

The cost performance for each strategy subset is
defined by

Jiðu1, . . . , uN, w, xð0ÞÞ

¼

Z 1

0

�
xTðtÞQi"xðtÞ þ uTi ðtÞRiiuiðtÞ

þ �
XN

j¼1, j6¼i

uTj ðtÞRijujðtÞ � wTðtÞVi�wðtÞ

�
dt, ð3Þ

where

Qi" ¼

"1��i1Qi1 "Qi12 � � � "Qi1N

"QT
i12 "1��i2Qi2 � � � "Qi2N

..

. ..
. . .

. ..
.

"QT
i1N "QT

i2N � � � "1��iNQiN

2
66664

3
777752R �n� �n,

Rii ¼RT
ii > 02Rmi�mi , Rij ¼RT

ij � 02Rmj�mj ,

Vi� ¼ block diag ��ð1��i1ÞVi1 ��ð1��i2ÞVi2 � � �
�

��ð1��iNÞViN

�
� 02R

�k� �k, i, j¼ 1, . . . ,N:
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The state weight matrices Qi" is symmetric and assumed
to be sign-indefinite (Broek et al. 2003). Furthermore,
it should be noted that � denotes a small positive
parameter which is the same order for the parameter ".
That is, the following assumption is made.

Assumption 1: The ratio of the small positive
parameters " and � is bounded by some positive
constants ~k

0 < ~k :¼
�

"
< 1: ð4Þ

It is now assumed that the parameters " and � are of the
same order of magnitude, that is, their ratio is bounded
by some positive constants. The reason for this is given
as follows. First, it is preferable that the connection
between each control input and the input of the
performance indices has the same order of the coupling
parameter " because the coupling parameter �
strongly depends on the connection of the systems.
Moreover, even though these parameters have the
same order of magnitude, the coupling parameter �
should be different from the coupling parameter " such
that the order of the connection can be changed by the
control designer.
For the matrices A", Bi", i ¼ 1, . . . , N, the set FN is

defined by

FN :¼ ðF1", . . . , FN"Þ j A" þ
XN
j¼1

Bj"Fj" is stable

( )
:

The soft-constrained Nash equilibrium strategy
ðF�

1", . . . ,F
�
N"Þ is defined as satisfying the following

conditions (Broek et al. 2003)

�Ji F
�
1", . . . ,F

�
N", xð0Þ

� �
� �Ji F

�
1", . . . , F

�
i�1", Fi", F�

iþ1", . . . , F
�
N", xð0Þ

� �
,

i ¼ 1, . . . ,N, ð5Þ

where

�JiðF1", . . . , FN", xð0ÞÞ :¼ sup
w2L

�k
2
ð0, 1Þ

JiðF1", . . . , FN", w,xð0ÞÞ,

JiðF1", . . . , FN", w, xð0ÞÞ

¼

Z 1

0

�
xTðtÞ

�
Qi" þ FT

i"RiiFi" þ �
XN

j¼1, j 6¼i

FT
j"RijFj"

�
xðtÞ

�wTðtÞVi�wðtÞ

�
dt,

for all x(0) and for all ðF1", . . . , FN"Þ that satisfy
ðF�

1", . . . , F
�
i�1", Fi", F�

iþ1", . . . , F�
N"Þ 2 FN.

It should be noted that the following assumption

guarantees the existence of the admissible strategy.

Assumption 2: Each player uses the linear feedback

strategy uiðtÞ ¼ Ki"xðtÞ, i ¼ 1, . . . , N such that the

closed-loop system is asymptotically stable for

sufficiently small parameters " and �.

Obviously, this assumption is made in order to obtain a

stable system. Using the fact studied by Broek et al.

(2003), the soft-constrained feedback Nash equilibrium

is given below.

Lemma 1: Assume that there exist N real symmetric

matrices Pi" and Wi", such that

GiðP1", . . . ,PN"Þ

¼ Pi" A" �
XN
j¼1

Sj"Pj"

 !
þ A" �

XN
j¼1

Sj"Pj"

 !T

Pi"

þ Pi"Si"Pi" þ �
XN

j¼1, j 6¼i

Pj"Sij"Pj"

þ Pi"Mi�Pi" þQi" ¼ 0, ð6Þ

where Si" :¼ Bi"R
�1
ii BT

i", Sij" :¼ Bj"R
�1
jj RijR

�1
jj BT

j",
Mi� :¼ E"V

�1
i� ET

" .

A" �
PN

j¼1 Sj"Pj" þMi�Pi" is stable for i ¼ 1, . . . ,N,

A" �
PN

j¼1 Sj"Pj" is stable,

Wi" A" �
XN

j¼1, j6¼i

Sj"Pj"

 !
þ A" �

XN
j¼1, j6¼i

Sj"Pj"

 !T

�Wi" �Wi"Si"Wi" þ �
XN

j¼1, j 6¼i

Pj"Sij"Pj" þQi" � 0: ð7Þ

Define the N-tuple ðF�
1", . . . ,F

�
N"Þ by

u�i ðtÞ :¼ F�
i"xðtÞ ¼ �R�1

ii BT
i"Pi"xðtÞ, i ¼ 1, . . . ,N: ð8Þ

Then, ðF�
1", . . . ,F

�
N"Þ 2 FN and this N-tuple is a

soft-constrained Nash equilibrium. Furthermore,
�JiðF

�
1", . . . , F�

N", xð0ÞÞ ¼ xð0ÞTPi"xð0Þ.

It should be noted that if Qi" � 0 and Sij" � 0 for

all i ¼ 1, . . . , N, the matrix inequality (7) is trivially

satisfied with Wi" ¼ 0 (Broek et al. 2003).
In the following analysis, the basic assumption is

needed.

Assumption 3: The triples ðAii, Bii,
ffiffiffiffiffiffi
Qii

p
Þ, i ¼ 1, . . . ,N

are stabilizable and detectable.
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3. Asymptotic structure of the CSARE

Firstly, in order to obtain the strategy, the asymptotic
structure of the CSARE (6) is established. Since A",
Si", Sij" and Mi� include the term of the small
parameters " and �, the solution Pi" of the CSARE
(6), if it exists, must contain these parameters.
Moreover, it should be noted that two parameters "
and � are the same magnitude such that Assumption 1
holds. Taking these facts into account, the solution Pi"

of the CSARE (6) with the following structure is
considered (Shen et al. 1994, Mukaidani 2006)

Pi" :¼

"1��i1Pi1 "Pi12 � � � "Pi1N

"PT
i12 "1��i2Pi2 � � � "Pi2N

..

. ..
. . .

. ..
.

"PT
i1N "PT

i2N � � � "1��iNPiN

2
66664

3
77775 2 R �n� �n:

Substituting the matrices A", Si", Sij", Mi�, Qi" and Pi"

into the CSARE (6), letting "¼ 0 and �¼ 0, and parti-
tioning the CSARE (6), the following reduced-order
algebraic Riccati equations (AREs) are obtained,
where �Pii, i ¼ 1, . . . ,N be the 0-order solutions of the
CSARE (6) as " ¼ � ¼ 0.

�PiiAii þ AT
ii
�Pii � �PiiðSii �MiiÞ �Pii þQii ¼ 0, ð9Þ

where Sii :¼ BiiR
�1
ii BT

ii and Mii :¼ EiiV
�1
ii ET

ii .
It should be noted that since the CSARE (6) is

continuous and differentiable in " ¼ � ¼ 0, there exist
�Pii, i ¼ 1, . . . , N at " ¼ � ¼ 0. It should also be noted
that the assumption that Sii �Mii is positive semidefinite
because of H1 control problem setting is not needed.
In order to guarantee the existence of a positive

semidefinite stabilizing solution of the ARE (9), the fol-
lowing condition is assumed (Mukaidani 2004 and 2006).

Assumption 4: The ARE (9) has a positive semidefinite
stabilizing solution such that Aii � Sii

�Pii is stable.

The asymptotic expansion of the CSARE (6) at
" ¼ � ¼ 0 is described by the following lemma.

Lemma 2: Under Assumptions 1–4, there exist the small
constants �� and �� such that for all " 2 ð0, ��Þ and
� 2 ð0, ��Þ, the CSARE (6) admits a unique positive
semidefinite solution P�

i" that can be written as

Pi" :¼ P�
i" ¼

�Pi þOð"Þ ¼ block diag 0 � � � �Pii � � � 0
� �

þ Oð"Þ: ð10Þ

Proof: The proof can be derived by using the implicit
function theorem (Gajić et al. 1990) for the
CSARE (6). Using the implicit function theorem,

it can be shown that there exists a neighbourhood of
" ¼ � ¼ 0 and a unique function Pi" :¼ �Pi þOð"Þ.
It should be noted that under Assumption 4, since
the solution of the reduced-order ARE (9) is unique
(see e.g. Theorem 13.5 of Zhou et al. (1996), �Pi is
a unique solution. Therefore, the CSARE (6) has a
unique positive semidefinite solution P�

i" under the
sufficiently small parameters " and �. œ

4. Iterative algorithm for solving CSARE

In order to obtain the strategy, the following useful
algorithm is given.

Consider the following iterative algorithm that is
called Lyapunov iterations

P
ðkþ1Þ
i" A" �

XN
j¼1

Sj"P
ðkÞ
j" þMi�P

ðkÞ
i"

 !

þ A" �
XN
j¼1

Sj"P
ðkÞ
j" þMi�P

ðkÞ
i"

 !T

P
ðkþ1Þ
i"

þ P
ðkÞ
i" Si"P

ðkÞ
i" � P

ðkÞ
i" Mi�P

ðkÞ
i" þ �

XN
j¼1, j6¼i

P
ðkÞ
j" Sij"P

ðkÞ
j"

þQi" ¼ 0, k ¼ 0, 1, . . . , ð11aÞ

P
ðkÞ
i" :¼

"1��i1P
ðkÞ
i1 "PðkÞ

i12 � � � "PðkÞ
i1N

"PðkÞT
i12 "1��i2P

ðkÞ
i2 � � � "PðkÞ

i2N

..

. ..
. . .

. ..
.

"PðkÞT
i1N "PðkÞT

i2N � � � "1��iNP
ðkÞ
iN

2
66666664

3
77777775

ð11bÞ

with the initial conditions

P
ð0Þ
i" ¼ �Pi ¼ block diag 0 � � � �Pii � � � 0

� �
: ð12Þ

It has been shown that Lyapunov iterations yield the
positive semidefinite stabilizing solution for the
positive sign-definite CARE (Mukaidani 2006).
However, so far, there are no results for the convergence
property for the CSARE (6). The following
theorem indicates that the proposed algorithm
which is based on Lyapunov iterations attain the
linear convergence.

Theorem 1: Under Assumptions 1–4, there exist
the small constants �� and �� such that for all
" 2 ð0, ��Þ, �� � �� and � 2 ð0, ��Þ, � � ��, the iterative
algorithm (11) converges to the exact solution of
P�
i" with the rate of the linear convergence, where

P
ðkÞ
i" is positive semidefinite matrix and

78 H. Mukaidani



A" �
PN

j¼1 Sj"P
ðkÞ
j" þMi�P

ðkÞ
i" is stable. That is, the follow-

ing conditions are satisfied

kP
ðkÞ
i" �P�

i"k¼O "kþ1
� �

, ð13aÞ

Re� A"�
XN
j¼1

Sj"P
ðkÞ
j" þMi�P

ðkÞ
i"

" #
< 0, k¼ 0,1, . . . : ð13bÞ

Proof: The proof of this theorem can be derived by
using the mathematical induction. When k¼ 0, taking
(10) into account, it is easy to verify that the first
order approximations P�

i" corresponding to the small
parameters " and � are the same as P

ð0Þ
i" . Moreover, since

A" �
XN
j¼1

Sj"P
ð0Þ
j" þMi�P

ð0Þ
i"

¼ block diag D11 � � � DNN

� �
þOð"Þ :¼ DA þOð"Þ,

where Dii :¼ Aii � Sii
�Pii þMii

�Pii, Djj ¼ Ajj � Sjj
�Pjj,

j 6¼ i, j ¼ 1, . . . ,N, there exists the small perturbation
parameter �0 such that

A" �
XN
j¼1

Sj"P
ð0Þ
j" þMi�P

ð0Þ
i"

is stable because DA is stable for sufficiently small ".
When k ¼ h, h � 1, it is assumed that

kP
ðhÞ
i" � P�

i"k ¼ O "hþ1
� �

, ð14aÞ

Re� A" �
XN
j¼1

Sj"P
ðhÞ
j" þMi�P

ðhÞ
i"

" #
< 0: ð14bÞ

Subtracting (6) from (11a) and setting k¼ h, the
following equations are satisfied

P
ðhþ1Þ
i" � P�

i"

� 	
A" �

XN
j¼1

Sj"P
ðhÞ
j" þMi�P

ðhÞ
i"

 !

þ A" �
XN
j¼1

Sj"P
ðhÞ
j" þMi�P

ðhÞ
i"

 !T

P
ðhþ1Þ
i" � P�

i"

� 	

þ
XN

j¼1, j 6¼i

P�
i"Sj" P�

j" � P
ðhÞ
j"

� 	
þ

XN
j¼1, j6¼i

P�
j" � P

ðhÞ
j"

� 	
Sj"P

�
i"

þ P
ðhÞ
i" � P�

i"

� 	
Si" P

ðhÞ
i" � P�

i"

� 	
� P

ðhÞ
i" � P�

i"

� 	
Mi� P

ðhÞ
i" � P�

i"

� 	

þ �
XN

j¼1, j 6¼i

P
ðhÞ
j" Sij"P

ðhÞ
j" �

XN
j¼1, j6¼i

P�
j"Sij"P

�
j"

" #
¼ 0: ð15Þ

Using the fact that the assumption (14a) holds, it is easy
to derive that

XN
j¼1, j6¼i

P�
i"Sj" P�

j" � P
ðhÞ
j"

� 	
¼ O "hþ2

� �
,

P
ðhÞ
i" � P�

i"

� 	
Si" P

ðhÞ
i" � P�

i"

� 	
¼ O "2hþ2

� �
,

P
ðhÞ
i" � P�

i"

� 	
Mi� P

ðhÞ
i" � P�

i"

� 	
¼ O "2hþ2

� �
,

�
XN

j¼1, j6¼i

P
ðhÞ
j" Sij"P

ðhÞ
j" �

XN
j¼1, j6¼i

P�
j"Sij"P

�
j"

" #

¼�
XN

j¼1, j6¼i

P�
j"þO "hþ1

� �� 	
Sij" P�

j"þO "hþ1
� �� 	"

�
XN

j¼1, j6¼i

P�
j"Sij"P

�
j"

#

¼�
XN

j¼1, j6¼i

P�
j"Sij"O "hþ1

� �
þO "hþ1

� �
Sij"P

�
j"þO "2hþ2

� �� 	" #

¼O "hþ2
� �

:

It should be noted that if i 6¼ j, P�
i"Sj" ¼ Oð"Þ holds.

Thus, the following relation is satisfied

P
ðhþ1Þ
i" � P�

i"

� 	
A" �

XN
j¼1

Sj"P
ðhÞ
j" þMi�P

ðhÞ
i"

 !

þ A" �
XN
j¼1

Sj"P
ðhÞ
j" þMi�P

ðhÞ
i"

 !T

P
ðhþ1Þ
i" � P�

i"

� 	

þOð"hþ2Þ ¼ 0: ð16Þ

Taking into account the fact that the stability assump-
tion (14b) holds and using relation (14a), the following
result is satisfied.

ð16Þ , P
ðhþ1Þ
i" � P�

i" ¼

Z 1

0

exp �T
" t

� �
Oð"hþ2Þ exp �"t½ �dt

¼

Z 1

0

exp Oð"Þt½ � exp DT
At

� �
O "hþ2
� �

� exp DAt½ � exp Oð"Þt½ �dt

where �" ¼ ðA" �
PN

j¼1 Sj"P
ðhÞ
j" þMi�P

ðhÞ
i" Þ ¼ DA þOð"Þ.

Since there exist the "-independent scalar parameters
� and � such that

k exp Oð"Þt½ �k � �e�"t,
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it is easy to verify that

kP
ðhþ1Þ
i" � P�

i"k �

Z 1

0

�2e2�"t



 exp DT

At
� �

Oð"hþ2Þ

� exp DAt½ �




dt ¼ Oð"hþ2Þ: ð17Þ

Furthermore, using the relation (17), it is shown that
there exists the small positive perturbation parameter
�hþ1 such that

A" �
XN
j¼1

Sj"P
ðhþ1Þ
j" þMi�P

ðhþ1Þ
i" ¼ A" �

XN
j¼1

Sj"P
�
j"

þMi�P
�
i" þOð"hþ2Þ

¼ DA þOð"Þ

is stable. Consequently, choosing �� :¼minf�0, . . . , �hþ1g,
the relation (13b) holds for all k 2 N. This completes
the proof of Theorem 1 concerned with the Lyapunov
iterations. œ

Using the asymptotic structure of the solutions (10), the
local uniqueness of the convergence solutions is studied.

Theorem 2: Under Assumptions 1–4, there exist the
sufficiently small constants �̂ and �̂ such that for all
" 2 ð0, �̂Þ, �̂ � �� � �� and � 2 ð0, �̂Þ, �̂ � �� � ��, the
convergence solution P�

i" of the iterative solution P
ðkÞ
i" is

unique in the neighbourhood of " ¼ � ¼ 0.

Proof: First, under Assumptions 1–4, there exists the
neighbourhood of " ¼ � ¼ 0 such that the CSARE (6)
admits a unique positive semidefinite solution P�

i" by
means of the implicit function theorem (see the proof
of Lemma 2). That is, for sufficiently small " and �,
the CSARE (6) has a unique positive semidefinite solu-
tion P�

i". Taking into account the fact that the solutions
P�
i" of (10) and (13a) are equivalent, the iterative solution

P
ðkÞ
i" converges to P�

i" and it is a unique solution for suffi-
ciently small " and �. œ

Although the Lyapunov iterations (11) yield the positive
semidefinite solution of the CSARE (6) in general, the
local uniqueness of the convergence solution is guaran-
teed in the neighbourhood of "¼ 0 under the weakly
coupled large-scale system.
On the other hand, the convergence solution may not

be maximum solution. However, since the solution is
unique in the neighbourhood of "¼ 0, other solution
cannot be used to the weakly coupled Nash games as
long as the sufficiently small parameter " is considered.
As a result, it is worth pointing out that the convergence
solutions satisfy the local uniqueness and the positive
semidefiniteness in the neighbourhood of "¼ 0.

It is well known that the CSARE (6) could have
several positive definite solutions and even some
indefinite solutions (Abou-Kandil et al. 2003).
However, as long as the sufficiently small parameters "
and � are chosen, the obtained iterative solutions guar-
antee the positive semidefiniteness and admissibility.
Furthermore, the positive semidefinite stabilizing
properties of the solutions obtained by means of the
proposed algorithm are guaranteed (Li and Gajić 1994).

When the ALE (11a) is solved, the dimension of the
workspace as �n :¼

PN
i¼1 ni larger than the dimensions

ni, i ¼ 1, . . . ,N is needed. Thus, in order to reduce
the dimension of the workspace, a new algorithm for
solving the ALE (11a) which is based on the recursive
algorithm is established. Let us consider the following
ALE (18), in a general form of the ALE (11a)

X"�" þ�T
"X" þU" ¼ 0: ð18Þ

In particular, the following special matrices X", �" and
U" which are related to the ALE (18) are considered
because the other case i ¼ 2, . . . ,N can be changed
into the similar form by using the similarity transforma-
tion T i, where

X" :¼T
�1
i P

ðkþ1Þ
i" T i,

�" :¼T
�1
i A"�

XN
j¼1

Sj"P
ðkÞ
j"

 
þMi�P

ðkÞ
i" ÞT i,

U" :¼T
�1
i P

ðkÞ
i" Si"P

ðkÞ
i" �P

ðkÞ
i" Mi�P

ðkÞ
i"

�

þ�
XN

j¼1, j 6¼i

P
ðkÞ
j" Sij"P

ðkÞ
j" þQi"ÞT i,

T i :¼

0 . . . Ini . . . 0

..

.
block diagð1 . . .1Þ ..

. . .
. ..

.

Ini . . . 0 . . . 0

..

. . .
. ..

.
block diagð1 . . .1Þ ..

.

0 . . . 0 . . . InN

2
666666664

3
777777775
,

X" :¼

X11 "X12 � � � "X1N

"XT
12 "X22 � � � "X2N

..

. ..
. . .

. ..
.

"XT
1N "XT

2N � � � "XNN

2
666664

3
777775,

�" :¼

�11 "�12 � � � "�1N

"�21 �22 � � � "�2N

..

. ..
. . .

. ..
.

"�N1 "�N2 � � � �NN

2
666664

3
777775,
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U" :¼

U11 "U12 � � � "U1N

"UT
12 "U22 � � � "U2N

..

. ..
. . .

. ..
.

"UT
1N "UT

2N � � � "UNN

2
6664

3
7775:

In order to guarantee the existence of the solution and
the convergence of the algorithm, another assumption
is needed.

Assumption 5: �11, . . . ,�NN are stable.

Without loss of generality, it should be noted that the
above assumption is satisfied automatically under the
condition of Theorem 1.
In order to calculate briefly, the following partitioned

matrices are introduced.

X" : ¼
X11 "X1f

"XT
1f "Xf

" #
, �" :¼

�11 "�1f

"�f1 �f

� �
,

U" : ¼
U11 "U1f

"UT
1f "Uf

" #
:

As a result, the ALE (18) can be changed as follows
by partitioning.

X11�11þ�T
11X11þ "2ðX1f�f1þ�T

f1X
T
1fÞþU11 ¼ 0, ð19aÞ

Xf�fþ�T
f Xfþ "ðXT

1f�1fþ�T
1fX1fÞþUf ¼ 0, ð19bÞ

X11�1fþX1f�fþ�T
11X1fþ "�T

f1XfþU1f ¼ 0: ð19cÞ

It should be noted that the ALE (19) is quite different
from the existing one (Gajić et al. 1990). Moreover, �f is
stable because Assumption 5 holds.
Defining approximation errors as

X11 ¼ �X11 þ "H11, X1f ¼ �X1f þ "H1f,

Xf ¼ �Xf þ "Hf: ð20Þ

where

�X11�11 þ�T
11

�X11 þU11 ¼ 0,

�Xf�f þ�T
f
�Xf þUf ¼ 0,

�X11�1f þ �X1f�f þ�T
11

�X1f þU1f ¼ 0:

Substituting (20) into (19), the following ALEs for the
matrices H11, H1f and Hf are derived

H11�11 þ�T
11H11 þ "ðX1f�f1 þ�T

f1X
T
1fÞ ¼ 0, ð21aÞ

Hf�f þ�T
f Hf þ X1f�1f þ�T

1fX1f ¼ 0, ð21bÞ

H11�1f þH1f�f þ�T
11H1f þ�T

f1Xf ¼ 0: ð21cÞ

Taking the form of (20) into account, the algorithm to
solve the ALE (21) is given by (22).

H
ðkþ1Þ
11 �11þ�T

11H
ðkþ1Þ
11 þ " X

ðkÞ
1f �f1þ�T

f1X
ðkÞT
1f

� 	
¼ 0, ð22aÞ

H
ðkþ1Þ
f �fþ�T

f H
ðkþ1Þ
f þX

ðkÞT
1f �1fþ�T

1fX
ðkÞ
1f ¼ 0, ð22bÞ

Hðkþ1Þ
1f �fþ�T

11H
ðkþ1Þ
1f þHðkþ1Þ

11 �1fþ�T
f1X

ðkþ1Þ
f ¼ 0: ð22cÞ

where k ¼ 0, 1, . . . ,

X
ðkÞ
11 ¼ �X11 þ "HðkÞ

11 , X
ðkÞ
1f ¼ �X1f þ "HðkÞ

1f ,

X
ðkÞ
f ¼ �Xf þ "HðkÞ

f , H
ð0Þ
11 ¼ 0, H

ð0Þ
1f ¼ 0, Hf ¼ 0:

It should be noted that H
ðkþ1Þ
1f can be computed as the

Sylvester equation by using the solutions H
ðkþ1Þ
11 and

H
ðkþ1Þ
f that are obtained from ALEs (22a) and (22b)

because X
ðkþ1Þ
f ¼ �Xf þ "Hðkþ1Þ

f .
The following theorem indicates the convergence

of the algorithm (22).

Theorem 3: Under Assumption 5, the recursive algo-
rithm (22) converges to the exact solution H11, H1f and
Hf with the rate of

kH
ðkÞ
11 �H11k ¼ Oð"2kÞ, kH

ðkÞ
1f �H1fk ¼ Oð"2k�1Þ,

kH
ðkÞ
f �Hfk ¼ Oð"2kÞ, k ¼ 1, . . . : ð23Þ

Proof: The proof of Theorem 3 can be done by using the
mathematical induction. Subtracting (21) from (22), the
following equations hold

ðH
ðkþ1Þ
11 �H11Þ�11 þ�T

11ðH
ðkþ1Þ
11 �H11Þ

þ "2½ðHðkÞ
1f �H1fÞ�f1 þ�T

f1ðH
ðkÞ
1f �H1fÞ

T
� ¼ 0, ð24aÞ

ðH
ðkþ1Þ
f �HfÞ�f þ�T

f ðH
ðkþ1Þ
f �HfÞ

þ "½ðHðkÞ
1f �H1fÞ�1f þ�T

1fðH
ðkÞ
1f �H1fÞ� ¼ 0, ð24bÞ

ðH
ðkþ1Þ
11 �H11Þ�1f þ ðH

ðkþ1Þ
1f �H1fÞ�f

þ�T
11ðH

ðkþ1Þ
1f �H1fÞ þ "�T

f1ðH
ðkþ1Þ
f �HfÞ ¼ 0: ð24cÞ

First, k¼ 0 for the algorithms (24) is considered. Taking
into account the fact that the stability assumption of �ii

holds and using the standard properties of the algebraic
Lyapunov equation ALE (Zhou 1998), it is easy to verify
that

kH
ð1Þ
11 �H11k ¼ Oð"2Þ, kH

ð1Þ
f �Hfk ¼ Oð"Þ,

kH
ð1Þ
1f �H1fk ¼ Oð"2Þ: ð25Þ
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Therefore, the equation (23) is true for k¼ 1.
When k ¼ h, h � 2, it is assumed that

kH
ðhÞ
11 �H11k ¼ Oð"2hÞ, kH

ðhÞ
f �Hfk ¼ Oð"2h�1Þ,

kH
ðhÞ
1f �H1fk ¼ Oð"2hÞ: ð26Þ

Setting k¼ h for the ALE (24) and using the above
assumption, the following equations hold

ðH
ðhþ1Þ
11 �H11Þ�11 þ�T

11ðH
ðhþ1Þ
11 �H11Þ þOð"2hþ2Þ ¼ 0,

ð27aÞ

ðH
ðhþ1Þ
f �HfÞ�f þ�T

f ðH
ðhþ1Þ
f �HfÞ þOð"2hþ1Þ ¼ 0,

ð27bÞ

ðH
ðhþ1Þ
11 �H11Þ�1f þ ðH

ðhþ1Þ
1f �H1fÞ�f

þ�T
11ðH

ðhþ1Þ
1f �H1fÞ þ "�T

f1ðH
ðhþ1Þ
f �HfÞ ¼ 0: ð27cÞ

After the cancellation takes place, since �ii,
i ¼ 1, . . . ,N are stable from Assumption 5, the follow-
ing relations hold

kH
ðhþ1Þ
11 �H11k ¼ Oð"2hþ2Þ, kH

ðhþ1Þ
f �Hfk ¼ Oð"2hþ1Þ,

kH
ðhþ1Þ
1f �H1fk ¼ Oð"2hþ2Þ: ð28Þ

Consequently, the error equations (23) are true for all
k 2 N. This completes the proof of Theorem 3. œ

5. High-order soft constrained Nash strategy

The required solution of the CSARE (6) exists under
Assumptions 1–4. Moreover, it is very important to
note that the iterative solutions P

ðkÞ
i" by means of the

Lyapunov iterations (11) satisfy the positive
semidefiniteness, the local uniqueness in the neighbour-
hood of "¼ 0 and the admissibility from Li and Gajić
(1994). That is, these convergence solutions will satisfy
the soft constrained Nash equilibrium properties (5)
for sufficiently small parameter ".
The attention is focused on the design of

the high-order Nash equilibrium strategy for the
sign-indefinite linear quadratic games. Such strategy is
obtained by using the iterative solution (11a).

u
ðkÞ�
i ðtÞ ¼ �R�1

ii BT
i"P

ðkÞ
i" xðtÞ, i ¼ 1, . . . ,N: ð29Þ

The degradation of the cost performance via the new
high-order soft constrained Nash equilibrium strategy
(29) is given as follows.

Theorem 4: Under Assumptions 1–4, the use of the
high-order soft constrained Nash equilibrium strategy
(29) results in (30)

�Ji F
ðkÞ�
1" , . . . , F

ðkÞ�
N" , xð0Þ

� 	
¼ �Ji F

�
1", . . . , F

�
N", xð0Þ

� �
þOð"kþ2Þ, i ¼ 1, . . . ,N: ð30Þ

Proof: When u
ðkÞ�
i ðtÞ ¼ F

ðkÞ�
i" xðtÞ is used, the value of

the cost performance is given by Broek et al. (2003)

�Ji F
ðkÞ�
1" , . . . , F

ðkÞ�
N" , xð0Þ

� 	
¼ xTð0ÞYi"xð0Þ, ð31Þ

where Yi" is a positive semidefinite solution of the
following ARE

Yi" A" �
XN
j¼1

Sj"P
ðkÞ
j"

 !
þ A" �

XN
j¼1

Sj"P
ðkÞ
j"

 !T

� Yi" þ Yi"Mi�Yi" þ �
XN

j¼1, j6¼i

P
ðkÞ
j" Sij"P

ðkÞ
j"

þ P
ðkÞ
i" Si"P

ðkÞ
i" þQi" ¼ 0: ð32Þ

Subtracting the CSARE (6) from the ARE (32),
Z" ¼ Yi" � Pi" satisfies the following ARE

Zi" A" �
XN
j¼1

Sj"P
ðkÞ
j" þMi�P

ðkÞ
i" þMi� Pi" � P

ðkÞ
i"

� 	 !

þ A" �
XN
j¼1

Sj"P
ðkÞ
j" þMi�P

ðkÞ
i" þMi� Pi" � P

ðkÞ
i"

� 	 !T

Zi"

þ Zi"Mi�Zi" þ
XN

j¼1, j 6¼i

Pi"Sj" Pj" � P
ðkÞ
j"

� 	

þ
XN

j¼1, j6¼i

Pj" � P
ðkÞ
j"

� 	
Sj"Pi"

þ �
XN

j¼1, j6¼i

P
ðkÞ
j" Sij"P

ðkÞ
j" � Pj"Sij"Pj"

� 	" #

þ Pi" � P
ðkÞ
i"

� 	
Si" Pi" � P

ðkÞ
i"

� 	
¼ 0: ð33Þ

Taking (13a) into account as Pi" ¼ P�
i", it is easy to

verify that

Zi" DA þOð"Þð Þ þ DA þOð"Þð Þ
TZi"

þZi"Mi�Zi" þOð"kþ2Þ ¼ 0: ð34Þ
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Without loss of generality, using the similarity
transformation T i, the following ARE is considered
because the other case is similar,

Z"A" þA
T
"Z" þ Z"M�Z" þOð"kþ2Þ ¼ 0, ð35Þ

where

Z" :¼T
�1
i Zi"T i ¼

�Z1 " �Z1f

" �ZT
1f " �Zf

2
4

3
5, �Z1 ¼Zii,

A" :¼T
�1
i DAþOð"Þð ÞT i ¼ block diag �D1

�Df

� �
þOð"Þ,

�D1 :¼Dii ¼Aii�Sii
�PiiþMii

�Pii,

�Df :¼ block diag D22 � � �Di�1i�1 Diþ1iþ1 � � � DNN

� �
,

M� :¼T
�1
i Mi�T i ¼

�M1 " �M1f

" �MT
1f " �Mf

2
4

3
5, �M1 ¼Mii:

Letting " ¼ � ¼ 0, the following reduced-order
parameter independent algebraic Bernoulli equation
(ABE) is given

Z0A0 þA
T
0Z0 þ Z0M0Z0 ¼ 0, ð36Þ

where

Z0 :¼
�Z
ð0Þ
1 0

0 0

" #
,

A0 :¼ block diag �D1
�Df

� �
, M0 :¼

�M1 0

0 0

" #
:

The ABE (36) is equivalent to the following
reduced-order ABE by partitioning

�Z
ð0Þ
1

�D1 þ �DT
1
�Z
ð0Þ
1 þ �Z

ð0Þ
1

�M1
�Z
ð0Þ
1 ¼ 0: ð37Þ

Taking into account the fact that

�D1
�M1

0 � �DT
1

� �

has no eigenvalues on the imaginary axis and �D1

is stable under Assumption 4 and using the well-
known result (see e.g. Theorem 13.5 of Zhou et al.
(1996)), the reduced-order ABE (37) has a unique
stabilizing solution �Z

ð0Þ
1 ¼ 0. Thus, the following

equation holds

�Z
ð0Þ
1 ¼ 0 , �Z1 ¼ �Z

ð0Þ
1 þOð"Þ ¼ Oð"Þ: ð38Þ

Hence, the solution (38) results in

Z" ¼
�Z1 " �Z1f

" �ZT
1f " �Zf

" #
¼ "Zð1Þ

" : ð39Þ

Substituting (39) into (35), it follows that

Zð1Þ
" A" þA

T
"Z

ð1Þ
" þ "Zð1Þ

" M�Z
ð1Þ
" þOð"kþ1Þ ¼ 0: ð40Þ

Using the similar technique, the following relation
holds.

Z " ¼ "2Zð2Þ
" : ð41Þ

Finally, continuing the above steps results in (41)

Z " ¼ "kþ2Zðkþ2Þ
" ¼ O "kþ2

� �
: ð42Þ

Therefore, Zi" ¼ T iZ"T
�1
i ¼ Oð"kþ2Þ because of the

stability condition (13b) and the standard properties
of the ARE. Hence

xð0ÞTZi"xð0Þ ¼ xð0ÞTYi"xð0Þ � xTð0ÞPi"xð0Þ

¼ �JiðF
ðkÞ�
1" , . . . , F

ðkÞ�
N" , xð0ÞÞ

� �Ji F
�
1", . . . , F�

N", xð0Þ
� �

¼ O "kþ2
� �

ð43Þ

results in (30). œ

It should be noted that the above results and its proof
are novel compared with the existing results
(Mukaidani 2006).

In the rest of this section, an important implication is
given. If the parameters " and � are unknown, then the
following corollary is easily seen in view of Theorem 4.

Corollary 1: Consider the parameter-independent soft
constrained Nash strategy

�u�i ðtÞ :¼ u
ð0Þ�
i ðtÞ ¼ �R�1

ii BT
i
�PixðtÞ, i ¼ 1, . . . ,N, ð44Þ

where BT
i :¼ 0 � � � BT

ii � � � 0
� �

.
Under Assumptions 1–4, the use of the reduced-order

strategy (44) results in (45)

�Ji �F�
1", . . . ,

�F�
N", xð0Þ

� �
¼ �Ji F

�
1", . . . ,F

�
N", xð0Þ

� �
þOð"2Þ, i ¼ 1, . . . ,N: ð45Þ

Proof: Since the result of Corollary 1 can be proved by
using the similar technique in Theorem 4 under the fact
that kPi" � �Pik ¼ Oð"Þ, the proof is omitted. œ
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6. Numerical example

In order to demonstrate the efficiency of the proposed

algorithm, an illustrative example is given. The system

matrices are given as follows:

A11 ¼

0 1 �0:266 �0:009

�2:75 �2:78 �1:36 �0:037

0 0 0 1

�4:95 0 �55:5 �0:039

2
666664

3
777775,

"A12 ¼

0:0024 0 �0:087 0:002

�0:185 0 1:11 �0:011

0 0 0 0

0:222 0 8:17 0:004

2
666664

3
777775,

"A13 ¼

0:073 0 �0:25 0:003

�0:46 0 2:8 �0:02

0 0 0 0

0:924 0 17:5 0:02

2
666664

3
777775,

"A21 ¼

0:021 0 0:121 0:003

�1:1 0 �1:62 �0:015

0 0 0 0

�2:43 0 1:37 �0:034

2
666664

3
777775,

A22 ¼

�0:21 1 �1:6 �0:005

�1:9 �1:8 9:3 �0:12

0 0 0 1

�3:1 0 �56 0:032

2
666664

3
777775,

"A23 ¼

0:06 0 0:46 0:002

�1 0 1:49 �0:04

0 0 0 0

0:12 0 29:8 �0:028

2
666664

3
777775,

"A31 ¼

�0:002 0 0:83 0

�6:78 0 �10:1 0:09

0 0 0 0

�1:24 0 0:498 �0:017

2
666664

3
777775,

"A32 ¼

0:011 0 0:22 0

�2:1 0 1:7 �0:123

0 0 0 0

�0:07 0 6:38 �0:011

2
666664

3
777775,

A33 ¼

�0:197 1 �1:2 �0:003

�54:5 �20 70:1 �2:37

0 0 0 1

�3:4 0 �21:0 �0:017

2
6664

3
7775,

B11 ¼

0

36:1

0

0

2
6664

3
7775, B22 ¼

0

78:9

0

0

2
6664

3
7775,

B33 ¼

0

1000

0

0

2
6664

3
7775, Bij ¼ 0, i 6¼ j,

E11 ¼

0:1 0 0 0

0 0 0 0

0 0 0 0:1

0 0 0 0:1

2
6664

3
7775, E22 ¼

0 0 0 0

0:1 0 0 0

0 0 0 0:1

0 0 0 0:1

2
6664

3
7775,

E33 ¼

0 0 0 0

0 0 0 0

0:1 0 0 0:1

0 0 0 0:1

2
6664

3
7775,

Eij ¼ 0, i 6¼ j,

Vii ¼ block diag 1 2 2 1
� �

,

V1 ¼ block diag Vii ��1I4 ��1I4
� �

,

V2 ¼ block diag ��1I4 Vii ��1I4
� �

,

V3 ¼ block diag ��1I4 ��1I4 Vii

� �
,

Q1 ¼ block diag 0:5I4 O8�8

� �
,

Q2 ¼ block diag O4�4 0:5I4 O4�4

� �
,

Q3 ¼ block diag O8�8 0:5I4
� �

,

R11 ¼ R22 ¼ R33 ¼ 1, R12 ¼ R13 ¼ 0:2,

R23 ¼ R21 ¼ 0:3, R31 ¼ R32 ¼ 0:1:

The small parameters are chosen as "¼ 0.01
and �¼ 0.005. It should be noted that the
algorithm (11a) converges to the exact solution with
accuracy of kG

ðkÞ
ð"Þk < 1:0e� 10 after five iterations,

where

kG
ðkÞ
ð"Þk :¼

X3
i¼1

kGiðP
ðkÞ
1" , P

ðkÞ
2" , P

ðkÞ
3" Þk: ð46Þ

In order to verify the exactitude of the solution, the
remainder per iteration by substituting P

ðkÞ
i" into the
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CSARE (6) is computed. In table 1, the results of
the error kG

ðkÞ
ð"Þk per iterations are given for several

values " and � ¼ 0:5". As a result, it can be seen that
the algorithm (11a) has the linear convergence. On the
other hand, it should be noted that the existence of
more than one soft-constrained Nash equilibrium is
possible because it is not a sufficiently small parameter
as "¼ 0.01.
Second, the norm condition (22) is evaluated.

Choosing "¼ 0.01 and �¼ 0.005, the errors between
the exact solution and the iterative solution per itera-
tions are given in table 2. It should be noted that the
result for the first iteration of the algorithm (11a) is
demonstrated. It can be found that the norm condition
(23) for the numerical error of the algorithm (22) are
true.
Finally, the costs using the near-optimal strategy

(29) are computed. The initial conditions are
chosen as xð0Þ ¼ 1 0 1 1 1 0 1 1 1 0 1 1½ �

T. The cost
functional-to-perturbation "kþ2 ratio for various " and
� are given in table 3, where

�i ¼
jJiapp � Jioptj

"kþ2

¼
jxTð0ÞYi"xð0Þ � xTð0ÞPi"xð0Þj

"kþ2
, ð47Þ

with "¼ 0.01, �¼ 0.005,

Jiapp :¼ �Ji F
ðkÞ�
1" , . . . , F

ðkÞ�
N" , xð0Þ

� 	
¼ xð0ÞTYi"xð0Þ,

Jiopt :¼ �Ji F
�
1", . . . , F�

N", xð0Þ
� �

¼ xTð0ÞPi"xð0Þ:

It is easy to verify that �JiðF
ðkÞ�
1" , . . . ,

F
ðkÞ�
N" , xð0ÞÞ � �JiðF

�
1", . . . , F�

N", xð0ÞÞ ¼ Oð"kþ2Þ because
of �i < 1.

7. Conclusion

In this paper, N-player indefinite linear quadratic differ-
ential games for large-scale systems connected by a
weak small positive coupling parameter have been stu-
died. The main contribution of this study is to propose
a new algorithm for solving the large-scale CSARE
with a sign-indefinite quadratic term. Comparing with
the existing result (Mukaidani 2006), the control input
coupling of the performance indices has been newly con-
sidered. It is noteworthy that although the proposed
design method is based on the Lyapunov iterations
(Petrovic and Gajić1988, Gajić et al. 1990) for solving
the sign-indefinite CARE, the convergence rate has
been newly proved as a linear convergence. Moreover,
to reduce the computational workspace, the recursive
algorithm has been combined. Finally, both fast conver-
gence and a reduced-order calculation are attained. As
another important feature, the asymptotic structure and
local uniqueness of the solution for the CSARE has
been proved.

It is well known that the implicit function theorem
(Gajić et al. 1990) guarantees the existence of the small
parameters �� and �� such that for all parameters
" 2 ð0, ��Þ and � 2 ð0, ��Þ, the CSARE admits a posi-
tive semidefinite stabilizing solution. However, there is
no information about the magnitude of these coupling
parameters which maintains the assertion.
Furthermore, the proposed algorithm may not converge
under the large parameters " and �. These problems
will be addressed in future investigations via the
Newton–Kantorovich theorem (Yamamoto 1986).
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