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c(s;q0) = s� q01 s� q02 = (s�1)(s�2). Hence, the following
controller results (note thatm = 2):

C(s;�) = �
s2 + 1:2s+ 1 (s+ 2)

sd(s)
: (33)

We selectedd(s) = s2+35, so that all the poles ofC(s;�) are purely
imaginary. In order to haver(t;�; � ) 2 C0, a third-order transition
polynomial (v = 1, note that the plant relative order is� = 1) has
been chosen as output function, so that we have

y(t; � ) = �
2

� 3
t
3 +

3

� 2
t
2

t 2 [0; � ]:

The optimal values of� and� have been determined by means of a
genetic algorithm [9]. The resulting values are�� = 7:57 and�� =
6.99 s, which results in an optimal worst-case settling timet�

wcs
equal to

16.44 s, with preaction timet�0 = �6.2 s("0 = 10�3). The command
input ra (t;��; ��), the worst-case output (which occurs whenq =
[0:8; 1:6; 0:5]) and the corresponding control variable are reported in
Fig. 2. For technical convenience, in all the plots the zero time has been
shifted tot�0 .

To better evaluate how the new proposed approach works, in Fig. 3
we report the envelope of the Bode plots over the uncertain parameters
boxQ, both of the plant (open-loop) and of the closed-loop system.
Then, in Fig. 4 the normalized power spectrum of the command signal
is shown. It can be noted that for the range of frequencies of the
command signal, the presence of the feedback controller almost com-
pletely cancels the effects of the plant uncertainties, therefore greatly
increasing the effectiveness of the use of the dynamic inversion.

VI. CONCLUSION

In this note, we have proposed a new inversion-based control archi-
tecture for the set-point constrained regulation of nonminimum-phase
scalar systems subject to parametric uncertainties. This new control
scheme, which can be regarded as a radical generalization of the classic
two-degrees-of-freedom configuration (the filter is indeed substituted
by the command signal generator, see Fig. 1), permits obtaining high
performances as exemplified in Section V. An extension to multivari-
able plants is possible and is currently investigated by the authors.
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New Iterative Algorithm for Algebraic Riccati Equation
Related to Control Problem of Singularly Perturbed

Systems

Hiroaki Mukaidani, Hua Xu, and Koichi Mizukami

Abstract—In this note, we present the solution to the algebraic Riccati
equation (ARE) with indefinite sign quadratic term related to the con-
trol problem for singularly perturbed system by means of a Kleinman’s
type algorithm. The resulting algorithm is very efficient from the numerical
point of view because the ARE is solvable even if the quadratic term has an
indefinite sign. Moreover, the resulting iterative algorithm is quadratically
convergent. We also present a new algorithm for solving the generalized
algebraic Lyapunov equation (GALE) on the basis of the fixed point algo-
rithm.

Index Terms—Fixed point algorithm, control, Kleinman algorithm,
singularly perturbed systems.

I. INTRODUCTION

H1 control problems for linear singularly perturbed systems were
considered in many papers [1]–[9]. In particular, a great deal of studies
on the composite controller design for singularly perturbed systems in
H1 sense have been made [2], [3], [6], [8].

In order to obtain the optimal controller, we must solve the alge-
braic Riccati equation (ARE). Various reliable approaches to the theory
of the ARE have been well documented in many literatures (see e.g.,
[11]–[14]). These methods consist of the invariant subspace approach
which is based on the Hamiltonian matrix [11], [12] and the general
matrix pencil technique which is based on the extended Hamiltonian
pencil [13], [14] (in particular, the reference [14] is the most complete
reference to date dealing with ARE by means of the matrix pencils).
However, such approaches are not adequate to the singularly perturbed
systems because of high dimension and numerical stiffness [10].

The recursive algorithm for the solution of ARE of singularly per-
turbed systems have been developed in many literatures (see, e.g., [15]).
From a practical point of view, it has been shown that the recursive al-
gorithm is very effective to solve the ARE when the system matrices
are functions of a small perturbation parameter". However, the recur-
sive algorithm converge only to the approximation solution. Moreover,
such an algorithm is the linear convergence. On the other hand, the
exact slow–fast decomposition method for solving the singularly per-
turbed systems has been proposed (see, for example, [7] and the ref-
erences therein). However, in order to obtain the exact solution, ones
need the same workspace compared with with the full-order ARE for
calculating the inverse matrix.

In this paper, we study the numerical solution to the ARE with
indefinite sign quadratic term related to theH1 control problem of
singularly perturbed systems. The objective of this paper is to extend
the convergence result of [17] to the ARE with indefinite sign quadratic
term. Our new idea is to set the initial condition to the solutions of
the reduced-order ARE. Because of such a choice, we can prove that
our iterative algorithm converges to a unique solution of the ARE
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with indefinite sign quadratic term by using Newton–Kantorovich
theorem [16]. Also, while the classical recursive algorithm is of the
linear convergence property, the new iterative algorithm achieves
the quadratic convergence property since the resulting algorithm is
based on the Kleinman algorithm [17]. Furthermore, we also present
a new algorithm for solving the generalized algebraic Lyapunov
equation (GALE). The proof of the algorithm is based on the fixed
point theorem. As another important feature, it is easy to construct
an O("2 ) high-order approximation controller compared with the
existing methods (e.g., [2], [3], [7], [20]).

II. PROBLEM STATEMENT AND PRELIMINARIES

The AREs of singularly perturbed system corresponding toH1 con-
trol problem [4], [6] have the following form:

A
T
" P" + P"A" + 


�2
P"G"G

T
" P" � P"B" + C

T
1 D12

� D
T
12D12

�1

B
T
" P" +D

T
12C1 + C

T
1 C1 = 0 (1)

A"W" +W"A
T
" + 


�2
W"C

T
1 C1W" � W"C

T
2 +G"D

T
21

� D21D
T
21

�1

C2W" +G21B
T
" +G"G

T
" = 0 (2)

where" is a small positive parameter. Let us introduce the following
matrices:

P" =P"(
) =
P11("; 
) "P21("; 
)

T

"P21("; 
) "P22("; 
)

W" =W"(
) =
W11("; 
) W12("; 
)

W12("; 
)
T "�1W22("; 
)

A" =
A11 A12

"�1A21 "�1A22
A =

A11 A12

A21 A22

B" =
B1

"�1B2
B =

B1

B2

G" =
G1

"�1G2

G =
G1

G2

C1 = [C11 C12 ] C2 = [C21 C22 ] :

In addition, dimensions of block matrices are as follows:

P11 =P
T
11 W11 =W

T
11 A11 2 R

n �n

P22 =P
T
22 W22 =W

T
22

A22 2R
n �n

n1 + n2 = n

B1 2R
n �p

B2 2 R
n �p

G1 2R
n �q

G2 2 R
n �q

C11 2R
r�n

C12 2 R
r�n

C21 2R
s�n

C22 2 R
s�n

:

The remaining matrices are constant matrices of appropriate demen-
sions. For technical simplification, we shall make the following basic
assumptions.

Assumption 1:

1) DT
12D12 andD21D

T
21 are nonsingular.

2)

rank
A� sIn B

C1 D12

=n+ p; 8 s 2 C+

rank
A� sIn G

C2 D21

=n+ q; 8 s 2 C+:

Assumption 2:

1) The pair(A22; B2) is stabilizable and(C12; A22) is observable.

2)

rank
sIn � A11 �A12 B1

�A21 �A22 B2
=n; 8 s 2 C+

rank
sIn �AT11 �AT21 CT

11

�AT12 �AT22 CT
12

=n; 8 s 2 C+:

Assumption 3:

1) The pair(AT22; C
T
22 ) is stabilizable and(GT

2 ; A
T
22 ) is observ-

able.
2)

rank
sIn �AT11 �AT21 CT

21

�AT12 �AT22 CT
22

=n; 8 s 2 C+

rank
sIn � A11 �A12 G1

�A21 �A22 G2

=n; 8 s 2 C+:

It is well known in [3], [4] that a controller which stabilizes the sin-
gularly perturbed system with disturbance attenuation level measured
by 
 does exist if and only if (1) and (2) admit the positive–semidefi-
nite solutionsP"(
) andW"(
), respectively, such that

a) A" + G"F1 + B"F2 with F1 = F1(") = 
�2GT
" P", F2 =

F2(") = (DT
12D12)

�1(B"P" +DT
12C1) is stable;

b) A" + H1"C1 + H2"C2 with H1" = 
�2W"C
T
1 ,

H2" = W"C
T
2 +G"D

T
21 D21D

T
21

�1
is stable;

c) �(P"W") < 
2, where�(�) is the spectral radius.

In order to solve the AREs (1) and (2) with indefinite sign quadratic
term, we introduce the following useful lemma for the generalized al-
gebraic Riccati equation (GARE) [20].

Lemma 1: The AREs (1) and (2) are equivalent to the following
GAREs (3) and (4), respectively

F1(P ) =A
T
P + P

T
A + 


�2
P
T
GG

T
P

� P
T
B + C

T
1 D12

~D1 B
T
P +D

T
12C1

+ C
T
1 C1 = 0 (3a)

P" =�"P = P
T�" (3b)

F2(W ) =AWT +WA
T + 


�2
WC

T
1 C1W

T

� WC
T
2 +GD

T
21

~D2 C2W
T +D21G

T

+GG
T = 0 (4a)

W" =��1" W =W
T��1" (4b)

where

�" =diag ( In "In ) P =
P11 "PT

21

P21 P22

W =
W11 W12

"WT
12 W22

~D1 = D
T
12D12

�1
~D2 = D21D

T
21

�1

P11 =P
T
11 P22 = P

T
22 W11 =W

T
11 W22 =W

T
22

A =�"A" B = �"B" G = �"G":

Partitioning for the ARE (3a) and letting" = 0, we obtain the following
equations:

�AT11 �P11 + �P11 �A11 + �AT21 �P21 + �PT
21

�A21 � �P11S



11
�P11

� �PT
21S




22
�P21 � �P11S




12
�P21 � �PT

21S

T

12
�P11 +Q11 = 0 (5a)

�PT
22

�A21 + �AT12 �P11 + �AT22 �P21

� �P22S

T

12
�P11 � �P22S




22
�P21 +Q

T
12 = 0 (5b)

�AT22 �P22 + �P22 �A22 � �P22S



22
�P22 +Q22 = 0 (5c)
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where

�A
 =A�B ~D1D
T
12C1 =

�A11
�A12

�A21
�A22

S

 =B ~D1B

T
� 


�2
GG

T =
S


11 S



12

S

T
12 S



22

Q =CT
1 Ir �D12

~D1D
T
12 C1 =

Q11 Q12

QT
12 Q22

and �P11, �P21 and �P22 are 0-order solutions of the ARE (3a). The ARE
(5c) will produce the unique positive–semidefinite stabilizing solution
under assumption 2 if
 is large enough.

Let 
1f = inff
 > 0j the ARE (5c) has a positive–semidefinite
stabilizing solutiong.

Then, the matrix�A22�S


22

�P22 is nonsingular if we choose
 > 
1f .
Therefore, we obtain the following 0-order equations:

A
T

p

�P11 + �P11A


p � �P11S



p
�P11 +Q



p = 0 (6a)

�P21 = �NT
2 +N

T
1
�P11 (6b)

�AT
22

�P22 + �P22 �A22 � �P22S


22

�P22 +Q22 = 0 (6c)

where

T0 =T1 � T2T
�1
4 T3 =

A

p �S
p

�Q

p �A
T

p

T1 =
�A11 �S
11

�Q11 � �AT
11

T2 =
�A12 �S
12

�Q12 � �AT
21

T3 =
�A21 �S
T12

�QT
12 � �AT

12

T4 =
�A22 �S
22

�Q22 � �AT
22

N
T
2 =D�T4 Q̂

T
12 N

T
1 = �D�T4 D

T
2

D1 = �A11 � S


11

�P11 � S


12

�P21

D3 = �A21 � S

T
12

�P11 � S


22

�P21

D2 = �A12 � S


12

�P22 D4 = �A22 � S


22

�P22

D0 =D1 �D2D
�1
4 D3 Q̂12 = Q12 + �AT

21
�P22:

Remark 1: The matricesA

p , S
p andQ


p do not depend on�P22
because their matrices can be computed by usingTm, m = 1; . . . ; 4
which is independent of�P22 [8], [9], [18].

Let us define
1s = inff
 > 0j the ARE (6a) has a positive semidef-
inite stabilizing solutiong.

By following the similar steps, we obtain the following equations:

A


w
�W11 + �W11A


T
w � �W11R



w
�W11 +M



w = 0 (7a)

�W12 = �L2 + �W11L1 (7b)

Â22
�W22 + �W22Â

T
22 � �W22R



22

�W22 +M22 = 0 (7c)

where

Â

 =A�GD

T
21

~D2C2 =
Â11 Â12

Â21 Â22

R

 =CT

2
~D2C2 � 


�2
C
T
1 C1 =

R


11 R



12

R

T
12 R



22

M =G Iq �D
T
21

~D2D21 G
T =

M11 M12

MT
12 M22

H0 =H1 �H2H
�1
4 H3 =

A
T
w �R


w

�M

w �A


w

H1 =
ÂT
11 �R


11

�M11 �Â11

H2 =
ÂT
21 �R


12

�M12 �Â12

H3 =
ÂT
12 �R
T

12

�MT
12 �Â21

H4 =
ÂT
22 �R


22

�M22 �Â22

L
T
2 =U�14 V̂12 L

T
1 = �U�14 U3

U1 =Â11 � �W12R

T
12 � �W11R


T
11

U2 =Â12 � �W12R

T
22 � �W11R



12

U3 =Â21 � �W22R

T
12

U4 =Â22 � �W22R

T
22

U0 =U1 � U2U
�1
4 U3

V̂12 = �W22Â
T
12 +M

T
12:

The AREs (7c) and (7a) will produce the unique positive semidefi-
nite stabilizing solution under assumption 3 if
 is large enough.

Let 
2f = inff
 > 
1f j the ARE (7c) has a positive–semidefinite
stabilizing solution, and� �P22 �W22 < 
2g. Moreover, let us define

2s = inff
 > 
1sj the ARE (7a) has a positive–semidefinite stabi-
lizing solution, and� �P11 �W11 < 
2g.

As the results, for every
 > �
 = maxf
1s; 
1f ; 
2s; 
2fg, the
ARE’s (6) and (7) have the positive semidefinite stabilizing solutions
if " > 0 is small enough. Thus, we have the following result.

Lemma 2: Under the Assumptions 1–3, if we select a parameter

 > �
 = maxf
1s; 
1f ; 
2s; 
2fg, then there exists a small�" > 0
such that for all" 2 (0; �"), the ARE’s (1) and (2) admits a posi-
tive–semidefinite solution, which can be written as

P" =
�P11 +O(") " �PT

21 +O("2)

" �P21 +O("2) " �P22 +O("2)
(8)

W" =
�W11 +O(") �W12 +O(")
�WT
12 +O(") "�1( �W22 +O("))

: (9)

Proof: By using the implicit function theorem, Lemma 2 can be
proved. The proof is omitted since it is similar to that of the references
[4] and [20].

Remark 2: We can prove Lemma 2 by using a method similar to
that given in the proof of [4, Theorems 2.1, 2.2]. Note that the proof
given in [4] is made on the invertible assumptionofA22. However, this
note improves the proof of Lemma 2 in the sense that the invertible
assumption is not needed.

III. T HE NEW ITERATIVE ALGORITHM

In this section, we establish an elegant and simple algorithm which
converges globally to the positive–semidefinite symmetric solution
of AREs (1) and (2). The algorithm is given in term of the standard
GALE, which have to be solved iteratively. We present the new
iterative algorithm based on the Kleinman algorithm. Here, we note
that the Kleinman algorithm is based on the Newton type algorithm. In
general, the stabilizable-detectable conditions will guarantee the con-
vergence of the Kleinman algorithm for the standard linear-quadratic
regulator type ARE to the positive semidefinite solutions. However,
it is difficult to apply the Kleinman algorithm to the GAREs (3)
and (4) because the matrixS
 = 
�2GGT � B ~D1B

T and/or
R
 = 
�2CT

1 C1 � C2
~D2C

T
2 are in general indefinite.

We propose the following algorithm for solving the GAREs (3) and
(4), respectively

�A
 � S


P
(i)

T

P
(i+1) + P

(i+1)T �A
 � S


P
(i)

+ P
(i)T

S


P
(i) +Q = 0 (10)
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�"P
(i+1) = P

(i+1)T�"

Â


�W

(i)
R



W
(i+1)T +W

(i+1)(Â

�W

(i)
R

)T

+W
(i)
R


W

(i)T +M = 0

W
(i+1)�" = �"W

(i+1)T

i = 0; 1; 2; 3; . . . (11)

with P (0) =
�P11 " �PT

21

�P21 �P22
,W (0) =

�W11
�W12

" �WT
12

�W22
. The Kleinman

algorithm (10) can be constructed by settingP (i+1) = P (i) +�P (i)

and neglecting�P (i)TS
�P (i) term. By following the similar steps,
we obtain the Kleinman algorithm (11). Kleinman algorithm is well-
known and is widely used to find a solution of ARE, and its local con-
vergence properties are well understood. We are concerned with good
choices of the starting points which guarantee to find a required solu-
tion of a given GARE. Our new idea is to set the initial conditions to
the matricesP (0) andW (0). Using Lemma 2, the fundamental idea is
based onkP�P (0)k = O(") andkW�W (0)k = O("). Although the
matricesS
 and/orR
 are in general indefinite, we can get the required
solution with the rate of quadratic convergence by using the Kleinman
algorithm. By using Newton–Kantorovich theorem, we now prove the
existence of the unique solution for the GARE (3a). The main result of
this section is as follows.

Theorem 1: Under the assumptions 1–3, if we select a parameter

 > �
 = maxf
1s; 
1f ; 
2s; 
2fg, then the new iterative algorithm
(10) converges to the exact solutionP � of the GARE (3a) with the
rate of quadratic convergence. The unique bounded solutionP (i) of
the GARE (3a) is in the neighborhood of the exact solutionP �. Fur-
thermore,P (i)

" = �T
" P

(i) = P (i)T�" is positive semidefinite and
�A

" � S


" P
(i)
" is stable for alli, i = 0; 1; 2; . . .. That is, the following

conditions are satisfied:

P
(i) � P

� =O("2 ) (12a)

P
(i) �c <1

P
(i)
" =�"P

(i) = P
(i)T�" � 0

Re� �A

" � S



" P

(i)
" <0 (12b)

where

P =P � =
P11 "PT

21

P21 P22

P
(i) =

P
(i)
11 "P

(i)T
21

P
(i)
21 P

(i)
22

:

Before proving this theorem, we will first establish a following
useful lemma.

Lemma 3: Let us consider the GALE (13)

AT�+ �TA+ "
j
Q = 0 (13)

where� is the solution of the GALE (13) andA andQ known matrices
defined by

� =
�11(") "�T21(")

�21(") �22(")

A =
A11 A12

A21 A22
Q =

Q11 Q12

QT
12 Q22

�11 =�
T
11 A11 Q11 = Q

T
11 2 R

n �n

�22 =�
T
22 eA22 Q22 = Q

T
22 2 R

n �n
:

Assume that the matrixA22 is nonsingular andA0 � A11 �
A12A

�1
22 A21 andA22 are stable. Then

� =

1

k=j

"k

k!

�
(k)
11 (0) "�

(k)T
21 (0)

�
(k)
21 (0) �

(k)
22 (0)

= O("j) (14)

where

�
(k)
lm (0) =

dk

d"k
�lm(")j"=0 lm = 11; 21; 22:

Proof: Partitioning for the GALE (13), we obtain the following
equations:

AT
11�11 + �11A11 +AT

21�21

+ �T21A21 + "
j
Q11 = 0 (15a)

�11A12 + �T21A22 +AT
21�22

+ "AT
11�

T
21 + "

j
Q12 = 0 (15b)

AT
22�22 + �22A22 + " AT

12�
T
21 + �21A12

+ "
j
Q22 = 0: (15c)

Setting" = 0 for the above (15), sinceA0 andA22 are stable we
deduce that�lm(0) = �

(0)
lm (0) = 0, lm = 11; 21; 22. We now obtain

the derivative of (15) at parameter" as follows:

AT
11�

(1)
11 (") + �

(1)
11 (")A11 +AT

21�
(1)
21 (")

+ �
(1)T
21 (")A21 + j"

j�1
Q11 = 0

�
(1)
11 (")A12 + �

(1)T
21 (")A22 +AT

21�
(1)
22 (")

+AT
11�

T
21(") + "AT

11�
(1)T
21 (") + j"

j�1
Q12 = 0

AT
22�

(1)
22 (") + �

(1)
22 (")A22 + " AT

12�
(1)T
21 (") + �

(1)
21 (")A12

+AT
12�

T
21(") + �21(")A12 + j"

j�1
Q22 = 0:

Using�(0)lm (0) = 0 and the fact thatA0 andA22 are stable, we get
�
(1)
lm(0) = 0. By following the similar steps, we have�(k)lm (0) = 0,k =

0; 1; 2; j � 1. Note that the exact proof is done by using mathematical
induction. On the other hand, it is well known that the matrix� possess
a power series expansion at" = 0 as follows:

� =

1

k=0

"k

k!

�
(k)
11 (0) "�

(k)T
21 (0)

�
(k)
21 (0) �

(k)
22 (0)

:

Substituting�(k)lm (0) = 0,k = 0; 1; 2; j�1 into�, it is straightforward
to verify that (14). This is the required result.

Now, let us prove Theorem 1.
Proof: The proof of (12b) has been given in [21]. Thus, we will

prove the quadratic convergence property corresponding to (12a) and
the existence of the unique solution of the ARE (1). We first prove
that under the assumptions in Theorem 1 the algorithm (10) converges
to the desired solution of (3a) with (12a). The proof is done by using
mathematical induction and Lemma 3. Subtracting (3a) from (10), it is
easy to derive

�A
 � S


P
(i)

T

P
(i+1) � P + P

(i+1) � P
T

�A
 � S


P
(i)

= � P
(i) � P

T

S



P
(i) � P :

Wheni = 0 for the above equations, by noting thatkP (0) � Pk =

O(") based on the Lemma 2, we have�A
 � S
P (0)
T

(P (1) � P )

+(P (1) � P )T �A
 � S
P (i) = O("2). Using

�A
 � S


P
(0) =

�D1
�D2 +O(")

�D3
�D4 +O(")
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and the known results that�D4 and �D0 = �D1 �
�D2

�D�14
�D3 are stable,

it follows from Lemma 3 thatkP (1) � Pk = O("2). We now assume

thatkP (N) � Pk = O "2 . Using this assumption, we conclude
that

�A
 � S
P (N)
T

P (N+1) � P

+ P (N+1) � P
T

�A
 � S
P (N) = �O "2 :

Thus, using Lemma 3, we havekP (N+1) � Pk = O "2 . Con-
sequently, the (12a) holds for alli 2 N. Secondly, we show that there
exists the unique solution for the ARE (1). This proof is equivalent to
the proof of existence of the unique solution for the GARE (3a). Thus,
the proof follows directly by applying Newton–Kantorovich theorem
(see [16, p. 155]) for the GARE (3a). We now observe that function
F1(P ) is differentiable on a convex setD. Using the fact that

rF1(P ) = �A
 � S
P
T 
 In + In 
 �A
 � S
P

T

where
 denotes Kronecker product [19] andF1(P ) = �A
TP +
PT �A
 � PTS
P + Q, rF1(P ) = @vecF1(P )=@(vecP )T, where
vec denotes an ordered stack of the columns of its matrix [19], we have

krF1(P1)�rF1(P2)k � �
kP1 � P2k

where�
 = 2kS
k. Moreover, using the fact that

rF1(P
(0))=

�D1
�D2+O(")

�D3
�D4+O(")

T


In + In

�D1

�D2+O(")
�D3

�D4+O(")

T

it follows that rF1(P
(0)) is nonsingular because�D4 and �D0 are

stable. Therefore, there exists�� such that rF1(P
(0))

�1

� ��.

On the other hand, sinceF1 P (0) = O("), there exists�� such that

[rF1(P
(0))]�1 � F1(P

(0)) = O(") � ��. Thus, there exists��

such that�� � ���
�� < 2�1 because of�� = O("). Now, let us define

t� � 1

�
 ��
1�p1� 2��

=
1

2kS
k � k[rF(P (0))]�1k 1�p1� 2�� :

Clearly,S � P : kP�P (0)k�t� is in the convex setD. In the se-

quel, sincekP ��P (0)k=O(") holds for small", we have shown that
P � is the unique solution inS . Therefore, the proof is completed.

Remark 3: The algorithm (10) which is based on the Kleinman al-
gorithm might facilitate new approach to the singularly perturbed ARE
with indefinite sign quadratic term, that is, conceptually simpler and
numerically more efficient than those previously used in [7] and [15].
Moreover, by applying the results of this paper, we can get rather easily
the solution for various singularly perturbed ARE with indefinite sign
quadratic term.

Remark 4: Note that our proposed method is not a straightforward
extension to the continuous-time case of the methods given in [22],

[23]. First, it is most different from [22], [23] that our convergence
proof of the iterative algorithm (10) is based on Newton–Kantorovich
theorem. Moreover, how to select the initial condition is quite dif-
ferent. That is, we choose the initial condition as solutions of the re-
duced-order AREs close to the exact solutions using the property of
singularly perturbed system. As a result, while the recursion in [22] has
exponential convergence property, the new iterative algorithm achieves
the quadratic convergence property stronger than exponential conver-
gence property. Secondly, we have newly proved the existence of the
unique solution for the GARE with indefinite sign quadratic term.

We now summarize a perturbation analysis of the GALE (10). Set-
ting " to zero and using Kronecker products, the GALE (10) can be
written as

V
vec �P

(i+1)
11

vec �P
(i+1)
21

vec �P
(i+1)
22

=

vec �Q11

vec �Q12

vec �Q22

�A11
�A12

�A21
�A22

= �A
 � S

�P
(i)
11 0
�P
(i)
21

�P
(i)
22

�Q11
�Q12

�QT
12

�Q22
=

�P
(i)
11

�P
(i)T
21

0 �P
(i)
22

S

�P
(i)
11 0
�P
(i)
21

�P
(i)
22

+Q

where V is given at the bottom of the page.Un n denotes a
permutation matrix in Kronecker matrix sense [19] andvec �P

(i+1)
lm

denotes an ordered stack of the columns ofP
(i+1)
lm when " = 0.

It can be shown, after some algebra, that the determinant ofV
is expressed asdetV = det (In 
 �AT

22)Un n + �AT
22 
 In

� det In 
 �AT
22 � det (In 
 �AT

0 )Un n + �AT
0 
 In , where

�A0 = �A11 � �A12
�A�122

�A21. Obviously, �A22 and �A0 are nonsingular
matrices. Thus, there existsV�1. Therefore, the condition number
[16] of V , that is,K(V) = kVk � kV�1k is given byK(V) = O(1).
SinceK(V) is not large, the matrixV + O(") is well-conditioned for
small".

We next give the convergence theorem of the algorithm (11) by sim-
ilar argument corresponding to the algorithm (10).

Theorem 2: Under the Assumptions 1–3, if we select a parameter

 > �
 = maxf
1s; 
1f ; 
2s; 
2fg, then the new iterative algorithm
(11) converges to the exact solutionW � of the GARE (4a) with the
rate of quadratic convergence. The unique bounded solutionW (i) of
the GARE (4a) is in the neighborhood of the exact solutionW �. Fur-
thermore,W (i)

" = W (i)T��T" = ��1" W (i) is positive semidefinite
andÂ


" �W
(i)
" R


" is stable for alli, i = 0; 1; 2; . . . .
Proof: Since the proof of Theorem 2 is performed by a dual ar-

gument of Theorem 1, it is omitted.
As a result of applying the idea of the Kleinman algorithm, we have

managed to replace the computation of the GAREs (3) and (4) which
contain the small parameter" with a sequence of the GALEs (10) and
(11).

Now, we consider a method for solving the GALEs (10) and (11).
Since the algorithm for solving the GALE (10) is virtually identical to
the GALE (11), we give only the algorithm of the GALE (10). In order
to reduce the dimension of the workspace, a new algorithm for solving
the GALE which is based on the fixed point algorithm is established.
Let us consider the following GALE (16), in a general form:

�TX +XT�+ V = 0 (16)

V =

In 
 �AT
11 Un n + �AT

11 
 In In 
 �AT
21 Un n + �AT

21 
 In 0

In 
 �AT
12 Un n In 
 �AT

22 Un n
�AT
21 
 In

0 0 In 
 �AT
22 Un n + �AT

22 
 In

:
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whereX is the solution of the GALE (16) and� andV are known
matrices defined by

X =
X11(") "X21(")

T

X21(") X22(")
:= P

(i+1)

� =
�11 �12

�21 �22
:= �A


� S


P
(i)

V =
V11 V12

V T
12 V22

:= P
(i)T

S


P
(i) +Q

X11 =X
T
11 �11 V11 = V

T
11 2 R

n �n

X22 =X
T
22 �22 V22 = V

T
22 2 R

n �n
:

In order to solve the GALE (16) in a iterative method, we need an-
other assumption.

Assumption 4:The matrix�22 is nonsingular and�0 � �11 �
�12�

�1
22 �21 and�22 are stable.

Note that the assumption 4 is satisfied for alli 2 N because�D4 and
�D0 are stable. The GALE (16) can be partitioned into

�T
11X11 +X11�11 + �T

21X21

+X
T
21�21 + V11 = 0 (17a)

X11�12 +X
T
21�22 + �T

21X22

+ "�T
11X

T
21 + V12 = 0 (17b)

�T
22X22 +X22�22 + " �T

12X
T
21 +X21�12

+ V22 = 0: (17c)

The fixed point algorithm for solving (17) is given by

�T
22X

(i+1)
22 +X

(i+1)
22 �22

+ " �T
12X

(i)T
21 +X

(i)
21 �12 + V22 = 0 (18a)

�T
0X

(i+1)
11 +X

(i+1)
11 �0 � "�T

21�
�T
22 X

(i)
21 �0

� "�T
0X

(i)T
21 ��122 �21 +�T

21�
�T
22 V22�

�1
22 �21

� V12�
�1
22 �21 � �T

21�
�T
22 V

T
12 + V11 = 0 (18b)

X
(i+1)
21 = ���T22 �T

12X
(i+1)
11 +X

(i+1)
22 �21

+"X
(i)
21 �11 + V

T
12

X
(0)
21 = 0 i = 0; 1; 2; 3; . . . : (18c)

The following theorem indicates the convergence of the algorithm (18).
Theorem 3: The algorithm (18) converges to the exact solutionXlm

of (17) with the rate of convergence ofO("i), that is

X
(i)
lm �Xlm =O("i)

i =1; 2; 3; . . . lm = 11; 21; 22: (19)

Proof: The proof is done by using the mathematical induction.
Wheni = 0 for the (18), the solutionsX(1)

lm are equivalent to the first
order approximationsXlm corresponding to the small parameters"
for the (17). It follows from these equations thatX(1)

lm �Xlm =

O("), lm = 11; 21; 22. When i = N (N � 1), we assume that

X
(N)
lm �Xlm = O("N). Subtracting (18) from (17) and using the

above assumptions, we arrive at the following equations:

�T
22 X

(N+1)
22 �X22 + X

(N+1)
22 �X22 �22 +O("N+1) = 0

X
(N+1)
11 �X11 �12 + X

(N+1)
21 �X21

T

�22

+ �T
21 X

(N+1)
22 �X22 +O("N+1) = 0

�T
0 X

(N+1)
11 �X11 + X

(N+1)
11 �X11 �0 +O("N+1) = 0:

Thus, using the standard properties of the algebraic Lyapunov equation
(ALE) [24], we have X

(N+1)
lm �Xlm = O("N+1). Consequently,

the (19) holds for alli 2 N. This completes the proof of the theorem
concerned with the fixed point algorithm.

The existing method [7] can obtain the solution by solving the ALEs
of lower dimensions which are the same as the slow and fast subsys-
tems. However, in order to obtain the exact solution of the sign indef-
inite ARE, ones need the same workspace for calculating the inverse
matrix (see [7], equation (3.3)). On the other hand, the resulting algo-
rithm is very useful because our proposed algorithm has only to solve
the ALEs of lower dimensions. Moreover, note that the algorithm (18a)
is quite different from the recursive algorithm [15]. As another impor-
tant feature, since our proposed algorithm is the quadratic convergence,
while the recursive algorithm is the linear convergence [15], the re-
sulting algorithm is also efficient.

In the rest of this section, we will present an important implication.
If the state information is available for feedback, then the following
corollary is easily seen in view of Theorem 1.

Corollary 1: Assume thatCT
1 D12 = 0 and DT

12D12 = Ip.
Under the assumptions 1–3, the approximate feedback gain
K(i) = � BT

1 B
T
2 P (i) guarantees the performance level

C1 +D12K
(i) sIn �A" �B"K

(i)
�1

G"

1

< 
 + O("2 ),

whereP (i) is defined in the statement of Theorem 1.
Proof: It can be carried out via a similar technique used in [7]

and [20].

IV. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed algorithm, we
have run a simple numerical example. The system matrix is given by

A11 =
0 0:4

0 0
A12 =

0 0

0:345 0

A21 =
0 �0:524

0 0
A22 =

0 0:262

0 �1

B1 =
0

0
B2 =

0

1

G1 =
1:0 0

0 1:0
G2 =

0:2 0:1

1:2 0:5

D
T
12 = [ 0 0 0 0 1 ] D21 = [ 1 0:5 ]

C
T
11 =

1 0 0 0 0

0 0 0 0 0
C
T
12 =

0 0 1 0 0

0 0 0 0 0

C21 = [ 1 0 ] C22 = [ 1 1 ] :

The numerical results are obtained for small parameter" = 10�4.
SincedetA22 = 0, the system is nonstandard singularly perturbed
systems. The four basic quantities for the system are
1f = 
2f =
2:255156, 
1s = 
2s = 7:359 056. Thus, for every boundary value

 > �
 = max f
1f ; 
1s; 
2f ; 
2sg = 7:359056, the AREs (6a), (6c),
(7a) and (7c) have the positive semidefinite stabilizing solutions. On
the other hand, by using MATLAB, the minimum value of
̂ such that
there exists the dynamic feedback controller is
̂ = 7:468 750.

Now, we choose as
 = 8:0 > �
 to design the controller. We give the
following solutions of the AREs (1) and (2) and in Table I. Table II shows
the results of the errorsF1(P

(i)) and F2(W
(i)) per iterations. We

find that the solutions of the AREs (1) and (2) converge to the exact
solution with accuracy ofF1(P

(i)) < 10�14 and F2(W
(i)) <

10�14 after 2 iterative iterations, respectively. Moreover, it is interested
in pointing out that the result of Table II shows that the algorithms (10)
and (11) are quadratic convergence. Table III shows the results of the
number of iterations required to the solution with the same accuracy of
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TABLE I

TABLE II

TABLE III

F1(P
(i)) < 10�14 for the classical recursive algorithm [15] versus

the improved iterative algorithm. It can be seen that the convergence
rate of the resulting algorithm is stable for all" since the initial condi-
tionsP (0) andW (0) are quite good. On the other hand, the classical
recursive algorithm converges very slowly for the" that is not small.
However, it is important to point out that the recursive algorithm is very
useful when the parameter" is sufficiently small.

V. CONCLUSION

In this note, theH1 control problem for singularly perturbed sys-
tems has been investigated. We have shown that the Kleinman algo-
rithm can be used well to solve the ARE under the appropriate ini-
tial condition. Comparing with [15], since our proposed algorithm is
quadratic convergence, the required solution can be easily obtained
up to an arbitrary order of accuracy, that is,O "2 . Moreover, we
have also presented the method for solving the GALE by means of the
fixed point algorithm. It avoids high dimension and numerical stiff-
ness. Another important feature, if we use the state information, then
the high-orderO "2 accuracy controller achieves the performance


 + O "2 compared with the existing controller [7], [20].
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Perturbation of Multivariable Linear Quadratic Systems
With Jump Parameters

R. El Azouzi, M. Abbad, and E. Altman

Abstract—We consider the problem of the perturbation of a class of
linear-quadratic systems where the change from one structure (for the dy-
namics and costs) to another is governed by a finite-state Markov process.
The problem above leads to the analysis of some perturbed linearly coupled
set of Riccati equations. We show that the matrix obtained as the solution of
the equations, which determines the optimal value and control, has a Taylor
expansion in the perturbation parameter. We compute explicitly the terms
of this expansion.

Index Terms—Averaging and aggregation, coupled Riccati equations,
linear quadratic control, Markov jump parameters, singular perturbation.

I. INTRODUCTION

Many systems subject to frequent unpredictable structural changes
can be modeled as piecewise deterministic systems, where the system
dynamics takes on different forms depending on the value of an associ-
ated Markov process. In the linear case, these are also known as jump
linear systems. Such a system model is useful particularly since it al-
lows the decision maker to cope adequately with the discrete events that
disrupt and/or change significantly the normal operation of a system by
using the knowledge of their occurrence and the statistical information
on the rate at which these events take place. Research in this class of
systems and their applications into manufacturing management spans
several decades. Some representative papers in this area are [4] and [5].

The solution of jump linear systems relies on solving a set of coupled
Riccati equations involving the generator of the underlying Markov
chain. In many applications, the state space of the Markov chain is large
and it becomes difficult to obtain solutions to the Riccati equations.
To overcome this difficulty, we use singular perturbation techniques in
the modeling, control design, and optimization, which holds when the
system displays certain two-time-scale behavior, a fast time scale and a
slowly varying one. Presence of such a phenomenon is best expressed
mathematically by introducing a small parameter� > 0 and model the
underlying system as one involving singularly perturbed Markov chain
(see [8] for examples). Using averaging and aggregation techniques,
we show that the set of coupled algebraic Riccati equations (CARE)
possesses a unique solution which can be represented as a Taylor series
in � and moreover we present an algorithm for computing the terms of
the series.
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An important paper related to ours is [6] which considers also linear
dynamics with jump parameters. The transition probabilities are sub-
ject to the same type of perturbation that we consider. A more general
setting is treated in that reference: that of an additional disturbance,
which is handled using anH1 approach. The value of the limiting
control problem is obtained. Our approach allows us to get more than
the limiting control problem; it gives the solution in terms of a series
expansion in the perturbation parameter. This note also extends the re-
sults in [3] which dealt with a one dimensional linear system.

The paper is organized as follows: Section II introduces the gen-
eral model. Section III provides the Taylor expansion of the solution to
the coupled algebraic Riccati equations. We study computational algo-
rithms in Section IV. This note ends with the concluding remarks.

II. GENERAL MODEL

The class of jump linear systems under consideration is described by

dx

dt
= A(�(t))x(t) +B(�(t))u(t); x(0) = x0 (1)

where
x p-dimensional system state;
x0 fixed (known) initial state;
u r-dimensional control, taking values inr ;
�(t) finite state Markov chain defined on the state spaceS, of

cardinalitys, with the infinitesimal generator matrix� =
(�ij), i; j 2 S.

The �ij ’s are real numbers such that for anyi 6= j, �ij � 0, and
for all i 2 S, �iai = �

j 6=i �iaj . With this system, the controlu
is generated by a control policy
 according tou(t) = 
(t; xt; �t),
t 2 [0;+1); where
 is taken to be piecewise continuous in its first
argument, and piecewise Lipschitz continuous in its second argument.
Let us denote the class of all admissible controllers by�. Define the
running (immediate) costL : p�S��! as:L(x; i; u) =j x j2Q(i)
+ j u j2R(i), whereQ(:) � 0, R(:) > 0, and wherej x jQ:= xTQx,
etc. The underlying probability space is the triple(
; F; P ). Let E
denote the expectation with respect to the underlying probability space.
For each initial state(x0; i0) and strategy
 2 �, we introduce the
discounted (expected) cost function

J�(x0; i0; 
) = Ex ;i

+1

0

e
��t

L(x(t); �(t); u(t))dt (2)

where� � 0 is a discount factor. For this infinite-horizon, we have to
ensure that the cost is finite for at least one stationary policy. A suffi-
cient condition for this is the following (see also Remark 2):

Assumption 1:The pair(A(�(t)); B(�(t))) is stochastically stabi-
lizable and(A(i);Q(i)) is observable for eachi 2 S.

The problem is the derivation of a solution tôJ�(x; i) =
inf
2� J�(x; i; 
):

The Perturbed Systems:In many application, because of the var-
ious sources of uncertainties, the Markov chain involved is of large di-
mension. It is natural to group the large number of states into different
collections of states, based on whether the interaction between any two
states is weak or strong. This description using two scales of interac-
tions is expressed mathematically by taking the probability transition
rate matrix� in an appropriate singularly perturbed form, as already
discussed in [2]:

�
�
ij = �ij +

1

�
�ij

where(�ij)s�s and (�ij)s�s are the transition probability rate ma-
trices corresponding to, respectively, weak interaction and strong inter-
actions within the form process. The scalar� is a small positive number.
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