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c(s:q”) = (s —¢) (s — ¢3) = (s — 1)(s — 2). Hence, the following  New lterative Algorithm for Algebraic Riccati Equation

controller results (note that = 2): Related to H, Control Problem of Singularly Perturbed
2412541 2 Systems
C(s;a‘):a(s + b+w J(5+2) (33)
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We selected(s) = s + 35, so that all the poles @ (s; «) are purely
imaginary. In order to have(t; o, 7) € C°, a third-order transition

; . . Abstract—in this note, we present the solution to the algebraic Riccati
polynomial ¢ = 1, note that the plant relative order gs= 1) has ! we P o gevraic iceat

equation (ARE) with indefinite sign quadratic term related to the H .. con-

been chosen as output function, so that we have trol problem for singularly perturbed system by means of a Kleinman’s
9 3 type algorithm. The resulting algorithm is very efficient from the numerical

yt;r) = — f3f3 + 77@ t€0,7]. point of view because the ARE is solvable even if the quadratic term has an
T T indefinite sign. Moreover, the resulting iterative algorithm is quadratically

The optimal values ofr and~ have been determined by means of &onverg_ent. We also presgnt a new algorithm fqr solving' the ge_neralized
genetic algorithm [9]. The resulting values aré = 7.57 and+* — a_Igebralc Lyapunov equation (GALE) on the basis of the fixed point algo-
6.99 s, which results in an optimal worst-case settling tifne equal to

16.44 s, with preaction timg = —6.2 s(zo = 10—3). The command Index Terms—Fixed point algorithm, H__control, Kleinman algorithm,

- Lk . singularly perturbed systems.

input r, (¢; «*, 7*), the worst-case output (which occurs when=

[0.8,1.6,0.5]) and the corresponding control variable are reported in

Fig. 2. For technical convenience, in all the plots the zero time has been |. INTRODUCTION

shifted totg. . .
To better evaluate how the new proposed approach works, in Fig. 3Hx control problems for linear singularly perturbed systems were

we report the envelope of the Bode plots over the uncertain paramefEQQSidered in many papers [1]_[9]' In pgrticular, agreat deal of SIUdi?S
box Q, both of the plant (open-loop) and of the closed-loop systerﬂ.n the composite controller design for singularly perturbed systems in
Then, in Fig. 4 the normalized power spectrum of the command sigr%i* sense have b(_aen made_ 21, 3], [€], [8]-

is shown. It can be noted that for the range of frequencies of the"_1 or_der t_o obta!n the optlmal_contro!ler, we must solve the alge-
command signal, the presence of the feedback controller almost capffic Riccati equation (ARE). Various reliable approaches to the theory

pletely cancels the effects of the plant uncertainties, therefore gredllyi€ ARE have been well documented in many literatures (see e.g.,
increasing the effectiveness of the use of the dynamic inversion.  L111-[14]). These methods consist of the invariant subspace approach
which is based on the Hamiltonian matrix [11], [12] and the general

matrix pencil technique which is based on the extended Hamiltonian
pencil [13], [14] (in particular, the reference [14] is the most complete
In this note, we have proposed a new inversion-based control aratgference to date dealing with ARE by means of the matrix pencils).
tecture for the set-point constrained regulation of nonminimum-phalsewever, such approaches are not adequate to the singularly perturbed
scalar systems subject to parametric uncertainties. This new contipdtems because of high dimension and numerical stiffness [10].
scheme, which can be regarded as a radical generalization of the classithe recursive algorithm for the solution of ARE of singularly per-
two-degrees-of-freedom configuration (the filter is indeed substitutédrbed systems have been developed in many literatures (see, e.g., [15]).
by the command signal generator, see Fig. 1), permits obtaining higiom a practical point of view, it has been shown that the recursive al-
performances as exemplified in Section V. An extension to multivargorithm is very effective to solve the ARE when the system matrices
able plants is possible and is currently investigated by the authors. are functions of a small perturbation parametetowever, the recur-
sive algorithm converge only to the approximation solution. Moreover,
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with indefinite sign quadratic term by using Newton—Kantorovich 2)
theorem [16]. Also, while the classical recursive algorithm is of the

linear convergence property, the new iterative algorithm achieves rank|: shoy — An =4 B]} =n,V¥seCt
the quadratic convergence property since the resulting algorithm is — A2 _A?? B '

based on the Kleinman algorithm [17]. Furthermore, we also present rank { m— Al —An Cﬂ} —n. ¥secCt
a new algorithm for solving the generalized algebraic Lyapunov —Af, —A3y O '

equation (GALE). The proof of the algorithm is based on the fixed
point theorem. As another important feature, it is easy to constructASSumption 3:
an O(=%") high-order approximation controller compared with the 1) The pair( A3,. Cs; ) is stabilizable and G5 . A3 ) is observ-

existing methods (e.qg., [2], [3], [7], [20]). able.
2)
Il. PROBLEM STATEMENT AND PRELIMINARIES [ - AT AT L o vecGt
The AREs of singularly perturbed system correspondinfgiocon- ’ —AT, —AL, CchL T T
trol problem [4], [6] have the following form: I — A Ay G
p (4], [6] g rank |:.5.[n1 A Aia 01:| —n. VseCT,
—As —Asr Gy

ALP. 4 DA + 9 PGGE P — (PB. + CI' D1
T - . . T It is well known in [3], [4] that a controller which stabilizes the sin-
: (D12D12) (Bs P+ D12C1) +CrCi=0 (1) gularly perturbed system with disturbance attenuation level measured
- VoAl 4wt oW — (Woek T by ~+ does exist if and only if (1) and (2) admit the positive—semidefi-
AW+ Weds +o TWLCL G (W Oz + GED“) nite solutionsP () andW.(~), respectively, such that

. (D21D2Tl)7 (aw 4GB )+p aT (@ @A+ GF + BFwith B = Fi(e) = v 2GIP, By =
Fy(2) = (DT, Do)~ (B.P. + DT, Ch) is stable;
wheres is a small positive parameter. Let us introduce the following b) A. + H;.Ciy + H2.Cs with le =  ~y7W.Ct,
matrices: Hy. = (W.CY + G.DY,) (D21 D%,) ™" is stable;
Pi(e, ) =Pu(z, )" c) p(P-W.) < +*, wherep(-) is the spectral radius.
P. =P.(v) = Lpﬂ(g 5)  2Pu(z, ) } In order to solve the AREs (1) and (2) with indefinite sign quadratic
W ) W (e ) term, we introduce the following useful lemma for the generalized al-
W. =W.(v) = { i (e T ” © } gebraic Riccati equation (GARE) [20].
Wia(e, ) Waa(e, Lemma 1: The AREs (1) and (2) are equivalent to the following
[ A Ay A A GARES (3) and (4), respectively
A.=| ) il A= ’
L _491 [ ‘422 4')1 1-12'_7 T T 5
© B Fi(P)=A"P+ P A—i—ff‘P GG'P
pa— 1 pa—
B, = 6_]BQ:| - |: :| — (PTB—|—CED12>D1 (BTP+D1TZC1>
o T
G. = ﬁl } G:{ } +C101;0 (3a)
Le™ G P.=TI.P =PIl (3b)
Ci=[Cn Ciz] =[Ca Ca]. Fo(W)y =AW" 4 wa +*welfow?
In addition, dimensions of block matrices are as follows: - (WCS + GD%}) D, (CQWT + Dy, Gl)
Py =P,  Wu=W} A, eR"™™M +GGT =0 (4a)
Prz =Py, Waa = Wap W =IL"W =W (4b)
Ay ERMZXM2 ni+n2=n where
Bl eRanp BQ E anxp P PT
Gl ERanq G2 c anXq HE :dia\g([n1 {:‘,I,LQ) P = |: " - 21:|
rXng XNy le P22
Cii €ER Ciz R — Wi Wia
Co eR7M Cor € R7™2. W W

~ - —1 - o\ —
The remaining matrices are constant matrices of appropriate demen- D, = (D}QDm) Dy = (Dm Dé)

sions. For technical simplification, we shall make the following basic T T T T
P 11 =P 11 P 22 = P 22 VVII = VVll "1'722 = VVZZ

assumptions.
Assumption 1: A=II. A, B=1I.B. G=I.G..
1) DY, Dy» and D2y D3, are nonsingular. N . . .
2; ' e g Partitioning for the ARE (3a) and letting= 0, we obtain the following
equations:
A—sl, B _ -+ } :
rauk { o D12:| =npVsed AL Pry+ PiAn + Ay Poy + P Aoy — P ST, P
rank |:A_SI“ G :| =n+g¢,VseCh. — PS5, Py = Py ST, Py — P ST, P+ Qi =0 (5a)
C5 Do, PlAs + A}, Py 4 A3y Py

Assumption 2: — PS]) Py — PioSL, P + Q5 =0 (5b)
l) The pair(AQg, BQ) is stabilizable andC12, Aso) is observable. A;F‘ZPQZ =+ pQQfIQQ — PZQS;‘/QPQQ —+ QZQ =0 (50)
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AT ~
where H, :{ A _}?12}
B 5 ‘ A ﬁi ) _{»112 _441'2
A" =A-BD\D},Cy = |21 TP AT, —Ry
4421 4422 H3 = ,‘T o
N o [SI S —Myz — A
§"=BD:B" —77'GG" = [ ot Sﬂ o { AL, —B}
12 22 4 — y 1
Q Q _A[22 _AZZ
T o T 11 12 . ~ "
Q=CT (I = DD}, ) €1 = {QT Q;)J LY =0, 'V LV = -U, '
_ _ _ . 1‘ i U, :‘411 - Wi Ri'zl - 1?11]?1/11
andP, P>y and P, are O-order solutions of the ARE (3a). The ARE U, —A W T R
(5¢) will produce the unique positive—semidefinite stabilizing solution P 2 1152
under assumption 2 i is large enough. Us =Az — W R,
Le_t_ Ny = inf{j,/ > 0] the ARE (5c) has a positive—semidefinite Us =Agy — Wz RY)
stabilizing SO|UtIC?I}_. o . . Us =Uy — UnUL'Us
Then, the matrixiss — 53, s is nonsingular if we choosg > v 5. o a7 T
Therefore, we obtain the following 0-order equations: Viz =WazAip + M.
AT P+ PuAT — PLSIPL QL =0 (62) The AREs (7c) and (7a) will produce the unique positive semidefi-
v T oo ? nite stabilizing solution under assumption 3yifs large enough.
If le - _A“{ +7M B 1 ~ (6b) Lety.y = inf{y > 71| the ARE (7c) has a positive-semidefinite
Ao Pas + Pos Az — P23 S5, Pos + Qo2 = 0 (6¢c) stabilizing solution, ang (P22 W>2) < +*}. Moreover, let us define
v2s = inf{y > y1,| the ARE (7a) has a positive—semidefinite stabi-
where lizing solution, andy (P11 Wi1) < 7°}.
T T _ TT\T A7 -5; As the results, for every > 5 = max{vis, Y1+, 725, 127}, the
o= 2he 487 -Q7 _A;;T ARE'’s (6) and (7) have the positive semidefinite stabilizing solutions
[ Ay =S5 if = > 0 is small enough. Thus, we have the following result.
T = _Qu —A" Lemma 2: Under the Assumptions 1-3, if we select a parameter
- A g7 ] v > 7 = max{7s, 715, Y255 Y27}, then there exists a small> 0
Th = 12 ﬁ“’ such that for al € (0, ), the ARE’s (1) and (2) admits a posi-
;}Q 2 _:9 2 tive—semidefinite solution, which can be written as
=] o Tk ! % 4 0
_—912 — A1, P — { P+ O(e? ey + ()(6‘ )} ®)
T, — [ Ass —53 ] - =Py + O(EZ) ePyo + O(EZ)
QAL

Ny =D;'Qi> N =-D,;'D;
Dy =Ay — 57, Py = 57, P

W. =

|:ﬁ‘711 +0(e) Wiz +0(e) } . 9)

Wi +0(s) e 1 (Waa + 0(2))

Proof: By using the implicit function theorem, Lemma 2 can be

Dy =Asi — S7) Piy — S, Pa proved. The proof is omitted since it is similar to that of the references
D2 :rLQ — SYQPQQ D4 = 4‘122 — Sr_;ngz [4] and [20] ]

Dy =D, —D2D4_1D3 Q12=Q12+A;1P22-

Remark 2: We can prove Lemma 2 by using a method similar to
that given in the proof of [4, Theorems 2.1, 2.2]. Note that the proof

because their matrices can be computed by u&ingm = 1,...,4 note improves the proof of Lemma 2 in the sense that the invertible

which is independent aP, [8], [9], [18]. assumption is not needed.

Letus defineys = inf{~ > 0| the ARE (6a) has a positive semidef-
inite stabilizing solution}.
By following the similar steps, we obtain the following equations:

Ill. THE NEW ITERATIVE ALGORITHM

In this section, we establish an elegant and simple algorithm which

AW 4+ Wi A2T — W RLWoy + ML =0 (7a) converges globally to the positive—semidefinite symmetric solution

‘/T/vlz = —Lz =+ Vi’rll Ll (7b)

of AREs (1) and (2). The algorithm is given in term of the standard
GALE, which have to be solved iteratively. We present the new

Apy Wy + Wan A3y — Waa R}, Wy + Maz = 0 (7c) iterative algorithm based on the Kleinman algorithm. Here, we note

that the Kleinman algorithm is based on the Newton type algorithm. In

where R R general, the stabilizable-detectable conditions will guarantee the con-
i7" —A— QDY DaCy = A A vergence of the Kleinman algorithm for the standard linear-quadratic
- NE2E2 T A, Agy regulator type ARE to the positive semidefinite solutions. However,
. o R}, R, it is difficult to apply the Kleinman a‘lgorit’hm to the QARES )

R =C, DoCo —y77Cr 1 = T R and (4) because the matri¥” = 7 2GG* — BD.B* andlor

o ‘ 1%\[11 22%2 RY =~72CTC, — C,D,CY are in general indefinite.
M =G (Iq — Dy, Dy Doy ) G' = {‘, T . } We propose the following algorithm for solving the GAREs (3) and

My Mo (4), respectively
AT —Ry ’

—1 w w

Hy=H, — H2H; 'H3 = {—M{;ﬁ —412}

Al —13’1"1}

H =
! {—Mn — A

(1 - Svp(z‘))T PUTD 4 PUEIT (37— 7))

+PIOTSTPY Q=0 (10)
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. plitt) = ptoT Assume that the matrixd,, is nonsingular andd, = A;; —
(Av —_w® Rv) WweHnT | W““)(A“” _ W(”RV)T A2 Ayt Asr and As, are stable. Then
7O R OT 4 A — &k ey =T )
+WORTWOT 4 M =0 == [”3’1‘)(0 T ' 2 o) (14)
weHi, = g weoT Pyl (0)  E39°(0)
:1=0,1,2,3,... (11) where
— . k
) Py &P , Wi Wi =My = 4 Im = 11,21,22.
th P = | ' 22| @) = .TheKI Ein (0) = 2 Zim(e)]e=0 Im =
wi B P | VL T e Kleinman doF

algorithm (10) can be constructed by settiRg*? = P + AP® Proof: Partitioning for the GALE (13), we obtain the following
and neglectingh P®V" 57 A P%) term. By following the similar steps, equations:

we obtain the Kleinman algorithm (11). Kleinman algorithm is well- . .
known and is widely used to find a solution of ARE, and its local con- Az +E0An + Az Ea

vergence properties are well understood. We are concerned with good +EN Aol +27Q1 =0 (15a)
choices of the starting points which guarantee to find a required solu-

. : ! o S A + Ty Aso + Ag; s
tion of a given GARE. Our new idea is to set the initial conditions to e e 21=22

the matrices?® andW(®). Using Lemma 2, the fundamental idea is +eANEn +£/Qi =0 (15b)
based off P— P(?|| = O(e) and||W — W || = O(=). Although the A3oZon + Zos Asy + ¢ (AszEgl + 321,412)
matricesS” and/orz” are in general indefinite, we can get the required .

solution with the rate of quadratic convergence by using the Kleinman +27Q2 =0. (15¢)

algorithm. By using Newton—Kantorovich theorem, we now prove thetting= = 0 for the above (15), sincelo and A, are stable we
existence of the unique solution for the GARE (3a). The main result ggquce thak,,., (0) = =(9(0) = 0, 7m = 11,21,22. We now obtain
this section is as follows. the derivative of (15) at parametems follows:

Theorem 1: Under the assumptions 1-3, if we select a parameter
v > 7 = max{vs, 715, V2s, Y25}, then the new iterative algorithm ATIE(JI)(e) + Eﬂ)(s)/lu + AZTl:fl (g)
(10) converges to the exact solutid? of the GARE (3a) with the + Egﬁ”( Aoy + 770 =0
rate of quadratic convergence. The unique bounded sol#iGhof .

=) () Ays + EO0T (o) Ay 4 AT, ZC)
the GARE (3a) is in the neighborhood of the exact solutftn Fur- —11 (“);41“: —21 (S)T‘A (21;11 Az1Z; ( )
thermore PY = m'pH = PO, is positive semidefinite and + ANLEn(2) + AL S (5) + e T Qi =0

7 SQPE” is stable for alk,i = 0,1,2,.... That is, the following AQQZEI))( )+ _(1)( 2) Az +S( }QEEII)T( )+ ~(1)(5)A12>
conditions are satisfied:

+ .Alrz:gl( )+ Eo1(2) Az + j€j71Q22 =0

(%) w|| _ 2
HP — 7| =0E") (123)  ysing =(0) = 0 and the fact that4o and As- are stable, we get
‘ <e< oo E}Q(O) = 0. By following the similar steps, we ha (0) =0,k = _
_ _ ‘ 0,1,2,j — 1. Note that the exact proof is done by usmg mathematical
P“) =II. Py = P(l)THE >0 induction. On the other hand, it is well known that the mafigossess
Re) [;j sopLi )} (12b) @ power series expansionat= 0 as follows:
where = kL [E57(0)  E35°(0)
P—=p" = {Pll el } Substnutmg?}il)(o) =0,k =0,1,2,j—1into=, itis straightforward
Py Py to verify that (14). This is the required result. [ |
pli) Py cpT Now, let us prove Theorem 1.

Py P Proof: The proof of (12b) has been given in [21]. Thus, we will

prove the quadratic convergence property corresponding to (12a) and
Before proving this theorem, we will first establish a followingthe existence of the unique solution of the ARE (1). We first prove

useful lemma. that under the assumptions in Theorem 1 the algorithm (10) converges
Lemma 3: Let us consider the GALE (13) to the desired solution of (3a) with (12a). The proof is done by using
mathematical induction and Lemma 3. Subtracting (3a) from (10), it is
AT24="A4+ 0 =0 (13) easy to derive
. . . T .

i _ "rP(z) P(z+1) _p P(z+1) _p i _ «’,P(l)
where= is the solution of the GALE (13) and and( known matrices ( s ) ( ) + ( ) ( s )
defined by - ( pli) _ p>T g (P“) _ p>

= /=T o ; ;
== {:”(C) t~21(°)} Wheni = 0 for the above equations, by noting thb‘tT’“U - P| =
=21(2)  Ea2(e) O(¢) based on the Lemma 2, we ha(ai"’ - S"‘"P(O)) (P — P)
A= A A Q= Qu Q2 o) T/ v (i) o .
- Aar Ao B Qsz Q22 +HP = P) (AW - ST ) = O(e7). Using
=i =Eh An Qu=Qf eRMM 1 _erpo _ [P D2t O(e)
Zao :E; eArs Q22 = Q;Z eER™X"2, AT = STPT = |:D3 D4+ O( 5)}
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and the known results th&, andD, = D; — DD ' D; are stable, [23]. First, it is most different from [22], [23] that our convergence
it follows from Lemma 3 thaf| P{") — P|| = O(=?). We now assume proof of the iterative algorithm (10) is based on Newton—Kantorovich
that ||[P™Y) — P|| = O (52N)_ Using this assumption, we concludetheorem. Moreover, how to select the initial condition is quite dif-

that ferent. That is, we choose the initial condition as solutions of the re-
duced-order AREs close to the exact solutions using the property of
(A‘f _ S:V/Pm))T (p(N+1) _ p> singularly perturbed system. As a result, while the recursion in [22] has

. exponential convergence property, the new iterative algorithm achieves
+ (P(N+1) _ P) ! (A“/ _ S“”P(N)) - _0 (SZN“) . the quadratic convergence property stronger than exponential conver-
gence property. Secondly, we have newly proved the existence of the
) (N4D) _ gN+1 unique solution for the GARE with indefinite sign quadratic term.
Thus, using Lemma 3, we hajjé” - P=0{e -Con- e now summarize a perturbation analysis of the GALE (10). Set-

sequently, the (12a) holds for alie N. Secondly, we show that thereting = to zero and using Kronecker products, the GALE (10) can be
exists the unique solution for the ARE (1). This proof is equivalent t@ritten as

the proof of existence of the unique solution for the GARE (3a). Thus,

the proof follows directly by applying Newton—Kantorovich theorem _Vecfﬁﬂ) T VecC:)u
(see [16, p. 155]) for the GARE (3a). We now observe that function V' | vecPiT | = | vecQue
F1(P) is differentiable on a convex sét. Using the fact that | vec P! | veeQas
[An A o Py o }
p T , T T / T — —fl’\’ - S 71} = (i
VAP = (7= 5'P) 9L+ 1,0 (47 - 57P) ] = LIT%J rr

. Ke 212] Py P P} 0
where denotes Kronecker product [19] add (P) = A™' P + g? gl { (1)1 P%’ } s7 {P(’) p(i)} +@Q
PTA" — PTSTP 4 Q, VF(P) = dvecF,(P)/d(vecP)T, where A G 2

vec denotes an ordered stack of the columns of its matrix [19], we haygere V' is given at the bottom of the pagél.,., denotes a
permutation matrix in Kronecker matrix sense [19] ang PU TV

lm

denotes an ordered stack of the columnsf*,ﬁjj“) whene = 0.
It can be shown, after some algebra, that the determinary of
is expressed adet) = det [(1’,72 ® AH)[',,Zn2 + A%y @ I,
~det (I, @ A3p)  -det [(I, @ Ag )Unyn, + Ag @ I,,], where
Ao = Ay = A1 Ayt Aoy Obwously,Azz and. 4, are nonsingular
matrices. Thus, there exisi¢ . Therefore, the condition number
[16] of V, that is, K (V) = ||V]| - ||[V™'|| is given by K (V) = O(1).
SinceK (V) is not large, the matriy%’ + O(¢) is well-conditioned for
= 3. smalle.

We next give the convergence theorem of the algorithm (11) by sim-
On the other hand, sincg, (P“”) = O(e), there existgj such that jjar argument corresponding to the algorithm (10).
H[V]:l p(0)>]—1 H}— (PO)| = O(z) = 7. Thus, there exists Theorem 2: Under the Assumptions 1-3, if we select a parameter

_ = ) v > 7 = max{yis, 1. Y25, Y27 }, then the new iterative algorithm
such thaty = 57 < 27" because off = O(=). Now, let us define (11) converges to the exact solutidii* of the GARE (4a) with the

IVFI(P) = V(P < AP = Pl
wherey = 2||S7||. Moreover, using the fact that

D; D-l—()()

VAP = {DJ Da+0(e)

B 3 T
:| \/)I +I V)|:D1 D2+O(€):|

DJ D4+()(6)

it follows that V£, (P(®)) is nonsingular becaus®, and D, are

stable. Therefore, there existssuch that [V}? (P(O))r

L1 rate of quadratic convergence. The unique bounded solitiéh of
t =7 [1-Vv1-2a the GARE (4a) is in the nelghborhood of the exact solufiBh. Fur-
) 1 thermore, V. ((‘ = WOTHZT = IZ'W® is positive semidefinite
:2||5“"||'||[V7‘"(P(°))]*1|| [1-Vv1-2a]. andA? — WP RY is stableforallz i=0,1,2,.
Proof: Since the proof of Theorem 2 is performed by a dual ar-
gument of Theorem 1, it is omitted. |

— . _ plO * g _
Clearly,5 = {P HIP=PT<t } Is in the convex seb. In the se As aresult of applying the idea of the Kleinman algorithm, we have

quel, sincg| P* — P|| = O(e) holds for smalk, we have shown that managed to replace the computation of the GARES (3) and (4) which
P is the unique solution ity Therefore, the proof is completed®  contain the small parametewith a sequence of the GALEs (10) and
Remark 3: The algorithm (10) which is based on the Kleinman al11).

gorithm might facilitate new approach to the singularly perturbed ARE Now, we consider a method for solving the GALEs (10) and (11).
with indefinite sign quadratic term, that is, conceptually simpler angince the algorithm for solving the GALE (10) is virtually identical to
numerically more efficient than those previously used in [7] and [15fhe GALE (11), we give only the algorithm of the GALE (10). In order
Moreover, by applying the results of this paper, we can get rather easiffteduce the dimension of the workspace, a new algorithm for solving
the solution for various singularly perturbed ARE with indefinite sigfhe GALE which is based on the fixed point algorithm is established.

quadratic term. Let us consider the following GALE (16), in a general form:
Remark 4: Note that our proposed method is not a straightforward
extension to the continuous-time case of the methods given in [22], ATX+X"A+V =0 (16)
(Irn & ATI) [7"_1”1 + AIl @ In1 ( n1 @ ./421) ning + ./4)1 & In1 _ 0
V= (I, @ Aly) Unym, (I, © A35) Unyny AL oI,

0 0 (Iny © A32) Ungny + Ao @ I,



1664 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 10, OCTOBER 2001

where X is the solution of the GALE (16) and andV are known Thus, using the standard properties of the algebraic Lyapunov equation
matrices defined by (ALE) [24], we have|| XY™ — x| = 0(eV+1). Consequently,

lm

) Xi1(2) X ()T ) the (19) hold_s for al € N. This completes the proof of the theorem

X = {Xﬂ(s) Xas(e) } =P concerne_d Wlth the fixed point algo_rlthm. _ _ ]
A - \ - , The existing method [7] can obtain the solution by solving the ALEs

A= { o ‘2} .— A7 — 57 pW of lower dimensions which are the same as the slow and fast subsys-
Azi A tems. However, in order to obtain the exact solution of the sign indef-

V= {Vu Vlz} = PO P 4 inite ARE, ones need the same workspace for calculating the inverse
Vib Vao matrix (see [7], equation (3.3)). On the other hand, the resulting algo-

Xy =X A Vii =V, e R ™ rithm is very useful because our proposed algorithm has only to solve

the ALEs of lower dimensions. Moreover, note that the algorithm (18a)
is quite different from the recursive algorithm [15]. As another impor-

In order to solve the GALE (16) in a iterative method, we need af@nt feature, since our proposed algorithm is the quadratic convergence,

Xoo :.X;rz Aoo Voo = ‘/YZE c R"ZX’IZ_

other assumption. while the recursive algorithm is the linear convergence [15], the re-
Assumption 4: The matrixAs; is nonsingular andy, = A,; — Sulting algorithm is also efficient.
A12AZ} Asy and A,y are stable. In the rest of this section, we will present an important implication.
Note that the assumption 4 is satisfied forial N becauséD, and If the state information is available for feedback, then the following
Dy are stable. The GALE (16) can be partitioned into corollary is easily seen in view of Theorem 1. ‘
- - Corollary 1: Assume thatCfD;» = 0 and DLDys = I,.
1\111 X+ XA+ AQﬂ Xo1 Under the assumptions/_ 1-3, the approximate feedback gain
F X A 4TV =0 (7a) K% = —[BI BJ] P guarantees the performance level
3 ; =1 ot
XA+ AY2’I‘1£\22 + A;rlXQQ H (C] + D]z[f(")> (SIn — A, — BEIX’(Z)> G. < v+ 0(62 ),
AT T P H X . o
+eAnXo +Vi2 =0 (17b)  whereP" is defined in the statement of Theorem 1.
ATy Xoo + XooAss + € (J\LXle + X21A12) Proof: It can be carried out via a similar technique used in [7]
4 Voo = 0. (17¢) and [20]. |
The fixed point algorithm for solving (17) is given by IV. NUMERICAL EXAMPLE
AEQX‘(?'*” + XA, In order to demonstrate the efficiency of our proposed algorithm, we
22 - (,\2; 0 have run a simple numerical example. The system matrix is given by
te (AUXQ;) + x4 1\12> Ve =0 (18a) )
) ) ) 0 0.4 0 0
T (2 i4+1) T A =1 (0 A — Ao —
Ao X+ X A0 — s A X A=1y o } e = {0.345 0}
T 7 —1 T A =Ty~ —1 C
—cAy Xéﬂ Asy Aoy + Ag1 Aoy VaoAsy A o 0 —0.524 s — 0 0.262
= VizA%, Aoy = A AS VY, + Vi =0 (18b) Zlo 0o | T lo -1
X2(§+l) = _‘\Z_ZT (AFIIZX1(§+1) +X2(é+l)A21 Bl = (0):| B'_) = |:?:|
+ XA+ 1Y) . 1.0 0 } . {0.2 0.1}
T = T2 = P
xXW=0i=0123,.... (18c) L0 1.0 12 05
_ o _ Di=[0 0 0 0 1] Doy =[1 0.5]
The following theorem indicates the convergence of the algorithm (18). « 100 0 0 . 0010 0
Theorem 3: The algorithm (18) converges to the exact soluflap, Cn = Cr =
of (17) with the rate of convergence 6Xz'), that is 00000 00000
g &) Cor=[1 0] Cor=[1 1]

X(,) - Xlnz

Im

=0(<")

The numerical results are obtained for small parameter 10~*.
i =1,2,3,... Im =11,21,22. (19) Sincedet Ay, = 0, the system is nonstandard singularly perturbed
) ) o . systems. The four basic quantities for the systemaje= vy =
Proof. The proof is done by_ usmg)the math_ematlcal |ndu_ct|orb_255 156, 115 = 425 = 7.359056. Thus, for every boundary value
Wheni = 0 fqr thg (18), the solutlonsl,\m are equivalent to the first Y > 5 = max {717, Yis, J25s 12: } = 7.359056, the AREs (6a), (6¢),
order approximations\’;, corresponding to the smlall parameters 7.) and (7c) have the positive semidefinite stabilizing solutions. On
for the (17). It follows from these equations t%xl(m) —Xim| = the other hand, by using MATLAB, the minimum value®kuch that
O(e), Im = 11,21,22. When: = N (N > 1), we assume that there exists the dynamic feedback controlle} is: 7.468 750.
HX(N) — X1 || = O(=Y). Subtracting (18) from (17) and using the Now, we choose as = 8.0 > 7 to design the controller. We give the

Im

above assumptions, we arrive at the following equations: following solutions of the AREs E.) and (2) andin Table . Table Il shows

- ) ) , the results of the errorsF; (P || and|| . (W()|| periterations. We
Az (Xéflz\drl) - X22) + (XQH) - X22) A2+ 0" =0 find that the solutions of the AREs (1) and (2) converge to the exact
(Xﬁwrl) - Xﬂ) Avz + (XQH) - X21>T Aoy sol_u1tion with .accuraC)./ OH}—.l(P(Z))H N .IO_M andHBG/.V%l)_)H <
10 after 2 iterative iterations, respectively. Moreover, it is interested
AL (XSH) _ X22) n O(€N+1) -0 in pointing out that the result of Table Il shows that the algorithms (10)
T [ (N41) (N41) i Nt and (11) are quadratic convergence. Table Il shows the results of the
Ao (Xu - X11) + (Xn - )&11) Ao+0O(E")=0. number of iterations required to the solution with the same accuracy of
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TABLE |

@ _

€

1.5886644664 x 10 7.1692654025 1.4777259003 x 103
7.1692654025 9.5689292890 7.3774420477 x 10~
1.4777259003 x 1073  7.3774420477 x 10~* 4.8953376479 x 10~*
3.2803557787 x 10~1  1.2062616188 x 10~* 1.0462699908 x 10~
1.7234972390 —9.6975066240 x 10~2 —1.5020487314

3.2803557787 x 1074 ]

1.2062616188 x 10~¢
1.0462699908 x 10~*
2.4621105838 x 10~°

—1.0113300267 x 10~1

1665

—-9.6975066240 x 1072

6.7468422739 x 1071

7.8173878465 x 107!

w® — —1.4273792265
¢ T ~1.5020487314 —1.4273792265 4.8380921965 —1.2998747057
~1.0113300267 x 1071  7.8173878465 x 107!  —1.2998747057  1.9265002490 x 10!
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tice-Hall, 1998, setting is treated in that reference: that of an additional disturbance,
which is handled using ai *° approach. The value of the limiting
control problem is obtained. Our approach allows us to get more than
the limiting control problem:; it gives the solution in terms of a series
expansion in the perturbation parameter. This note also extends the re-
sults in [3] which dealt with a one dimensional linear system.
Perturbation of Multivariable Linear Quadratic Systems The paper is prganized as follows: Section I .introduces thg gen-
With Jump Parameters eral model. Section Ill provides the Taylor expansion of the solution to
the coupled algebraic Riccati equations. We study computational algo-
R. El Azouzi, M. Abbad, and E. Altman rithms in Section IV. This note ends with the concluding remarks.

Il. GENERAL MODEL
Abstract—We consider the problem of the perturbation of a class of . i . . .
linear-quadratic systems where the change from one structure (for the dy-  The class of jump linear systems under consideration is described by
namics and costs) to another is governed by a finite-state Markov process. dr
The problem above leads to the analysis of some perturbed linearly coupled — = A(A(t))x(t) + B(O(t))u(t), x(0) =g 1)
set of Riccati equations. We show that the matrix obtained as the solution of dt
the equations, which determines the optimal value and control, has a Taylor where

expansion in the perturbation parameter. We compute explicitly the terms T p-dimensional system state;
of this expansion. zo  fixed (known) initial state;
Index Terms—Averaging and aggregation, coupled Riccati equations, r-dimensional control, taking values &',
linear quadratic control, Markov jump parameters, singular perturbation. 6(t) finite state Markov chain defined on the state sp&cef
cardinality s, with the infinitesimal generator matrix =
I. INTRODUCTION (Xiy), 07 € 5. . }
The \;;’s are real numbers such that for ahy# j, A\;; > 0, and
Many systems subject to frequent unpredictable structural chandesall i € S, A\ijoi = — Z#i Aiaj. With this system, the contral

can be modeled as piecewise deterministic systems, where the systegenerated by a control policy according tou(t) = (¢, x4, 6¢),
dynamics takes on different forms depending on the value of an assacée [0, +oc), wherev is taken to be piecewise continuous in its first
ated Markov process. In the linear case, these are also known as jargument, and piecewise Lipschitz continuous in its second argument.
linear systems. Such a system model is useful particularly since it Bet us denote the class of all admissible controllerd’byefine the
lows the decision maker to cope adequately with the discrete events thaining (immediate) codt : R? x SXT' — Ras:L(z,i,u) =| = |Eg(7¢)
disrupt and/or change significantly the normal operation of a systemby| u [3,,), whereQ(.) > 0, R(.) > 0, and wherd z |¢:= 2" Qu,
using the knowledge of their occurrence and the statistical informatietc. The underlying probability space is the trigle, F, P). Let E
on the rate at which these events take place. Research in this classepfote the expectation with respect to the underlying probability space.
systems and their applications into manufacturing management spRos each initial statézq,i0) and strategyy € T', we introduce the
several decades. Some representative papers in this area are [4] andii§dounted (expected) cost function
The solution of jump linear systems relies on solving a set of coupled oo
Riccati equations involving the generator of the underlying Markov Js(xo,i0,7) = Ezq.io </ c_"?"L(m(t),H(t),u(t))df) )]
chain. In many applications, the state space of the Markov chain is large 0
and it becomes difficult to obtain solutions to the Riccati equation&heres > 0 is a discount factor. For this infinite-horizon, we have to
To overcome this difficulty, we use singular perturbation techniques @fisure that the cost is finite for at least one stationary policy. A suffi-
the modeling, control design, and optimization, which holds when ti§éent condition for this is the following (see also Remark 2):
system displays certain two-time-scale behavior, a fast time scale and Assumption 1: The pair(A(6(t)). B(6(t))) is stochastically stabi-
slowly varying one. Presence of such a phenomenon is best expredgadle and(A(i), Q(i)) is observable for eache 5.
mathematically by introducing a small parameter 0 and modelthe ~ The problem is the derivation of a solution tds(x,i) =
underlying system as one involving singularly perturbed Markov chaipf-er Ja(z,i,7).
(see [8] for examples). Using averaging and aggregation techniques, The Perturbed Systemdn many application, because of the var-
we show that the set of coupled algebraic Riccati equations (CARIGYS sources of uncertainties, the Markov chain involved is of large di-
possesses a unique solution which can be represented as a Taylor s&Iggsion. Itis natural to group the large number of states into different
in e and moreover we present an algorithm for computing the terms&fllections of states, based on whether the interaction between any two
the series. states is weak or strong. This description using two scales of interac-
tions is expressed mathematically by taking the probability transition
rate matrixA in an appropriate singularly perturbed form, as already
discussed in [2]:
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